1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
|
include <mach.h>
include <imhdr.h>
include "../lib/daophotdef.h"
include "../lib/apseldef.h"
include "../lib/psfdef.h"
include "../lib/peakdef.h"
# DP_FITPSF -- Compute the PSF function.
int procedure dp_fitpsf (dao, im, errmsg, maxch)
pointer dao # pointer to the daophot structure
pointer im # pointer to the input image
char errmsg[ARB] # string containing error message
int maxch # max characters in errmsg
int nfunc, func
pointer sp, flist, fstr, psf, psffit
int dp_pstati(), dp_unsatstar(), dp_fitana(), dp_ifitana()
int dp_fitlt(), dp_fctdecode(), dp_strwrd(), strdic()
begin
# Get some daophot pointers.
psf = DP_PSF(dao)
psffit = DP_PSFFIT(dao)
# Test to see if there are any psf stars.
if (dp_pstati (dao, PNUM) <= 0) {
call sprintf (errmsg, maxch, "The PSF star list is empty")
return (ERR)
}
# Test to see if there are any unsaturated stars. At the same time
# make sure that the first star is unsaturated.
if (dp_unsatstar (dao) <= 0) {
call sprintf (errmsg, maxch,
"There are no unsaturated PSF stars")
return (ERR)
}
# Determine the analytic function.
call smark (sp)
call salloc (flist, SZ_FNAME, TY_CHAR)
call salloc (fstr, SZ_FNAME, TY_CHAR)
call dp_stats (dao, FUNCLIST, Memc[flist], SZ_FNAME)
nfunc = dp_fctdecode (Memc[flist], Memc[fstr], SZ_FNAME)
func = dp_strwrd (1, Memc[fstr], SZ_FNAME, Memc[flist])
func = strdic (Memc[fstr], Memc[fstr], SZ_LINE, FCTN_FTYPES)
# Compute the analytic part of the PSF function.
if (nfunc > 1 || func == FCTN_AUTO) {
# Loop over all the analytic functions.
if (func == FCTN_AUTO) {
call strcpy (FCTN_FTYPES, Memc[flist], SZ_FNAME)
nfunc = FCTN_NFTYPES
}
# Find the best fitting analytic function.
if (dp_ifitana (dao, im, Memc[flist], nfunc) == ERR) {
call sprintf (errmsg, maxch,
"Analytic function solution failed to converge")
call sfree (sp)
return (ERR)
} else if (DP_VERBOSE(dao) == YES)
call dp_listpars (dao)
} else {
# Save the analytic function for the new fit.
call strcpy (Memc[fstr], DP_FUNCTION(dao), SZ_LINE)
# Initialize the parameters.
call dp_reinit (dao)
# Fit the analytic part of the function.
if (dp_fitana (dao, im, Memr[DP_PXCEN(psf)], Memr[DP_PYCEN(psf)],
Memr[DP_PH(psf)], Memi[DP_PSAT(psf)], DP_PNUM(psf)) == ERR) {
call sprintf (errmsg, maxch,
"Analytic function solution failed to converge")
call sfree (sp)
return (ERR)
} else if (DP_VERBOSE(dao) == YES) {
call printf ("\nFitting function %s norm scatter: %g\n")
call pargstr (DP_FUNCTION(dao))
call pargr (DP_PSIGANA(psf))
call dp_listpars (dao)
}
}
call sfree (sp)
# Compute the look-up table.
if (dp_fitlt (dao, im) == ERR) {
call sprintf (errmsg, maxch,
"Too few stars to compute PSF lookup tables")
return (ERR)
} else if (DP_VERBOSE(dao) == YES) {
call printf ("\nComputed %d lookup table(s)\n")
call pargi (DP_NVLTABLE(psffit)+DP_NFEXTABLE(psffit))
}
return (OK)
end
# DP_UNSATSTAR -- Make sure there is at least one unsaturated star.
int procedure dp_unsatstar (dao)
pointer dao # pointer to the daophot structure
int i, first_unsat, nstar
pointer psf
begin
psf = DP_PSF(dao)
first_unsat = 0
nstar = 0
do i = 1, DP_PNUM(psf) {
if (Memi[DP_PSAT(psf)+i-1] == YES)
next
nstar = nstar + 1
if (first_unsat == 0)
first_unsat = i
}
if (first_unsat > 1)
call dp_pfswap (dao, 1, first_unsat)
return (nstar)
end
# DP_REINIT -- Reinitialize the psf function parameters.
procedure dp_reinit (dao)
pointer dao # pointer to the daophot structure
pointer psffit
bool streq()
begin
psffit = DP_PSFFIT(dao)
# Define the psf function.
if (streq (DP_FUNCTION(dao), "gauss"))
DP_PSFUNCTION(psffit) = FCTN_GAUSS
else if (streq (DP_FUNCTION(dao), "moffat25"))
DP_PSFUNCTION(psffit) = FCTN_MOFFAT25
else if (streq (DP_FUNCTION(dao), "moffat15"))
DP_PSFUNCTION(psffit) = FCTN_MOFFAT15
else if (streq (DP_FUNCTION(dao), "penny1"))
DP_PSFUNCTION(psffit) = FCTN_PENNY1
else if (streq (DP_FUNCTION(dao), "penny2"))
DP_PSFUNCTION(psffit) = FCTN_PENNY2
else if (streq (DP_FUNCTION(dao), "lorentz"))
DP_PSFUNCTION(psffit) = FCTN_LORENTZ
else
call error (0, "Unknown PSF function\n")
switch (DP_VARORDER(dao)) {
case -1:
DP_NVLTABLE(psffit) = 0
case 0:
DP_NVLTABLE(psffit) = 1
case 1:
DP_NVLTABLE(psffit) = 3
case 2:
DP_NVLTABLE(psffit) = 6
}
if (DP_FEXPAND(dao) == NO)
