1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
|
include <mach.h>
include <imhdr.h>
include "../lib/daophotdef.h"
include "../lib/apseldef.h"
include "../lib/nstardef.h"
# DP_NSTARFIT -- Fit the stellar group.
int procedure dp_nstarfit (dao, im, nin_group, mean_sky, cdimen, iter,
converge)
pointer dao # pointer to the daophot structure
pointer im # pointer to the input image
int nin_group # original group size
real mean_sky # the mean sky for the group
int cdimen # dimensions of the coefficient matrix
int iter # the current iteration
bool converge # did the fit converge ?
bool clip, refit
int i, j, k, xpix, ypix, group_size, nterm, ncols, mindex, ifaint, tifaint
int ntmin, ixmin, ixmax, iymin, iymax, ifxmin, ifxmax, ifymin, ifymax, flag
pointer apsel, psffit, nstar, subim, ypixel, pixel
real fitradsq, cutoff, psfradsq, sepcrit, sepmin, perr, peakerr, sky_value
real read_noise, mingdata, maxgdata, chigrp, wcrit, xmin, xmax, ymin, ymax
real datum, sumres, grpwt, xtemp, ytemp, weight, ds, pred_pixval, sigmasq
real relerr, dswt, faint, tfaint, noise
bool dp_nstmerge(), dp_ntomit(), dp_ntmin(), dp_ncheckc()
pointer imgs2r()
real dp_ntskyval(), dp_ntsubtract()
begin
# Define the daophot pointers.
psffit = DP_PSFFIT (dao)
apsel = DP_APSEL(dao)
nstar = DP_NSTAR (dao)
# Set up some daophot constants. At some point these will be computed
# when the NSTAR task is started up instead of at the beginning of
# each group fit. For the moment it is convenient and not too
# costly to compute them here. Also initialize the fit.
if (iter == 1) {
# Compute the fitting and psf radii.
fitradsq = DP_FITRAD (dao) ** 2
psfradsq = DP_PSFRAD(dao) ** 2
cutoff = CUT_FACTOR * fitradsq
# Compute the merging parameters.
if (IS_INDEFR(DP_MERGERAD(dao))) {
sepcrit = 2.0 * (Memr[DP_PSFPARS(psffit)] ** 2 +
Memr[DP_PSFPARS(psffit)+1] ** 2)
sepmin = min (1.0, FRACTION_MINSEP * sepcrit)
} else {
sepcrit = DP_MERGERAD(dao) ** 2
sepmin = min (1.0, FRACTION_MINSEP * sepcrit)
}
# Compute the noise parameters.
read_noise = (DP_READNOISE(dao) / DP_PHOTADU(dao)) ** 2
perr = 0.01 * DP_FLATERR(dao)
peakerr = 0.01 * DP_PROFERR(dao) / (Memr[DP_PSFPARS(psffit)] *
Memr[DP_PSFPARS(psffit)+1])
# Compute the minimum and maximum good pixel values.
if (IS_INDEFR(DP_MINGDATA(dao)))
mingdata = -MAX_REAL
else
mingdata = DP_MINGDATA(dao)
if (IS_INDEFR(DP_MAXGDATA(dao)))
maxgdata = MAX_REAL
else
maxgdata = DP_MAXGDATA(dao)
# Initialize the fit.
chigrp = 1.0
clip = false
if (DP_RECENTER(dao) == YES) {
nterm = 3 * nin_group
ntmin = 3
} else {
nterm = nin_group
ntmin = 1
}
if (DP_FITSKY(dao) == YES) {
nterm = nterm + 1
ntmin = ntmin + 1
}
call aclrr (Memr[DP_NXOLD(nstar)], nterm)
call amovkr (1.0, Memr[DP_NXCLAMP(nstar)], nterm)
}
# Start a new iteration.
group_size = nin_group
if (DP_RECENTER(dao) == YES)
nterm = 3 * group_size
else
nterm = group_size
if (DP_FITSKY(dao) == YES)
nterm = nterm + 1
# Begin fitting the current group of stars.
repeat {
# Initialize the convergence criteria.
converge = false
# Check that there is at least 1 star in the group.
if (group_size < 1)
return (group_size)
# Set up the critical error for star rejection.
if (iter >= NITER_MAX)
wcrit = WCRIT_MAX
else if (iter >= NITER_MED)
wcrit = WCRIT_MED
else if (iter >= NITER_MIN)
wcrit = WCRIT_MIN
else
wcrit = MAX_REAL
# Set the sky fitting derivative.
if (DP_FITSKY(dao) == YES)
Memr[DP_NX(nstar)+nterm-1] = -1.0
# Initialize arrays.
call aclrr (Memr[DP_APCHI(apsel)], group_size)
call aclrr (Memr[DP_NSUMWT(nstar)], group_size)
call aclrr (Memr[DP_NNUMER(nstar)], group_size)
call aclrr (Memr[DP_NDENOM(nstar)], group_size)
call amovki (NSTERR_OK, Memi[DP_NIER(nstar)], group_size)
# Compute the minimum and maximum x and y values.
call alimr (Memr[DP_APXCEN(apsel)], group_size, xmin, xmax)
call alimr (Memr[DP_APYCEN(apsel)], group_size, ymin, ymax)
# Check to see whether any two stars are within the critical
# difference from each other.
if ((group_size > 1) && dp_nstmerge (Memr[DP_APXCEN(apsel)],
Memr[DP_APYCEN(apsel)], Memr[DP_APMAG(apsel)],
Memr[DP_APERR(apsel)], group_size, sepcrit, sepmin, wcrit,
i, j, k)) {
# Compute the new centroid and brightness.
call dp_nstcen (Memr[DP_APXCEN(apsel)], Memr[DP_APYCEN(apsel)],
Memr[DP_APMAG(apsel)], i, j, k)