DP_NFEXTABLE(psffit) = 0
else
DP_NFEXTABLE(psffit) = 5
# Set the initial values of the function parameters.
switch (DP_PSFUNCTION(psffit)) {
case FCTN_GAUSS:
DP_PSFNPARS(psffit) = 2
Memr[DP_PSFPARS(psffit)] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+1] = DP_FWHMPSF(dao) / 2.0
case FCTN_MOFFAT25:
DP_PSFNPARS(psffit) = 3
Memr[DP_PSFPARS(psffit)] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+1] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+2] = 0.0
Memr[DP_PSFPARS(psffit)+3] = 2.5
case FCTN_MOFFAT15:
DP_PSFNPARS(psffit) = 3
Memr[DP_PSFPARS(psffit)] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+1] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+2] = 0.0
Memr[DP_PSFPARS(psffit)+3] = 1.5
case FCTN_PENNY1:
DP_PSFNPARS(psffit) = 4
Memr[DP_PSFPARS(psffit)] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+1] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+2] = 0.75
Memr[DP_PSFPARS(psffit)+3] = 0.0
case FCTN_PENNY2:
DP_PSFNPARS(psffit) = 5
Memr[DP_PSFPARS(psffit)] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+1] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+2] = 0.75
Memr[DP_PSFPARS(psffit)+3] = 0.0
Memr[DP_PSFPARS(psffit)+4] = 0.0
case FCTN_LORENTZ:
DP_PSFNPARS(psffit) = 3
Memr[DP_PSFPARS(psffit)] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+1] = DP_FWHMPSF(dao) / 2.0
Memr[DP_PSFPARS(psffit)+2] = 0.0
default:
call error (0, "Unknown PSF function\n")
}
end
# DP_IFITANA -- Fit the PSF stars to each of the analytic functions in
# turn to determine which one gives the best fit.
int procedure dp_ifitana (dao, im, funclist, nfunc)
pointer dao # pointer to the daophot structure
pointer im # pointer to the input image
char funclist # the list of functions to be fit
int nfunc # number of functions
int i, psftype, npars
pointer psf, psffit, sp, fstr, func
pointer ixtmp, iytmp, ihtmp, istmp, xtmp, ytmp, htmp, ptmp, stmp
real osig, osum, height, dhdxc, dhdyc, junk, ofactor, factor
int dp_strwrd(), strdic(), dp_fitana()
real dp_profile()
begin
# Get some pointers.
psf = DP_PSF(dao)
psffit = DP_PSFFIT(dao)
# Allocate some temporary storage space.
call smark (sp)
call salloc (fstr, SZ_FNAME, TY_CHAR)
call salloc (func, SZ_FNAME, TY_CHAR)
call salloc (ixtmp, DP_PNUM(psf), TY_REAL)
call salloc (iytmp, DP_PNUM(psf), TY_REAL)
call salloc (ihtmp, DP_PNUM(psf), TY_REAL)
call salloc (istmp, DP_PNUM(psf), TY_INT)
call salloc (xtmp, DP_PNUM(psf), TY_REAL)
call salloc (ytmp, DP_PNUM(psf), TY_REAL)
call salloc (htmp, DP_PNUM(psf), TY_REAL)
call salloc (stmp, DP_PNUM(psf), TY_INT)
call salloc (ptmp, MAX_NFCTNPARS, TY_REAL)
# Initialize.
call strcpy (DP_FUNCTION(dao), Memc[func], SZ_FNAME)
npars = 0
osig = MAX_REAL
call amovr (Memr[DP_PXCEN(psf)], Memr[ixtmp], DP_PNUM(psf))
call amovr (Memr[DP_PYCEN(psf)], Memr[iytmp], DP_PNUM(psf))
call amovr (Memr[DP_PH(psf)], Memr[ihtmp], DP_PNUM(psf))
call amovi (Memi[DP_PSAT(psf)], Memi[istmp], DP_PNUM(psf))
ofactor = dp_profile (DP_PSFUNCTION(psffit), 0.0, 0.0,
Memr[DP_PSFPARS(psffit)], dhdxc, dhdyc, junk, 0)
factor = 1
do i = 1, nfunc {
# Get the function name and set it.
if (dp_strwrd (i, Memc[fstr], SZ_FNAME, funclist) <= 0)
next
if (strdic (Memc[fstr], Memc[fstr], SZ_FNAME, FCTN_FTYPES) <= 0)
next
call strcpy (Memc[fstr], DP_FUNCTION(dao), SZ_FNAME)
# Start from the same initial state.
call dp_reinit (dao)
call amovr (Memr[ixtmp], Memr[xtmp], DP_PNUM(psf))
call amovr (Memr[iytmp], Memr[ytmp], DP_PNUM(psf))
if (i == 1)
call amovr (Memr[ihtmp], Memr[htmp], DP_PNUM(psf))
else {
factor = ofactor / dp_profile (DP_PSFUNCTION(psffit), 0.0, 0.0,
Memr[DP_PSFPARS(psffit)], dhdxc, dhdyc, junk, 0)
call amulkr (Memr[ihtmp], factor, Memr[htmp], DP_PNUM(psf))
}
call amovi (Memi[istmp], Memi[stmp], DP_PNUM(psf))
call printf ("Trying function %s norm scatter = ")
call pargstr (Memc[fstr])
# Do the fit.
if (dp_fitana (dao, im, Memr[xtmp], Memr[ytmp], Memr[htmp],
Memi[stmp], DP_PNUM(psf)) == ERR) {
call printf ("error\n")
next
} else {
call printf ("%g\n")
call pargr (DP_PSIGANA(psf))
}
# Save the better fit.
if (DP_PSIGANA(psf) < osig) {
call strcpy (Memc[fstr], Memc[func], SZ_FNAME)
psftype = DP_PSFUNCTION(psffit)
height = DP_PSFHEIGHT(psffit)
npars = DP_PSFNPARS(psffit)
call amovr (Memr[DP_PSFPARS(psffit)], Memr[ptmp],
MAX_NFCTNPARS)
call amovr (Memr[xtmp], Memr[DP_PXCEN(psf)], DP_PNUM(psf))
call amovr (Memr[ytmp], Memr[DP_PYCEN(psf)], DP_PNUM(psf))
call amovr (Memr[htmp], Memr[DP_PH(psf)], DP_PNUM(psf))
call amovi (Memi[stmp], Memi[DP_PSAT(psf)], DP_PNUM(psf))
osig = DP_PSIGANA(psf)
osum = DP_PSUMANA(psf)
}
}
# Restore the best fit parameters.
if (npars > 0) {
call strcpy (Memc[func], DP_FUNCTION(dao), SZ_FNAME)
DP_PSFUNCTION(psffit) = psftype
DP_PSFHEIGHT(psffit) = height
DP_PSFNPARS(psffit) = npars
DP_PSIGANA(psf) = osig
DP_PSUMANA(psf) = osum
call amovr (Memr[ptmp], Memr[DP_PSFPARS(psffit)],
MAX_NFCTNPARS)
call printf ("Best fitting function is %s\n")
call pargstr (DP_FUNCTION(dao))
}
# Cleanup.
call sfree (sp)
if (npars > 0)
return (OK)
else
return (ERR)
end
# DP_FITANA -- Fit the analytic part of the psf function
int procedure dp_fitana (dao, im, pxcen, pycen, ph, pstat, npsfstars)
pointer dao # pointer to the daophot structure
pointer im # pointer to the input image
real pxcen[ARB] # x coordinates of the psf stars
real pycen[ARB] # y coordinates of the psf stars
real ph[ARB] # heights of the psf stars
int pstat[ARB] # saturation status of psf stars
int npsfstars # the number of psf stars
int i, niter, istar, mpar, lx, ly, nx, ny, ier
pointer apsel, psf, psffit, data
real fitrad, rsq, oldchi, sumfree
pointer imgs2r()
begin
# Get the psf fitting structure pointer.
apsel = DP_APSEL(dao)
psf = DP_PSF(dao)
psffit = DP_PSFFIT(dao)
# Define some variables.
oldchi = 0.0
mpar = 2
fitrad = DP_FITRAD(dao)
rsq = fitrad ** 2
# Get some memory.
call dp_amempsf (dao)
# Initialize the fit.
call amovkr (0.5, Memr[DP_PCLAMP(psf)], DP_PSFNPARS(psffit))
call aclrr (Memr[DP_PZ(psf)], DP_PSFNPARS(psffit))
call aclrr (Memr[DP_POLD(psf)], DP_PSFNPARS(psffit))
Memr[DP_PCLAMP(psf)] = 2.0
Memr[DP_PCLAMP(psf)+1] = 2.0
call aclrr (Memr[DP_PXOLD(psf)], npsfstars)
call aclrr (Memr[DP_PYOLD(psf)], npsfstars)
call amovkr (1.0, Memr[DP_PXCLAMP(psf)], npsfstars)
call amovkr (1.0, Memr[DP_PYCLAMP(psf)], npsfstars)
# Iterate.
do niter = 1, MAX_NPSFITER {
# Initialize the current integration.
call aclrr (Memr[DP_PV(psf)], DP_PSFNPARS(psffit))
call aclrr (Memr[DP_PC(psf)], DP_PSFNPARS(psffit) *
DP_PSFNPARS(psffit))
# Loop over the stars.
DP_PSIGANA(psf) = 0.0
DP_PSUMANA(psf) = 0.0
do istar = 1, npsfstars {
# Test for saturation.
if (pstat[istar] == YES)
next
# Define the subraster to be read in.
lx = int (pxcen[istar] - fitrad) + 1
ly = int (pycen[istar] - fitrad) + 1
nx = (int (pxcen[istar] + fitrad) - lx) + 1
ny = (int (pycen[istar] + fitrad) - ly) + 1
# Is the star off the image?
if (lx > IM_LEN(im,1) || ly > IM_LEN(im,2) || (lx + nx - 1) <
1 || (ly + ny - 1) < 1) {
if (DP_VERBOSE(dao) == YES) {
call printf ("Star %d is outside the image\n")
call pargi (Memi[DP_APID(apsel)+istar-1])
}
next
}
# Is the star too near the edge of the frame?
if (lx < 1 || ly < 1 || (lx + nx - 1) > IM_LEN(im,1) ||
(ly + ny - 1) > IM_LEN(im,2)) {
if (DP_VERBOSE(dao) == YES) {
call printf (
"Star %d is too near the edge of the image\n")
call pargi (Memi[DP_APID(apsel)+istar-1])
}
next
}
# Read in the subraster.
data = imgs2r (im, lx, lx + nx - 1, ly, ly + ny - 1)
# Fit x, y, and height for the PSF star istar.
call dp_xyhiter (DP_PSFUNCTION(psffit),
Memr[DP_PSFPARS(psffit)], rsq, Memr[data], nx, ny, lx, ly,
pxcen[istar], pycen[istar],
Memr[DP_APMSKY(apsel)+istar-1], ph[istar],
Memr[DP_PXCLAMP(psf)+istar-1],
Memr[DP_PYCLAMP(psf)+istar-1], Memr[DP_PXOLD(psf)+istar-1],
Memr[DP_PYOLD(psf)+istar-1])
# Fit the parameters for the entire list of stars
call dp_paccum (DP_PSFUNCTION(psffit),
Memr[DP_PSFPARS(psffit)], DP_PSFNPARS(psffit), mpar, rsq,
Memr[data], nx, ny, lx, ly, pxcen[istar],
pycen[istar], Memr[DP_APMSKY(apsel)+istar-1],
ph[istar], niter, Memr[DP_PC(psf)],
Memr[DP_PV(psf)], Memr[DP_PTMP(psf)], DP_PSIGANA(psf),
DP_PSUMANA(psf))
}
# Invert the matrix and compute the new parameters.
call invers (Memr[DP_PC(psf)], DP_PSFNPARS(psffit), mpar, ier)
call mvmul (Memr[DP_PC(psf)], DP_PSFNPARS(psffit), mpar,
Memr[DP_PV(psf)], Memr[DP_PZ(psf)])
do i = 1, mpar {
if ((Memr[DP_PZ(psf)+i-1] * Memr[DP_POLD(psf)+i-1]) < 0.0)
Memr[DP_PCLAMP(psf)+i-1] = 0.5 *
Memr[DP_PCLAMP(psf)+i-1]
else
Memr[DP_PCLAMP(psf)+i-1] = 1.1 *
Memr[DP_PCLAMP(psf)+i-1]
}
call amovr (Memr[DP_PZ(psf)], Memr[DP_POLD(psf)], mpar)
call amulr (Memr[DP_PZ(psf)], Memr[DP_PCLAMP(psf)],
Memr[DP_PZ(psf)], mpar)
Memr[DP_PZ(psf)] = max (-0.1 * Memr[DP_PSFPARS(psffit)],
min (0.1 * Memr[DP_PSFPARS(psffit)], Memr[DP_PZ(psf)]))
Memr[DP_PZ(psf)+1] = max (-0.1 * Memr[DP_PSFPARS(psffit)+1],
min (0.1 * Memr[DP_PSFPARS(psffit)+1], Memr[DP_PZ(psf)+1]))
#if (mpar > 2)
#Memr[DP_PZ(psf)+2] = Memr[DP_PZ(psf)+2] /
#(1.0 + abs (Memr[DP_PZ(psf)+2]) /
#(min (0.1, 1.0 - abs (Memr[DP_PSFPARS(psffit)+2]))))
call aaddr (Memr[DP_PSFPARS(psffit)], Memr[DP_PZ(psf)],
Memr[DP_PSFPARS(psffit)], mpar)