# Print out verbose comments.
if (DP_VERBOSE (dao) == YES) {
call printf ("\tStar %-5d has merged with star %-5d\n")
call pargi (Memi[DP_APID(apsel)+k-1])
call pargi (Memi[DP_APID(apsel)+i-1])
}
# Recompute the mean sky.
if ((DP_FITSKY(dao) == NO) && (DP_GROUPSKY(dao) == YES))
mean_sky = (mean_sky * group_size -
Memr[DP_APMSKY(apsel)+k-1]) / (group_size - 1)
# Now remove the k-th star from the group.
call dp_remove (k, group_size, Memi[DP_APID(apsel)],
Memr[DP_APXCEN(apsel)], Memr[DP_APYCEN(apsel)],
Memr[DP_APMAG(apsel)], Memr[DP_APMSKY(apsel)],
Memi[DP_NIER(nstar)], NSTERR_MERGE)
# After deleting a star, resize the matrix, release all of
# the clamps and back up the iteration counter.
if (DP_RECENTER(dao) == YES)
nterm = 3 * group_size
else
nterm = group_size
if (DP_FITSKY(dao) == YES)
nterm = nterm + 1
clip = false
call aclrr (Memr[DP_NXOLD(nstar)], nterm)
call amovkr (1.0, Memr[DP_NXCLAMP(nstar)], nterm)
iter = max (1, iter - 1)
next
}
# Now we can proceed with the iteration. If this is the first
# iteration read in the subraster. Determine the size of the
# subraster we need to extract from the image for this group.
if (iter == 1) {
ixmin = max (1, int (xmin - DP_PSFRAD(dao) -
DP_FITRAD(dao)) + 1)
iymin = max (1, int (ymin - DP_PSFRAD(dao) -
DP_FITRAD(dao)) + 1)
ixmax = min (IM_LEN(im,1), int (xmax + DP_PSFRAD(dao) +
DP_FITRAD(dao)))
iymax = min (IM_LEN(im,2), int (ymax + DP_PSFRAD(dao) +
DP_FITRAD(dao)))
subim = imgs2r (im, ixmin, ixmax, iymin, iymax)
ncols = ixmax - ixmin + 1
}
# Compute the area on the subraster that is off interest to
# the current iteration.
ifxmin = max (ixmin, int (xmin - DP_FITRAD(dao)) + 1)
ifymin = max (iymin, int (ymin - DP_FITRAD(dao)) + 1)
ifxmax = min (ixmax, int (xmax + DP_FITRAD(dao)))
ifymax = min (iymax, int (ymax + DP_FITRAD(dao)))
# Zero the normal matrix and the vector of residuals.
call aclrr (Memr[DP_NV(nstar)], nterm)
call aclrr (Memr[DP_NC(nstar)], cdimen * cdimen)
call aclri (Memi[DP_NNPIX(nstar)], group_size)
sumres = 0.0
grpwt = 0.0
# Loop over the pixels in the subraster.
ypixel = subim + (ifymin - iymin) * ncols + ifxmin - ixmin - 1
do ypix = ifymin, ifymax {
ytemp = ypix
pixel = ypixel
do xpix = ifxmin, ifxmax {
xtemp = xpix
pixel = pixel + 1
datum = Memr[pixel]
# Reject pixel if not in good data range.
if ((datum < mingdata) || (datum > maxgdata))
next
# If this pixel is within one fitting radius of at
# least one star then include it in the solution.
# While figuring this out, compute the squared distance
# of this pixel from the centroid of each star in the
# group, and sum its contribution to the number
# of pixels within one fitting radius of each star.
if (dp_ntomit (Memr[DP_APXCEN(apsel)],
Memr[DP_APYCEN(apsel)], Memr[DP_NRPIXSQ(nstar)],
Memi[DP_NSKIP(nstar)], group_size, xtemp, ytemp,
cutoff))
next
if ((DP_FITSKY(dao) == NO) && (DP_GROUPSKY(dao) == NO)) {
sky_value = dp_ntskyval (Memr[DP_APMSKY(apsel)],
Memi[DP_NSKIP(nstar)], group_size)
if (IS_INDEFR(sky_value))
sky_value = mean_sky
} else
sky_value = mean_sky
# Subtract the mean sky from the pixel.
#ds = datum - mean_sky
ds = datum - sky_value
# Now loop over the stars and subtract from this pixel
# the light contribution from each star within one psf
# radius.
#
# The condition equation for pixel[xpix,ypix] is
#
# residual = data[xpix,ypix] - sky - sum (scale *
# psf[xpix-xc,ypix-yc])
#
# The scale, xc, and yc are iterated until
#
# sum (weight * residual ** 2)
#
# is minimized. Weight will be a function of 1) the
# distance of the pixel from the center of the nearest
# star, 2) the model-predicted brightness of the pixel
# (taking into consideration the readout noise, the
# photons/ADU, and the interpolating error of the PSF,
# and, 3) the size of the residual itself. One is
# necessary to prevent the non-linear least squares
# solution from oscillating: oftimes it will come
# to pass that if you include a pixel in the solution
# then the predicted shift of the centroid will cause
# that pixel to be excluded in the next iteration, and the
# new predicted shift of the centroid will cause that
# pixel to be included again. This could go on ad
# infinitum. The cure is to have the weight of the pixel
# go asymptotically to zero as its distance from the
# stellar centroid approaches the fitting radius. In
# the case like that just described, the solution can
# then find a real minimum of the sum of the weighted
# squared residuals with that pixel at some low-weight
# position just inside the fitting radius. Two is
# just sensible weighting. Three is a crude attempt
# at making the solution more robust against bad pixels.
weight = dp_ntsubtract (dao, im, Memr[DP_APXCEN(apsel)],
Memr[DP_APYCEN(apsel)], Memr[DP_NRPIXSQ(nstar)],
Memr[DP_APMAG(apsel)], Memi[DP_NSKIP(nstar)],
Memr[DP_NX(nstar)], group_size, xtemp, ytemp, ds,
psfradsq, fitradsq, DP_RECENTER(dao))