# Check for convergence.
sumfree = DP_PSUMANA(psf) - real (mpar + 3 * npsfstars)
if (sumfree > 0.0 && DP_PSIGANA(psf) >= 0.0)
DP_PSIGANA(psf) = sqrt (DP_PSIGANA(psf) / sumfree)
else
DP_PSIGANA(psf) = 9.999
if (mpar == DP_PSFNPARS(psffit)) {
if (abs (oldchi / DP_PSIGANA(psf) - 1.0) < 1.0e-5) {
DP_PSFHEIGHT(psffit) = ph[1]
if (IS_INDEFR(Memr[DP_PMAG(psf)]))
DP_PSFMAG(psffit) = Memr[DP_APMAG(apsel)]
else
DP_PSFMAG(psffit) = Memr[DP_PMAG(psf)]
DP_PSFX(psffit) = real (IM_LEN(im,1) - 1) / 2.0
DP_PSFY(psffit) = real (IM_LEN(im,2) - 1) / 2.0
return (OK)
} else
oldchi = DP_PSIGANA(psf)
} else {
if (abs (oldchi / DP_PSIGANA(psf) - 1.0) < 1.0e-3) {
mpar = mpar + 1
oldchi = 0.0
} else
oldchi = DP_PSIGANA(psf)
}
}
return (ERR)
end
# DP_XYHITER -- Increment the initial x, y, and height values for a star.
procedure dp_xyhiter (psftype, params, rsq, data, nx, ny, lx, ly, x, y, sky, h,
xclamp, yclamp, xold, yold)
int psftype # analytic point spread function type
real params[ARB] # current function parameter values
real rsq # the fitting radius squared
real data[nx,ARB] # the input image data
int nx, ny # the dimensions of the input image data
int lx, ly # the coordinates of the ll corner of the image data
real x, y # the input/output stellar coordinates
real sky # the input sky value
real h # the input/output height value
real xclamp, yclamp # the input/output clamping factors for x and y
real xold, yold # the input/output x and y correction factors
int i, j
real dhn, dhd, dxn, dxd, dyn, dyd, dx, dy, wt, dhdxc, dhdyc, junk, p, dp
real prod
real dp_profile()
begin
dhn = 0.0
dhd = 0.0
dxn = 0.0
dxd = 0.0
dyn = 0.0
dyd = 0.0
do j = 1, ny {
dy = real ((ly + j) - 1) - y
do i = 1, nx {
dx = real ((lx + i) - 1) - x
wt = (dx ** 2 + dy ** 2) / rsq
#if (wt >= 1.0)
if (wt >= 0.999998)
next
p = dp_profile (psftype, dx, dy, params, dhdxc, dhdyc, junk, 0)
dp = data[i,j] - h * p - sky
dhdxc = dhdxc * h
dhdyc = dhdyc * h
wt = 5.0 / (5.0 + (wt / (1.0 - wt)))
prod = wt * p
dhn = dhn + prod * dp
dhd = dhd + prod * p
prod = wt * dhdxc
dxn = dxn + prod * dp
dxd = dxd + prod * dhdxc
prod = wt * dhdyc
dyn = dyn + prod * dp
dyd = dyd + prod * dhdyc
}
}
h = h + (dhn / dhd)
dxn = dxn / dxd
if ((xold * dxn) < 0.0)
xclamp = 0.5 * xclamp
xold = dxn
x = x + (dxn / (1.0 + (abs(dxn) / xclamp)))
dyn = dyn / dyd
if ((yold * dyn) < 0.0)
yclamp = 0.5 * yclamp
yold = dyn
y = y + (dyn / (1.0 + (abs(dyn) / yclamp)))
end
# DP_PACCUM -- Accumulate the data for the parameter fit.
procedure dp_paccum (psftype, params, npars, mpars, rsq, data, nx, ny, lx,
ly, x, y, sky, h, iter, c, v, temp, chi, sumwt)
int psftype # analytic point spread function type
real params[ARB] # current function parameter values
int npars # number of function parameters
int mpars # the number of active parameters
real rsq # the fitting radius squared
real data[nx,ARB] # the input image data
int nx, ny # the dimensions of the input image data
int lx, ly # the coordinates of the ll corner of the image data
real x, y # the input/output stellar coordinates
real sky # the input sky value
real h # the input/output height value
int iter # the current iteration
real c[npars,ARB] # accumulation matrix
real v[ARB] # accumulation vector
real temp[ARB] # temporary storage vector
real chi # the chi sum
real sumwt # the number of points sum
int i, j, k, l
real peak, dx, dy, wt, dhdxc, dhdyc, p, dp
real dp_profile()
begin
peak = h * dp_profile (psftype, 0.0, 0.0, params, dhdxc, dhdyc, temp, 0)
do j = 1, ny {
dy = real ((ly + j) - 1) - y
do i = 1, nx {
dx = real ((lx + i) - 1) - x
wt = (dx ** 2 + dy ** 2) / rsq
#if (wt >= 1.0)
if (wt >= 0.999998)
next
p = dp_profile (psftype, dx, dy, params, dhdxc, dhdyc, temp, 1)
dp = data[i,j] - h * p - sky
do k = 1, mpars
temp[k] = h * temp[k]
chi = chi + (dp / peak) ** 2
sumwt = sumwt + 1.0
wt = 5.0 / (5.0 + (wt / (1.0 - wt)))
if (iter >= 4)
wt = wt / (1.0 + abs (20.0 * dp / peak))
do k = 1, mpars {
v[k] = v[k] + wt * dp * temp[k]
do l = 1, mpars {
c[l,k] = c[l,k] + wt * temp[l] * temp[k]
}
}
}
}
end
# DP_FITLT -- Given the analytic function compute the lookup tables.
int procedure dp_fitlt (dao, im)
pointer dao # pointer to the daophot structure
pointer im # pointer to the input image
int istar, nexp, lx, mx, ly, my, iter, nclean, ndata, fit_saturated, nfit
int nunsat
double volume
pointer apsel, psf, psffit, sp, wimname, wim, data
real datamin, datamax, sumfree, resid, dfdx, dfdy, junk
int dp_dclean(), dp_resana(), dp_ltcompute(), dp_fsaturated()
double dp_pnorm()
pointer immap(), imps2r(), dp_subrast()
real dp_profile(), dp_sweight()
define fitsaturated_ 11
begin
# Get some pointers.
apsel = DP_APSEL(dao)
psf = DP_PSF(dao)
psffit = DP_PSFFIT(dao)
# Check to see whether lookup tables are required.
nexp = DP_NVLTABLE(psffit) + DP_NFEXTABLE(psffit)
if (nexp <= 0)
return (OK)
# Return if there are too few stars to fit the lookup tables.
if (DP_PNUM(psf) < nexp)
return (ERR)
# Determine the number of saturated stars.
nunsat = 0
do istar = 1, DP_PNUM(psf) {
if (Memi[DP_PSAT(psf)+istar-1] == NO)
next
if ((Memr[DP_PH(psf)+istar-1] * dp_profile (DP_PSFUNCTION(psffit),
0.0, 0.0, Memr[DP_PSFPARS(psffit)], dfdx, dfdy, junk, 0) +
Memr[DP_APMSKY(apsel)+istar-1]) <= datamax)
next
Memi[DP_PSAT(psf)+istar-1] = YES
Memr[DP_PH(psf)+istar-1] = INDEFR
nunsat = nunsat + 1
}
nunsat = DP_PNUM(psf) - nunsat
# Return if there are too few unsaturated psf stars to fit the lookup
# tables.
if (nunsat < nexp)
return (ERR)
# Allocate memory for computing lookup tables.
call dp_tmempsf (dao)
# Define some constants.
fit_saturated = DP_SATURATED(dao)
if (IS_INDEFR(DP_MINGDATA(dao)))
datamin = -MAX_REAL
else
datamin = DP_MINGDATA(dao)
if (IS_INDEFR(DP_MAXGDATA(dao)))
datamax = MAX_REAL
else
datamax = DP_MAXGDATA(dao)
sumfree = sqrt (DP_PSUMANA(psf) / (DP_PSUMANA(psf) - (nexp +
3.0 * DP_PNUM(psf))))
# Get the image name.
call smark (sp)
call salloc (wimname, SZ_FNAME, TY_CHAR)
call mktemp ("tmp", Memc[wimname], SZ_FNAME)
# Open a temporary image to hold the weights.
wim = immap (Memc[wimname], NEW_IMAGE, 0)
IM_NDIM(wim) = 2
IM_LEN(wim,1) = DP_PNUM(psf)
IM_LEN(wim,2) = DP_PSFSIZE(psffit) * DP_PSFSIZE(psffit)
IM_PIXTYPE(wim) = TY_REAL
# Compute the constant part of the psf in preparation for normalizing
# the lookup tables.
if (nexp > 1)
call dp_pconst (DP_PSFUNCTION(psffit), Memr[DP_PSFPARS(psffit)],
Memr[DP_PH(psf)], Memr[DP_PCONST(psf)], DP_PSFSIZE(psffit))
nfit = 0
fitsaturated_
# Compute the look-up table.
do iter = 1, DP_NCLEAN(dao) + 1 {
# Initialize the fitting arrays.
call aclrr (Memr[DP_PV(psf)], nexp)
call aclrr (Memr[DP_PC(psf)], nexp * nexp)
call aclrr (Memr[DP_PSUMN(psf)], DP_PSFSIZE(psffit) *
DP_PSFSIZE(psffit))
call aclrr (Memr[DP_PSUMSQ(psf)], DP_PSFSIZE(psffit) *
DP_PSFSIZE(psffit))
call aclrr (Memr[DP_PSFLUT(psffit)], nexp * DP_PSFSIZE(psffit) *
DP_PSFSIZE(psffit))
# Loop over the PSF stars.
do istar = 1, DP_PNUM(psf) {
# Get the weight image.
DP_PSUMW(psf) = imps2r (wim, istar, istar, 1,
DP_PSFSIZE(psffit) * DP_PSFSIZE(psffit))
call aclrr (Memr[DP_PSUMW(psf)], DP_PSFSIZE(psffit) *
DP_PSFSIZE(psffit))
# Skip saturated star?
if (IS_INDEFR(Memr[DP_PH(psf)+istar-1]))
next
# Get the data.
data = dp_subrast (im, Memr[DP_PXCEN(psf)+istar-1],
Memr[DP_PYCEN(psf)+istar-1], DP_PSFRAD(dao), lx, mx,
ly, my)
# Is the star off the image?
if (lx > IM_LEN(im,1) || ly > IM_LEN(im,2) || mx < 1 ||
my < 1) {
if (DP_VERBOSE(dao) == YES) {
call printf ("Star %d is outside the image\n")
call pargi (Memi[DP_APID(apsel)+istar-1])
}
next
}
# Clean bad pixels outside the fitting radius but inside
# the psf radius from the subraster.
nclean = dp_dclean (Memr[data], (mx - lx + 1), (my - ly + 1),
lx, ly, Memr[DP_PXCEN(psf)+istar-1], Memr[DP_PYCEN(psf)+
istar-1], DP_FITRAD(dao), datamin, datamax)
# Subtract the analytic part of the fit from the data
# and compute the normalized residual of the star.
ndata = dp_resana (im, DP_PSFUNCTION(psffit),
Memr[DP_PSFPARS(psffit)], Memr[data], (mx - lx + 1),
(my - ly + 1), lx, ly, Memr[DP_PXCEN(psf)],
Memr[DP_PYCEN(psf)], Memr[DP_APMSKY(apsel)],
Memr[DP_PH(psf)], DP_PNUM(psf), istar, DP_PSFRAD(dao),
DP_FITRAD(dao), datamax, resid)
# Compute the proper weight for the star.
if (IS_INDEFR(Memr[DP_PH(psf)+istar-1]) ||
Memr[DP_PH(psf)+istar-1] <= 0.0) {
Memr[DP_PWEIGHT(psf)+istar-1] = 0.0
} else if (Memi[DP_PSAT(psf)+istar-1] == YES) {
Memr[DP_PWEIGHT(psf)+istar-1] = 0.5 *
Memr[DP_PH(psf)+istar-1] / Memr[DP_PH(psf)]
} else {
Memr[DP_PWEIGHT(psf)+istar-1] = (Memr[DP_PH(psf)+
istar-1] / Memr[DP_PH(psf)]) * dp_sweight (resid,
sumfree, DP_PSIGANA(psf))
}
# Compute the expansion vector.
call dp_eaccum (Memr[DP_PXCEN(psf)+istar-1],
Memr[DP_PYCEN(psf)+istar-1], DP_PSFX(psffit),
DP_PSFY(psffit), Memr[DP_PTMP(psf)], DP_NVLTABLE(psffit),
DP_NFEXTABLE(psffit))