# At this point the vector X contains the first
# derivative of the condition equation, for the pixel
# under consideration, with respect to each of the
# fitting parameters for all of these stars. We now need
# to add these values into the normal matrix and the vector
# of residuals.
# The expected random error in the pixel is the quadratic
# sum of the Poisson statistics, plus the readout noise,
# plus an estimated error of 0.75% of the total brightness
# of the total brightness for the difficulty of flat-
# fielding and bias subtraction, plus an estimated error
# of the same fraction of the fourth derivative at the
# peak of the profile, to account for the difficulty
# of accurately interpolating within the point-spread
# function. The fourth derivative of the PSF is
# proportional to H / sigma ** 4 (sigma is the Gaussian
# width parameter for the stellar core); using the geometric
# mean of sigma(x) and sigma(y), this becomes H / [sigma(x)
# * sigma(y)] ** 2. The ratio of the fitting error to this
# quantity is estimated to be approximately 0.027 from a
# good-seeing CTIO frame. (This is probably a function of
# seeing, sampling etc.)
# Get the residual from the PSF fit and the pixel
# intensity as predicted by the fit. Pred_pixval = raw data
# minus residual = model predicted value of the intensity at
# this point.
pred_pixval = max (0.0, datum - ds)
if ((pred_pixval > maxgdata) && (iter >= 4))
next
#sigmasq = pred_pixval / DP_PHOTADU (dao) + read_noise +
#(perr * pred_pixval) ** 2 + (peakerr *
#(pred_pixval - mean_sky)) ** 2
sigmasq = pred_pixval / DP_PHOTADU (dao) + read_noise +
(perr * pred_pixval) ** 2 + (peakerr *
(pred_pixval - sky_value)) ** 2
if (sigmasq <= 0.0)
next
relerr = abs (ds) / sqrt (sigmasq)
# Add this residual into the weighted sum of the
# absolute relative residuals.
sumres = sumres + relerr * weight
grpwt = grpwt + weight
# Add into the accumulating sums of the weighted
# absolute relative residuals and of the image sharpness
# parameter for each of the stars. Include in the
# sharpness index only those pixels within NCORE_SIGMA
# sigma of the centroid of the object. This saves time
# and floating underflows by excluding pixels
# which contribute less than about one part in a
# million to the index.
call dp_acsharp (Memr[DP_APXCEN(apsel)],
Memr[DP_APYCEN(apsel)], Memi[DP_NSKIP(nstar)],
Memi[DP_NNPIX(nstar)], Memr[DP_NNUMER(nstar)],
Memr[DP_NDENOM(nstar)], Memr[DP_NSUMWT(nstar)],
Memr[DP_APCHI(apsel)], group_size, xtemp, ytemp,
Memr[DP_PSFPARS(psffit)], Memr[DP_PSFPARS(psffit)+1],
ds, sigmasq, relerr, weight)
# If clipping is in effect, reduce the weight of a bad
# pixel. A pixel having a residual of 2.5 sigma gets
# reduced to half weight and one with a rersidual of 5
# sigma gets weight of 1 / 257.
weight = weight / sigmasq
if (clip)
weight = weight / (1.0 + (relerr / (DP_CLIPRANGE(dao) *
chigrp)) ** DP_CLIPEXP(dao))
dswt = ds * weight
# Work this pixel into the normal matrix.
call dp_mataccum (Memr[DP_NX(nstar)], Memi[DP_NSKIP(nstar)],
group_size, Memr[DP_NC(nstar)], Memr[DP_NV(nstar)],
cdimen, nterm, weight, dswt, DP_RECENTER(dao),
DP_FITSKY(dao))
}
ypixel = ypixel + ncols
}
# Make sure that every star in the group has at least MIN_FIT_PIXEL
# pixels within one fitting radius.
refit = dp_ntmin (Memi[DP_APID(apsel)], Memr[DP_APXCEN(apsel)],
Memr[DP_APYCEN(apsel)], Memr[DP_APMAG(apsel)],
Memr[DP_APMSKY(apsel)], Memi[DP_NNPIX(nstar)],
Memi[DP_NIER(nstar)], group_size, nterm, DP_RECENTER(dao),
DP_FITSKY(dao), DP_GROUPSKY(dao), mean_sky, DP_VERBOSE(dao))
if (group_size < 1)
return (group_size)
if (refit)
next
# Reflect the normal matrix across the diagonal.
call dp_mreflect (Memr[DP_NC(nstar)], cdimen, nterm)
# Compute the robust estimate of the standard deviation of the
# residuals for the group as a whole, and for each star. This
# estimate is sqrt (PI/2) * weighted mean absolute relative
# residual. Do you like that "absolute relative" stuff? (PBS)
# NO! (LED)
#
# CHI = CHI_NORM * SUM (weight * resid) / (# of pixels)
#
# This gets corrected for bias by being multiplied by
#
# SQRT (# of pixels) / (# of pixels - 3)
# Then the value is driven towards unity, depending on
# exactly how many pixels were involved: if CHIOLD is based
# on a total weight of 3, then it is extremely poorly determined
# and we just want to keep CHIOLD = 1. The larger GRPWT is, the
# better determined CHIOLD is, and the less we want to force it
# toward unity. So, just take the weighted average of CHIOLD and
# unity, with weights GRPWT - 3 and 1, respectively.
if (grpwt > ntmin) {
chigrp = CHI_NORM * sumres * sqrt (1.0 / (grpwt * (grpwt -
ntmin)))
chigrp = ((grpwt - ntmin) * chigrp + ntmin) / grpwt
}
# CHIOLD has been pulled toward its expected value of unity to
# keep the statistics of a small number of pixels from completely
# dominating the error analysis. Similarly, the photometric
# errors for the individual stars will be pulled toward unity
# now. Later on, if the number of stars in the group is
# greated than one, CHI will be nudged toward the group average.
# In order to work optimally, of course, this requires that
# the # of photons / ADU, the READNOISE and the other noise
# contributors are properly specified.
call dp_ntchi (Memr[DP_NSUMWT(nstar)], Memr[DP_APCHI(apsel)],
group_size, ntmin, chigrp, grpwt)
# Invert the matrix.
call invers (Memr[DP_NC(nstar)], cdimen, nterm, flag)
# Check for a singular matrix.
refit = dp_ncheckc (Memr[DP_NC(nstar)], cdimen, nterm,
Memi[DP_APID(apsel)], Memr[DP_APXCEN(apsel)],
Memr[DP_APYCEN(apsel)], Memr[DP_APMAG(apsel)],
Memr[DP_APMSKY(apsel)], Memi[DP_NIER(nstar)], group_size,
DP_RECENTER(dao), DP_FITSKY(dao), DP_GROUPSKY(dao), mean_sky,
DP_VERBOSE(dao))
if (group_size < 1)
return (group_size)
if (refit)
next
# Solve for position and scale factor increments.
call mvmul (Memr[DP_NC(nstar)], cdimen, nterm, Memr[DP_NV(nstar)],
Memr[DP_NX(nstar)])
if (iter <= 1)
refit = true
else
refit = false
# Fit the sky.
if (DP_FITSKY(dao) == YES) {
noise = sqrt (abs (mean_sky / DP_PHOTADU(dao)) + read_noise)
mean_sky = mean_sky - max (-3.0 * noise,
min (Memr[DP_NX(nstar)+nterm-1], 3.0 * noise))
if (abs (Memr[DP_NX(nstar)+nterm-1]) > (1.0e-4 * mean_sky))
refit = true
}
# In the beginning, the brightness of each star will be permitted
# to change by no more than 2 magnitudes per iteration, and the x,y
# coordinates of each centroid will be permitted to change by
# no more than 0.4 pixels per iteration. Any time that the
# parameter correction changes sign from one iteration to the
# next, the maximum permissible change will be reduced by a factor
# of two. These clamps are released any time a star disappears.
call dp_ntclamp (Memr[DP_APXCEN(apsel)], Memr[DP_APYCEN(apsel)],
Memr[DP_APMAG(apsel)], Memr[DP_APERR(apsel)],
Memr[DP_NSUMWT(nstar)], group_size, Memr[DP_NC(nstar)], cdimen,
Memr[DP_NX(nstar)], Memr[DP_NXOLD(nstar)],
Memr[DP_NXCLAMP(nstar)], DP_RECENTER(dao), clip, refit)
# Check whether the estimated centroid of the any star has
# moved so far out of the limits of the picture that it has fewer
# than 4 or 5 pixels within one fitting radius.
call dp_ntcentroid (Memi[DP_APID(apsel)], Memr[DP_APXCEN(apsel)],
Memr[DP_APYCEN(apsel)], Memr[DP_APMAG(apsel)],
Memr[DP_APMSKY(apsel)], Memi[DP_NIER(nstar)], group_size,
ixmin, ixmax, iymin, iymax, fitradsq, DP_FITSKY(dao),
DP_GROUPSKY(dao), mean_sky, refit, DP_VERBOSE(dao))
if (group_size < 1)
return (group_size)
# Update matrix dimensions.
if (DP_RECENTER(dao) == YES)
nterm = 3 * group_size
else
nterm = group_size
if (DP_FITSKY(dao) == YES)
nterm = nterm + 1
# Now check whether any of the stars is too faint (more than 12.5
# magnitudes fainter than the PSF star). If several stars are too
# faint, delete the faintest one, and set the brightness of the
# other faint ones to 12.5 magnitudes below the PSF star. That way
# on the next iteration we will see whether these stars want to
# grow or to disappear.
faint = 0.0
ifaint = 0
call dp_ntfmag (Memr[DP_APMAG(apsel)], group_size, tfaint, tifaint)
# If at least one star is more than 12.5 magnitudes fainter
# than the PSF then ifaint is the relative index of the faintest
# of them, and faint is the relative brightness of the
# faintest of them.
# No very faint star was detected.
if (tifaint <= 0) {
# If the solution has not converged and if the number of
# iterations is less than MIN_ITER, perform another iteration
# with no questions asked.
if ((refit) && (iter < MIN_ITER))
return (group_size)
# If the solution doesn't think it has converged, after the
# fourth iteration delete the least certain star if it is less
# less than a one-sigma detection; after the eighth iteration
# delete the least certain star if it is less than a 1.5 sigma
# detection; after the twelfth iteration OR if the solution
# thinks it has converged, delete the least certain star if it
# is less than a two-sigma detection.
call dp_fsnoise (Memr[DP_APMAG(apsel)], Memr[DP_APERR(apsel)],
group_size, faint, ifaint)
if ((refit) && (iter < DP_MAXITER (dao)) && (faint < wcrit))
return (group_size)
}
# Reject the appropriate star.
if ((tifaint > 0) || (faint >= MIN_FAINT)) {
# Either (a) the solution thinks it has not converged
# and the faintest star is more uncertain than sqrt(wcrit)
# or (b) the solution thinks it has converged and the
# faintest star is more uncertain than two-sigma.
if (DP_VERBOSE (dao) == YES) {
mindex = max (tifaint, ifaint)
call printf (
"\tStar %-5d has been deleted because it is too faint\n")
call pargi (Memi[DP_APID(apsel)+mindex-1])
}
if ((DP_FITSKY(dao) == NO) && (DP_GROUPSKY(dao) == YES) &&
(group_size > 1))
mean_sky = (mean_sky * group_size -
Memr[DP_APMSKY(apsel)+max(tifaint,ifaint)-1]) /
(group_size - 1)
call dp_remove (max (tifaint, ifaint), group_size,
Memi[DP_APID(apsel)], Memr[DP_APXCEN(apsel)],
Memr[DP_APYCEN(apsel)], Memr[DP_APMAG(apsel)],
Memr[DP_APMSKY(apsel)], Memi[DP_NIER(nstar)],
NSTERR_FAINT)
if (group_size < 1)
return (group_size)
if (DP_RECENTER(dao) == YES)
nterm = 3 * group_size
else
nterm = group_size
if (DP_FITSKY(dao) == YES)
nterm = nterm + 1
call aclrr (Memr[DP_NXOLD(nstar)], nterm)
call amovkr (1.0, Memr[DP_NXCLAMP(nstar)], nterm)
clip = false
iter = max (1, iter - 1)