# Compute the contribution to the lookup table of the
# particular star.
call dp_ltinterp (Memr[data], (mx - lx + 1), (my - ly + 1),
lx, ly, Memr[DP_PXCEN(psf)+istar-1], Memr[DP_PYCEN(psf)+
istar-1], Memr[DP_APMSKY(apsel)+istar-1],
Memr[DP_PH(psf)+istar-1] / Memr[DP_PH(psf)],
Memr[DP_PWEIGHT(psf)+istar-1], Memr[DP_PSUMN(psf)],
Memr[DP_PSUMW(psf)], Memr[DP_PSUMSQ(psf)],
Memr[DP_PSIGMA(psf)], Memr[DP_POLDLUT(psf)],
Memr[DP_PTMP(psf)], Memr[DP_PSFLUT(psffit)], nexp,
DP_PSFSIZE(psffit), datamax, iter, DP_NCLEAN(dao) + 1)
call mfree (data, TY_REAL)
}
call imflush (wim)
# Compute the lookup table.
if (dp_ltcompute (Memr[DP_PXCEN(psf)], Memr[DP_PYCEN(psf)],
DP_PNUM(psf), DP_PSFX(psffit), DP_PSFY(psffit),
Memr[DP_PSUMN(psf)], wim, Memr[DP_PSFLUT(psffit)],
Memr[DP_PC(psf)], Memr[DP_PTMP(psf)], Memr[DP_PV(psf)],
nexp, DP_PSFSIZE(psffit), DP_NVLTABLE(psffit),
DP_NFEXTABLE(psffit)) == ERR) {
call sfree (sp)
return (ERR)
}
# Compute the standard deviation arrays for the next pass.
if (iter < (DP_NCLEAN(dao) + 1)) {
if (nunsat <= nexp)
break
call amovr (Memr[DP_PSFLUT(psffit)], Memr[DP_POLDLUT(psf)],
nexp * DP_PSFSIZE(psffit) * DP_PSFSIZE(psffit))
call dp_stdcompute (Memr[DP_PSUMN(psf)], Memr[DP_PSUMSQ(psf)],
Memr[DP_PSIGMA(psf)], DP_PSFSIZE(psffit),
DP_PSFSIZE(psffit), nexp)
}
}
if (nexp > 1) {
# Accumulate the v vector.
call dp_vaccum (Memr[DP_PXCEN(psf)], Memr[DP_PYCEN(psf)],
Memr[DP_PH(psf)], Memr[DP_PWEIGHT(psf)], DP_PNUM(psf),
DP_PSFX(psffit), DP_PSFY(psffit), Memr[DP_PTMP(psf)],
Memr[DP_PV(psf)], nexp, DP_NVLTABLE(psffit),
DP_NFEXTABLE(psffit))
# Compute the constant part of the psf.
volume = dp_pnorm (Memr[DP_PCONST(psf)], Memr[DP_PSIGMA(psf)],
DP_PSFSIZE(psffit))
# Normalize lookup tables.
call dp_ltnorm (Memr[DP_PCONST(psf)], Memr[DP_PV(psf)],
Memr[DP_PSFLUT(psffit)], Memr[DP_PSIGMA(psf)], nexp,
DP_PSFSIZE(psffit), volume)
}
# Make a copy of the psf.
call dp_pcopy (Memr[DP_PSFLUT(psffit)], Memr[DP_POLDLUT(psf)],
DP_PSFSIZE(psffit), DP_PSFSIZE(psffit), nexp)
# Include the saturated psf stars in the fit.
if (fit_saturated == YES) {
nfit = dp_fsaturated (dao, im, Memi[DP_APID(apsel)],
Memr[DP_PXCEN(psf)], Memr[DP_PYCEN(psf)], Memr[DP_PH(psf)],
Memr[DP_APMSKY(apsel)], Memi[DP_PSAT(psf)], DP_PNUM(psf))
fit_saturated = NO
if (nfit > 0) {
nunsat = nunsat + nfit
if (nexp > 1)
call aaddr (Memr[DP_PCONST(psf)], Memr[DP_POLDLUT(psf)],
Memr[DP_PCONST(psf)], DP_PSFSIZE(psffit) *
DP_PSFSIZE(psffit))
goto fitsaturated_
}
}
# Cleanup the temporary images and arrays.
call imunmap (wim)
call imdelete (Memc[wimname])
call sfree (sp)
return (OK)
end
# DP_DCLEAN -- Clean bad pixels that are outside the fitting radius from
# the data. Note that the star must not be considered to be saturated to
# arrive at this point.
int procedure dp_dclean (data, nx, ny, lx, ly, x, y, fitrad, datamin, datamax)
real data[nx,ARB] # the input image data
int nx, ny # the dimensions of the input image data
int lx, ly # the coordinates of the ll image corner
real x, y # the input/output stellar coordinates
real fitrad # the fitting radius
real datamin # the min good data value
real datamax # the max good data value
bool redo
int i, j, l, k, nclean
real frad2, dy2, dr2, sumd, sumn
begin
nclean = 0
repeat {
redo = false
frad2 = fitrad ** 2
do j = 1, ny {
dy2 = (real ((ly - 1) + j) - y) ** 2
if (dy2 < frad2)
next
do i = 1, nx {
if (data[i,j] >= datamin && data[i,j] <= datamax)
next
dr2 = dy2 + (real ((lx - 1) + i) - x) ** 2
if (dr2 < frad2)
next
sumd = 0.0
sumn = 0.0
do l = max (1, j-1), min (ny, j+2) {
do k = max (1, i-1), min (nx, i+2) {
if (data[k,l] < datamin || data[k,l] > datamax)
next
sumd = sumd + data[k,l]
sumn = sumn + 1.0
}
}
if (sumn < 2.5)
redo = true
else {
nclean = nclean + 1
data[i,j] = sumd / sumn
}
}
}
} until (! redo)
return (nclean)
end
# DP_RESANA -- Compute the residuals from the analytic function.
int procedure dp_resana (im, psftype, params, data, nx, ny, lx, ly,
x, y, sky, h, nstar, psfstar, psfrad, fitrad, maxgdata, resid)
pointer im # the input image descriptor
int psftype # analytic point spread function type
real params[ARB] # current function parameter values
real data[nx,ARB] # the input image data
int nx, ny # the dimensions of the input image data
int lx, ly # the coordinates of the ll image corner
real x[ARB] # the input x coords of the psf stars
real y[ARB] # the input y coords of the psf stars
real sky[ARB] # the input sky values of the psf stars
real h[ARB] # the input height values of the psf stars
int nstar # the number of psf stars
int psfstar # the psf star in question
real psfrad # the psf radius
real fitrad # the fitting radius
real maxgdata # the maximum good data value
real resid # standard deviation of fit
int i, j, istar, rx, ry, x1, x2, y1, y2, nresid
real frad2, dx, dy, dy2, dr2, p, dhdxc, dhdyc, junk
int dp_lsubrast()
real dp_profile()