next
}
# Solution has either converged or gone to the maximum number
# of iterations.
if ((iter < DP_MAXITER(dao)) && (! clip)) {
# The first convergence milestone has been reached. Turn on the
# clipper, loosen the clamps and keep on going.
if (DP_CLIPEXP(dao) > 0)
clip = true
converge = false
call aclrr (Memr[DP_NXOLD(nstar)], nterm)
call amaxkr (Memr[DP_NXCLAMP(nstar)], 0.25,
Memr[DP_NXCLAMP(nstar)], nterm)
return (group_size)
}
converge = true
} until (converge)
return (group_size)
end
# DP_NSTMERGE -- Decide whether two stars in a group should merge.
bool procedure dp_nstmerge (xcen, ycen, mag, magerr, group_size, sepcrit,
sepmin, wcrit, i, j, k)
real xcen[ARB] # array of x centers
real ycen[ARB] # array of y centers
real mag[ARB] # array of magnitudes
real magerr[ARB] # array of magnitude errors
int group_size # group size
real sepcrit # the critical separation squared
real sepmin # the minimum separation
real wcrit # critical error for rejection
int i, j, k # output indices
real separation
begin
do i = 1, group_size {
do j = 1, i - 1 {
# Compute the separation.
separation = (xcen[j] - xcen[i]) ** 2 +
(ycen[j] - ycen[i]) ** 2
if (separation > sepcrit)
next
# Find the fainter of the two stars.
k = j
if (mag[i] < mag[j])
k = i
if ((separation < sepmin) || ((magerr[k] / mag[k]) > wcrit))
return (true)
}
}
return (false)
end
# DP_NSTCEN -- Recompute the centroid and brightness of the i-th star.
procedure dp_nstcen (xcen, ycen, mag, i, j, k)
real xcen[ARB] # the x centers
real ycen[ARB] # the y centers
real mag[ARB] # the magnitudes
int i, j, k # array indices
begin
# Now eliminate the fainter of the two stars. The k-th
# star is now the fainter of the two, the i-th the
# brighter.
if (mag[i] < mag[j])
i = j
# Now replace the centroid of the i-th star with the
# weighted mean of the most recent estimates of the
# centroids of the i-th and the k-th stars, and the
# brightness of i-th with the sum of the brightnesses.
xcen[i] = xcen[i] * mag[i] + xcen[k] * mag[k]
ycen[i] = ycen[i] * mag[i] + ycen[k] * mag[k]
mag[i] = mag[i] + mag[k]
xcen[i] = xcen[i] / mag[i]
ycen[i] = ycen[i] / mag[i]
end
# DP_NTOMIT -- Check whether a pixel is within one fitting radius of another
# star.
bool procedure dp_ntomit (xcen, ycen, rpixsq, skip, group_size, fx, fy, cutoff)
real xcen[ARB] # array of x centers
real ycen[ARB] # array of y centers
real rpixsq[ARB] # array of distances squared
int skip[ARB] # array of skip values
int group_size # the group size
real fx, fy # pixel position in image
real cutoff # radius cuttoff for pixel inclusion
bool omit
int i
begin
omit = true
do i = 1, group_size {
skip[i] = YES
rpixsq[i] = (fx - xcen[i]) ** 2 + (fy - ycen[i]) ** 2
if (rpixsq[i] > cutoff)
next
skip[i] = NO
omit = false
}
return (omit)
end
# DP_NTSKYVAL -- Compute the average sky value to use for a particular
# pixel by averaging the sky values of all stars for which the
# pixel is within one fitting radius.
real procedure dp_ntskyval (sky, skip, nstar)
real sky[ARB] # array of sky values
int skip[ARB] # array of skip values
int nstar # the number of stars
int i, npts
real sum
begin
sum = 0.0
npts = 0
do i = 1, nstar {
if (skip[i] == YES)
next
sum = sum + sky[i]
npts = npts + 1
}
if (npts <= 0)
return (INDEFR)
else
return (sum / npts)
end
# DP_NTSUBTRACT -- Procedure to subtract the contribution of a particular
# pixel from a particular star.
real procedure dp_ntsubtract (dao, im, xcen, ycen, rpixsq, mag, skip, x,
group_size, fx, fy, ds, psfradsq, fitradsq, recenter)
pointer dao # pointer to the daophot structure
pointer im # the input image descriptor
real xcen[ARB] # array of x centers
real ycen[ARB] # array of y centers
real rpixsq[ARB] # array of distances squared
real mag[ARB] # array of magnitudes
int skip[ARB] # array of skip values
real x[ARB] # x accumulation vector array
int group_size # size of the group
real fx, fy # center of pixel in image
real ds # pixel value
real psfradsq # psf radius squared
real fitradsq # fit radius squared
int recenter # recenter the coordinates
int i, i3, k
pointer psffit
real weight, dx, dy, deltax, deltay, val, dvdx, dvdy, rsq
real dp_usepsf()
begin
psffit = DP_PSFFIT(dao)
weight = 0.0
do i = 1, group_size {
if (rpixsq[i] >= psfradsq)
next
dx = fx - xcen[i]
dy = fy - ycen[i]
call dp_wpsf (dao, im, xcen[i], ycen[i], deltax, deltay, 1)
deltax = (deltax - 1.0) / DP_PSFX(psffit) - 1.0
deltay = (deltay - 1.0) / DP_PSFY(psffit) - 1.0
val = dp_usepsf (DP_PSFUNCTION(psffit), dx, dy,
DP_PSFHEIGHT(psffit), Memr[DP_PSFPARS(psffit)],
Memr[DP_PSFLUT(psffit)], DP_PSFSIZE(psffit),
DP_NVLTABLE(psffit), DP_NFEXTABLE(psffit), deltax, deltay,
dvdx, dvdy)
ds = ds - mag[i] * val
if (skip[i] == YES)
next
rsq = rpixsq[i] / fitradsq
weight = max (weight, 5.0 / (5.0 + rsq / (1.0 - rsq)))
if (recenter == YES) {
i3 = 3 * i
k = i3 - 2
x[k] = -val
k = i3 - 1
x[k] = -mag[i] * dvdx
x[i3] = -mag[i] * dvdy
} else
x[i] = -val
}
return (weight)