begin
frad2 = fitrad ** 2
rx = lx + nx - 1
ry = ly + ny - 1
resid = 0.0
nresid = 0
do istar = 1, nstar {
# Check for saturation.
if (IS_INDEFR(h[istar]))
next
# Does the subraster of another PSF star overlap the current
# subraster ?.
if (dp_lsubrast (im, x[istar], y[istar], psfrad, x1, x2,
y1, y2) == ERR)
next
if (x2 < lx || y2 < ly || x1 > rx || y1 > ry)
next
# Check the limits of overlap.
if (x1 < lx)
x1 = lx
if (x2 > rx)
x2 = rx
if (y1 < ly)
y1 = ly
if (y2 > ry)
y2 = ry
# Subract off the analytic part of the fits and accumulate
# the residuals for the psf star.
do j = y1 - ly + 1, y2 - ly + 1 {
dy = real ((ly - 1) + j) - y[istar]
dy2 = dy ** 2
do i = x1 - lx + 1, x2 - lx + 1 {
if (data[i,j] > maxgdata)
next
dx = real ((lx - 1) + i) - x[istar]
p = dp_profile (psftype, dx, dy, params, dhdxc, dhdyc,
junk, 0)
data[i,j] = data[i,j] - h[istar] * p
if (istar != psfstar)
next
dr2 = dy2 + dx ** 2
if (dr2 >= frad2)
next
resid = resid + (data[i,j] - sky[istar]) ** 2
nresid = nresid + 1
}
}
}
if (nresid <= 0)
resid = 0.0
else
resid = sqrt (resid / nresid) / (h[psfstar] * dp_profile (psftype,
0.0, 0.0, params, dhdxc, dhdyc, junk, 0))
return (nresid)
end
# DP_SWEIGHT -- Compute the weight for the star.
real procedure dp_sweight (resid, sumfree, sumana)
real resid # normalized residual wrt analytic fit
real sumfree # number of degrees of freedom
real sumana # number of points contributing to analytic fit
real weight
begin
weight = resid * sumfree / sumana
weight = 1.0 / (1.0 + (weight / 2.0) ** 2)
return (weight)
end
# DP_EACCUM -- Calcuate the expansion vector for a single PSF star.
procedure dp_eaccum (x, y, xmid, ymid, junk, nvexp, nfexp)
real x, y # the stellar coordinates
real xmid, ymid # the psf coordinates
real junk[ARB] # temporary storage vector
int nvexp # the number of variable psf look-up tables
int nfexp # the number of pixel expansion tables
int j
begin
# The variable psf terms.
switch (nvexp) {
case 1:
junk[1] = 1.0
case 3:
junk[1] = 1.0
junk[2] = ((x - 1.0) / xmid) - 1.0
junk[3] = ((y - 1.0) / ymid) - 1.0
case 6:
junk[1] = 1.0
junk[2] = ((x - 1.0) / xmid) - 1.0
junk[3] = ((y - 1.0) / ymid) - 1.0
junk[4] = (1.5 * (junk[2] ** 2)) - 0.5
junk[5] = junk[2] * junk[3]
junk[6] = (1.5 * (junk[3] ** 2)) - 0.5
}
# The fractional pixel expansion terms if any.
if (nfexp > 0) {
j = nvexp + 1
junk[j] = 2.0 * (x - real (nint(x)))
j = j + 1
junk[j] = 2.0 * (y - real (nint(y)))
j = j + 1
junk[j] = (1.5 * (junk[j-2] ** 2)) - 0.5
j = j + 1
junk[j] = junk[j-3] * junk[j-2]
j = j + 1
junk[j] = (1.5 * (junk[j-3] ** 2)) - 0.5
}
end
# DP_LTINTERP -- Compute the contribution to the lookup table of a single
# PSF star.
procedure dp_ltinterp (data, nx, ny, lx, ly, x, y, sky, hratio, weight, sumn,
sumw, sumsq, sig, old, temp, psflut, nexp, nxlut, maxgdata, iter, niter)
real data[nx,ARB] # the input image data
int nx, ny # the dimensions of the input image data
int lx, ly # the coordinates of the ll image corner
real x, y # the input/output stellar coordinates
real sky # sky value for star
real hratio # scale factor for star
real weight # weight for the star
real sumn[nxlut,ARB] # number of points
real sumw[nxlut,ARB] # sum of the weights
real sumsq[nxlut,ARB] # sum of the residuals
real sig[nxlut,ARB] # residuals of previous iteration
real old[nexp,nxlut,ARB] # old lookup table
real temp[ARB] # the single star expansion vector
real psflut[nexp,nxlut,ARB] # the psf lookup table
int nexp, nxlut # the dimensions of the lookup table
real maxgdata # maximum good data value
int iter # the current iteration
int niter # the maximum number of iterations
bool omit
int i, j, k, kx, ky, ii, jj, middle, jysq, irsq, midsq
real jy, ix, dx, dy, diff, dfdx, dfdy, wt, oldsum
real bicubic()
begin
middle = (nxlut + 1) / 2
midsq = middle ** 2
do j = 1, nxlut {
jysq = (j - middle) ** 2
if (jysq > midsq)
next
jy = y + real (j - (nxlut + 1) / 2) / 2.0 - real (ly - 1)
ky = int (jy)
if (ky < 2 || (ky + 2) > ny)
next
dy = jy - real (ky)
do i = 1, nxlut {
irsq = jysq + (i - middle) ** 2
if (irsq > midsq)
next
ix = x + real (i - (nxlut + 1) / 2) / 2.0 - real (lx - 1)
kx = int (ix)
if (kx < 2 || (kx + 2) > nx)
next
omit = false
do jj = ky - 1, ky + 2 {
do ii = kx - 1, kx + 2 {
if (data[ii,jj] <= maxgdata)
next
omit = true
}
}
if (omit)
next
dx = ix - real (kx)
diff = (bicubic (data[kx-1,ky-1], nx, dx, dy, dfdx, dfdy) -
sky) / hratio
if (iter == 1 || sig[i,j] <= 0.0) {
wt = 1.0
} else {
oldsum = 0.0
do k = 1, nexp
oldsum = oldsum + old[k,i,j] * temp[k]
if ((iter - 1) <= max (3, (niter - 1) / 2))
wt = 1.0 / (1.0 + abs (diff - oldsum) / sig[i,j])
else
wt = 1.0 / (1.0 + ((diff - oldsum) / sig[i,j]) ** 2)
}
wt = wt * weight
sumn[i,j] = sumn[i,j] + 1.0
sumw[i,j] = wt
sumsq[i,j] = sumsq[i,j] + abs (diff)
psflut[1,i,j] = psflut[1,i,j] + wt * diff
if (nexp <= 1)
next
do k = 2, nexp
psflut[k,i,j] = psflut[k,i,j] + (temp[k] * wt * diff)