end
# DP_ACSHARP -- Procedure to accumulate sums of the weighted absolute
# relative residuals and the image sharpness parameter for each of the
# stars.
procedure dp_acsharp (xcen, ycen, skip, npix, numer, denom, sumwt, chi,
group_size, fx, fy, fwhmx, fwhmy, ds, sigmasq, relerr, weight)
real xcen[ARB] # array of object x centers
real ycen[ARB] # array of object y centers
int skip[ARB] # array of skip values
int npix[ARB] # array of numbers of pixels
real numer[ARB] # numerator array
real denom[ARB] # denominator array
real sumwt[ARB] # array of summed weights
real chi[ARB] # array of chis
int group_size # group size paramter.
real fx, fy # position of data in image
real fwhmx, fwhmy # gaussian core widths in x and y
real ds # the data residual
real sigmasq # the sigma squared
real relerr # the relative error
real weight # the weight
int i
real rhosq, dfdsig
begin
do i = 1, group_size {
if (skip[i] == YES)
next
# Accumulate the number of pixels, chi and sum of the weights.
npix[i] = npix[i] + 1
chi[i] = chi[i] + relerr * weight
sumwt[i] = sumwt[i] + weight
# Include in the sharpness index only those pixels
# within NCORE_SIGMASQ of the centroid of the
# object. (This saves time and floating underflows
# by excluding pixels which contribute very little
# to the index.
rhosq = ((xcen[i] - fx) / fwhmx) ** 2 + ((ycen[i] - fy) /
fwhmy) ** 2
if (rhosq > NCORE_SIGMASQ)
next
rhosq = 0.6931472 * rhosq
dfdsig = exp (-rhosq) * (rhosq - 1.0)
numer[i] = numer[i] + dfdsig * ds / sigmasq
denom[i] = denom[i] + (dfdsig ** 2) / sigmasq
}
end
# DP_MATACCUM -- Procedure to accumulate the data into the matrices.
procedure dp_mataccum (x, skip, group_size, c, v, cdimen, nterm, weight, dswt,
recenter, fitsky)
real x[ARB] # x array
int skip[ARB] # skip vector
int group_size # size of the group
real c[cdimen,ARB] # coefficient matrix
real v[ARB] # vector array
int cdimen # dimensions of the coefficient matrix
int nterm # the number of terms
real weight # weight
real dswt # data weight
int recenter # recenter the coordinates
int fitsky # fit the sky value
int i, i3, i3m2, k, j, l
begin
if (fitsky == YES) {
c[nterm,nterm] = c[nterm,nterm] + weight
v[nterm] = v[nterm] - dswt
}
do i = 1, group_size {
if (skip[i] == YES)
next
if (recenter == YES) {
i3 = i * 3
i3m2 = i3 - 2
do k = i3m2, i3 {
if (fitsky == YES)
c[nterm,k] = c[nterm,k] - x[k] * weight
v[k] = v[k] + x[k] * dswt
}
do j = 1, i {
if (skip[j] == YES)
next
do k = i3m2, i3 {
do l = 3 * j - 2, min (k, 3 * j)
c[k,l] = c[k,l] + x[k] * x[l] * weight
}
}
} else {
v[i] = v[i] + x[i] * dswt
if (fitsky == YES)
c[nterm,i] = c[nterm,i] - x[i] * weight
do j = 1, i {
if (skip[j] == YES)
next
c[i,j] = c[i,j] + x[i] * x[j] * weight
}
}
}
end
# DP_NTMIN -- Make sure that every star in the group has at least
# MIN_NPIX pixels within one fitting radius.
bool procedure dp_ntmin (ids, xcen, ycen, mag, sky, npix, nier, group_size,
nterm, recenter, fitsky, groupsky, mean_sky, verbose)
int ids[ARB] # array of ids
real xcen[ARB] # array of x centers
real ycen[ARB] # array of y centers
real mag[ARB] # array of magnitudes
real sky[ARB] # array of sky values
int npix[ARB] # array of pixel numbers
int nier[ARB] # array of error codes
int group_size # size of the group
int nterm # number of terms
int recenter # recenter the objects
int fitsky # fit the sky value
int groupsky # use group sky value
real mean_sky # the current mean sky value
int verbose # verbose flag
bool redo
int i
begin
redo = false
do i = 1, group_size {
if (npix[i] >= MIN_NPIX)
next
redo = true
if (verbose == YES) {
call printf (
"\tStar %-5d has been deleted: too few good pixels\n")
call pargi (ids[i])
}
if ((fitsky == NO) && (groupsky == YES) && (group_size > 1))
mean_sky = (mean_sky * group_size - sky[i]) / (group_size - 1)
call dp_remove (i, group_size, ids, xcen, ycen, mag, sky,
nier, NSTERR_NOPIX)
if (group_size <= 0)
return (redo)
if (recenter == YES)
nterm = 3 * group_size
else
nterm = group_size
if (fitsky == YES)
nterm = nterm + 1
}
return (redo)
end
# DP_MREFLECT -- Reflect the normal matrix around the diagonal.
procedure dp_mreflect (c, cdimen, nterm)
real c[cdimen,ARB] # coefficient matrix
int cdimen # dimension of the c matrix
int nterm # number of terms
int l, k
begin
# Reflect the normal matrix across the diagonal.
do l = 2, nterm {
do k = 1, l - 1
c[k,l] = c[l,k]
}
end
# DP_NTCHI -- Compute the chi value for each star.
procedure dp_ntchi (sumwt, chi, group_size, ntmin, chigrp, grpwt)
real sumwt[ARB] # sum of the weights
real chi[ARB] # the chis:wq
int group_size # size of the group
int ntmin # minimum number of points
real chigrp # the group chi
real grpwt # the group weight
int i
begin
do i = 1, group_size {
if (sumwt[i] > ntmin) {
chi[i] = CHI_NORM * chi[i] / sqrt ((sumwt[i] - ntmin) *
sumwt[i])
sumwt[i] = ((sumwt[i] - ntmin) * chi[i] + MIN_SUMWT) /
sumwt[i]
} else {
chi[i] = chigrp
sumwt[i] = grpwt
}
}
end
# DP_NCHECKC -- Check the inverted matrix for singularity.
bool procedure dp_ncheckc (c, cdimen, nterm, ids, xcen, ycen, mag, sky,
nier, group_size, recenter, fitsky, groupsky, mean_sky, verbose)
real c[cdimen,ARB] # coefficient matrix
int cdimen # dimension of the c matrix
int nterm # number of terms
int ids[ARB] # array of ids
real xcen[ARB] # array of x centers
real ycen[ARB] # array of y centers
real mag[ARB] # array of magnitudes
real sky[ARB] # array of sky values
int nier[ARB] # array of error codes
int group_size # size of the group
int recenter # recenter the objects
int fitsky # fit the sky value
int groupsky # use group sky value
real mean_sky # the current mean sky value
int verbose # verbose flag
bool redo
int j, starno, i
begin
redo = false
do j = 1, nterm {
if (c[j,j] > 0.0)
next
redo = true
if ((j == nterm) && (fitsky == YES))
starno = 0
else if (recenter == YES)
starno = (j + 2) / 3
else
starno = j
if (starno == 0) {
if (verbose == YES) {
do i = 1, group_size {
call printf (
"\tStar %-5d has been deleted: singular matrix\n")
call pargi (ids[i])
}
}
call amovki (NSTERR_SINGULAR, nier, group_size)
group_size = 0
} else {
if (verbose == YES) {
call printf (
"\tStar %-5d has been deleted: singular matrix\n")
call pargi (ids[starno])
}
if ((fitsky == NO) && (groupsky == YES) && (group_size > 1))
mean_sky = (mean_sky * group_size - sky[starno]) /
(group_size - 1)
call dp_remove (starno, group_size, ids, xcen, ycen, mag,
sky, nier, NSTERR_SINGULAR)
}
if (group_size <= 0)
return (redo)
if (recenter == YES)
nterm = 3 * group_size
else
nterm = group_size
if (fitsky == YES)
nterm = nterm + 1
}
return (redo)
end
# DP_NTCLAMP -- Restrict the amount the solution can vary on each iteration.
procedure dp_ntclamp (xcen, ycen, mag, magerr, sumwt, group_size, c, cdimen,
x, xold, clamp, recenter, clip, redo)
real xcen[ARB] # x centers array
real ycen[ARB] # y centers array
real mag[ARB] # magnitude array
real magerr[ARB] # magnitude errors array
real sumwt[ARB] # array of weight sums
int group_size # size of the group
real c[cdimen, ARB] # coefficient matrix
int cdimen # dimensions of c
real x[ARB] # x vector
real xold[ARB] # old x vector
real clamp[ARB] # clamp on solution matrix
int recenter # recenter the objects
bool clip # clip the matrix
bool redo # redo the solution
int i, l, j, k
real df
begin
do i = 1, group_size {
# If any correction has changed sign since the last
# iteration, reduce the maximum permissible change by
# a factor of two.
# Note that the sign of the correction is such that it
# must be SUBTRACTED from the current value of the
# parameter to get the improved parameter value. This being
# the case, if the correction to the brightness is
# negative (the least-squares thinks that the star should
# be brighter) a change of 1 magnitude is a change of a
# factor of 2.5; if the brightness correction is positive
# (the star should be fainter) a change of 1 magnitude
# is a change of 60%.
if (recenter == YES) {
l = 3 * i
k = l - 1
j = l - 2
if ((xold[j] * x[j]) < 0.0)
clamp[j] = 0.5 * clamp[j]
mag[i] = mag[i] - x[j] / (1.0 + max (x[j] /
(MAX_DELTA_FAINTER * mag[i]), -x[j] / (MAX_DELTA_BRIGHTER *
mag[i])) / clamp[j])
xold[j] = x[j]
if ((xold[k] * x[k]) < 0.0)
clamp[k] = 0.5 * clamp[k]
if ((xold[l] * x[l]) < 0.0)
clamp[l] = 0.5 * clamp[l]
xcen[i] = xcen[i] - x[k] / (1.0 + abs(x[k]) / (clamp[k] *
MAX_DELTA_PIX))
ycen[i] = ycen[i] - x[l] / (1.0 + abs(x[l]) / (clamp[l] *
MAX_DELTA_PIX))
xold[k] = x[k]
xold[l] = x[l]
magerr[i] =sumwt[i] * sqrt (c[j,j])
} else {
if ((xold[i] * x[i]) < 0.0)
clamp[i] = 0.5 * clamp[i]
mag[i] = mag[i] - x[i] / (1.0 + max (x[i] /
(MAX_DELTA_FAINTER * mag[i]), -x[i] / (MAX_DELTA_BRIGHTER *
mag[i])) / clamp[i])
xold[i] = x[i]
magerr[i] =sumwt[i] * sqrt (c[i,i])
}
# There are two milestones in the convergence process: the fits
# proceed normally until each star's magnitude changes by less
# than its standard error or MAX_NEW_ERRMAG magnitudes, whichever
# is greater, and its x and y centroids change by less than 0.02
# pixel. At this point the least squares begins to apply
# down-weighting of pixels with large residuals as described
# above. The fits then continue until each star's
# magnitude changes by less than MAX (MAX_NEW_ERRMAG * std. error,
# MAX_NEW_RELBRIGHT2 magnitude), ad its centroids change by
# less than 0.002 pixel.
if (redo)
next
if (clip) {
if (abs (x[j]) > max (MAX_NEW_ERRMAG * magerr[i],
MAX_NEW_RELBRIGHT2 * mag[i])) {
redo = true
} else if (recenter == YES) {
df = (MAX_NEW_ERRMAG * sumwt[i]) ** 2
if (x[k] ** 2 > max (df * c[k,k], MAX_PIXERR2))
redo = true
else if (x[l] ** 2 > max (df * c[l,l], MAX_PIXERR2))
redo = true
}
} else {
if (abs (x[j]) > max (magerr[i], MAX_NEW_RELBRIGHT1 *
mag[i])) {
redo = true
} else if (recenter == YES) {
df = sumwt[i] ** 2
if (x[k] ** 2 > max (df * c[k,k], MAX_PIXERR1))
redo = true
else if (x[l] ** 2 > max (df * c[l,l], MAX_PIXERR1))
redo = true
}
}
}
end
# DP_NTCENTROID -- Check the new centroids to see if they have moved too
# far off the edge of the image.
procedure dp_ntcentroid (ids, xcen, ycen, mag, sky, nier, group_size, ixmin,
ixmax, iymin, iymax, fitradsq, fitsky, groupsky, mean_sky, redo,
verbose)
int ids[ARB] # array of ids
real xcen[ARB] # array of x centers
real ycen[ARB] # array of y centers
real mag[ARB] # array of magnitudes
real sky[ARB] # array of sky values
int nier[ARB] # array of error codes
int group_size # size of the group
int ixmin,ixmax # subraster x limits
int iymin,iymax # subraster y limits
real fitradsq # fit radius squared
int fitsky # fit the sky value
int groupsky # use the group sky value
real mean_sky # the mean sky value
bool redo # redo fit
int verbose # verbose mode
int i
real dx, dy
begin
# Check whether the centroid of any star has moved so far outside
# the picture that it has fewer than four or five pixels within
# one fitting radius.
do i = 1, group_size {
# If the centroid of the star is outside the picture in x or
# y, then DX or DY is its distance from the center of the edge
# pixel; otherwise DX and DY are zero.
dx = max (ixmin - xcen[i], xcen[i] - ixmax, 0.0)
dy = max (iymin - ycen[i], ycen[i] - iymax, 0.0)
if ((dx <= MAX_PIX_INCREMENT) && (dy <= MAX_PIX_INCREMENT))
next
if (((dx + 1.0) ** 2 + (dy + 1.0) ** 2) < fitradsq)
next
# Print a warning message about the star.
if (verbose == YES) {
call printf (
"\tStar %-5d has been deleted: new center too far off image\n")
call pargi (i)
}
# Adjust the sky.
if ((fitsky == NO) && (groupsky == YES) && (group_size > 1))
mean_sky = (mean_sky * group_size - sky[i]) / (group_size - 1)
# Delete it.
call dp_remove (i, group_size, ids, xcen, ycen, mag, sky, nier,
NSTERR_OFFIMAGE)
if (group_size < 1)
break
redo = true
}
end
# DP_NTFMAG -- Check for faint stars.
procedure dp_ntfmag (mag, group_size, faint, ifaint)
real mag[ARB] # array of magnitudes
int group_size # size of the group
real faint # faintest magnitude
int ifaint # index of faintest magnitude
int i
begin
faint = 1.0
ifaint = 0
do i = 1, group_size {
if (mag[i] > MIN_REL_BRIGHT)
next
if (mag[i] <= faint) {
faint = mag[i]
ifaint = i
}
mag[i] = MIN_REL_BRIGHT
}
end
# DP_FSNOISE -- Compute the smallest signal to noise ratio.
procedure dp_fsnoise (mag, magerr, group_size, faint, ifaint)
real mag[ARB] # array of magnitudes
real magerr[ARB] # array of magnitude errors
int group_size # size of group
real faint # faint value
int ifaint # faint index
int i
real weight
begin
faint = 0.0
ifaint = 0
do i = 1, group_size {
weight = magerr[i] / mag[i]
if (weight < faint)
next
faint = weight
ifaint = i
}
end
# DP_REMOVE -- Remove the i-th star from the list of stars in the current
# group by moving it to the end of the group.
procedure dp_remove (i, nstar, ids, xcen, ycen, mag, sky, nier, pier)
int i # the star to be removed
int nstar # the number of stars in the group
int ids[ARB] # the array of star ids
real xcen[ARB] # the array of star x positions
real ycen[ARB] # the array of star y positions
real mag[ARB] # the array of magnitudes
real sky[ARB] # the array of sky values.
int nier[ARB] # array of error codes
int pier # error code for deleted star
int ihold, phold
real xhold, yhold, shold, mhold
begin
nier[i] = pier
if (i != nstar) {
ihold = ids[i]
xhold = xcen[i]
yhold = ycen[i]
shold = sky[i]
mhold = mag[i]
phold = nier[i]
ids[i] = ids[nstar]
xcen[i] = xcen[nstar]
ycen[i] = ycen[nstar]
sky[i] = sky[nstar]
mag[i] = mag[nstar]
nier[i] = nier[nstar]
ids[nstar] = ihold
xcen[nstar] = xhold
ycen[nstar] = yhold
sky[nstar] = shold
mag[nstar] = mhold
nier[nstar] = phold
}
nstar = nstar - 1
end
|