}
}
end
# DP_LTCOMPUTE -- Compute the lookup table.
int procedure dp_ltcompute (x, y, npsf, xmid, ymid, sumn, wim, psflut, c,
junk, v, nexp, nxlut, nvexp, nfexp)
real x[ARB] # array of psf star x coordinates
real y[ARB] # array of psf star y coordinates
int npsf # the number of psf stars
real xmid, ymid # the mid-point of the psf
real sumn[nxlut,ARB] # number of points
pointer wim # pointer to the temporary weight image
real psflut[nexp,nxlut,ARB] # the psf lookup table
real c[nexp,ARB] # the expansion matrix
real junk[ARB] # temporary junk vector
real v[ARB] # temporary vector
int nexp, nxlut # the size of the lookup table
int nvexp, nfexp # size of the expansion look-up tables
int i, j, k, l, line, istar, ier, middle, midsq, jysq, irsq
pointer sumw
real weight
pointer imgs2r()
begin
middle = (nxlut + 1) / 2
midsq = middle ** 2
do j = 1, nxlut {
jysq = (j - middle) ** 2
if (jysq > midsq)
next
do i = 1, nxlut {
irsq = (i - middle) ** 2 + jysq
if (irsq > midsq)
next
if (nint (sumn[i,j]) < nexp)
return (ERR)
line = i + (j - 1) * nxlut
sumw = imgs2r (wim, 1, npsf, line, line)
do k = 1, nexp
do l = 1, nexp
c[k,l] = 0.0
do istar = 1, npsf {
weight = Memr[sumw+istar-1]
if (weight <= 0.0)
next
call dp_eaccum (x[istar], y[istar], xmid, ymid, junk,
nvexp, nfexp)
do k = 1, nexp
do l = 1, nexp
c[k,l] = c[k,l] + weight * junk[k] * junk[l]
}
call invers (c, nexp, nexp, ier)
call mvmul (c, nexp, nexp, psflut[1,i,j], v)
do k = 1, nexp
psflut[k,i,j] = v[k]
}
}
return (OK)
end
# DP_STDCOMPUTE -- Estimate the standard deviation of the fit.
procedure dp_stdcompute (sumn, sumsq, sigma, nx, ny, nexp)
real sumn[nx,ARB] # number of point
real sumsq[nx,ARB] # sum of the standard deviations
real sigma[nx,ARB] # output standard deviation array
int nx, ny # size of the arrays
int nexp # number of expansion vectors
int i, j
begin
do j = 1, ny {
do i = 1, nx {
if (sumn[i,j] <= nexp)
sigma[i,j] = 0.0
else
sigma[i,j] = 1.2533 * sumsq[i,j] / sqrt (sumn[i,j] *
(sumn[i,j] - nexp))
}
}
end
# DP_VACCUM -- Accumulate the expansion vector.
procedure dp_vaccum (x, y, h, weight, nstar, xmid, ymid, junk, avetrm,
nexp, nvexp, nfexp)
real x[ARB] # the stellar x coordinates
real y[ARB] # the stellar y coordinates
real h[ARB] # the stellar heights
real weight[ARB] # the stellar weights
int nstar # number of stars
real xmid, ymid # the psf coordinates
real junk[ARB] # temporary storage vector
real avetrm[ARB] # the expansion vector
int nexp # the total number of expansion terms
int nvexp # number of variable expansion terms
int nfexp # number of fractional pixel expansion terms
int k, j
begin
# Zero the accumulation vector
do j = 1, nexp
avetrm[j] = 0.0
do k = 1, nstar {
if (IS_INDEFR(h[k]))
next
# The variable psf expansion terms.
switch (nvexp) {
case 1:
junk[1] = 1.0
case 3:
junk[1] = 1.0
junk[2] = ((x[k] - 1.0) / xmid) - 1.0
junk[3] = ((y[k] - 1.0) / ymid) - 1.0
case 6:
junk[1] = 1.0
junk[2] = ((x[k] - 1.0) / xmid) - 1.0
junk[3] = ((y[k] - 1.0) / ymid) - 1.0
junk[4] = (1.5 * (junk[2] ** 2)) - 0.5
junk[5] = junk[2] * junk[3]
junk[6] = (1.5 * (junk[3] ** 2)) - 0.5
}
# The fractional pixel expansion terms if any.
if (nfexp > 0) {
j = nvexp + 1
junk[j] = 2.0 * (x[k] - real (nint(x[k])))
j = j + 1
junk[j] = 2.0 * (y[k] - real (nint(y[k])))
j = j + 1
junk[j] = (1.5 * (junk[j-2] ** 2)) - 0.5
j = j + 1
junk[j] = junk[j-3] * junk[j-2]
j = j + 1
junk[j] = (1.5 * (junk[j-3] ** 2)) - 0.5
}
# Accumulate the expansion vector.
do j = 1, nexp
avetrm[j] = avetrm[j] + weight[k] * junk[j]
}
# Average the expansion vector.
do j = nexp, 1, -1
avetrm[j] = avetrm[j] / avetrm[1]
end
# DP_PCONST -- Compute the analytic part of the psf.
procedure dp_pconst (psftype, params, hpsf1, ana, nxlut)
int psftype # the type of analytic psf function
real params[ARB] # the analytic parameters array
real hpsf1 # the height of the psf function
real ana[nxlut,ARB] # the computed analytic function
int nxlut # the size of the constant lookup table
int i, j, middle, midsq, dj2, dr2
real dx, dy, dfdx, dfdy, junk
real dp_profile()
begin
# Compute the constant part of the psf.
middle = (nxlut + 1) / 2
midsq = middle ** 2
do j = 1, nxlut {
dj2 = (j - middle) ** 2
if (dj2 > midsq)
next
dy = real (j - middle) / 2.0
do i = 1, nxlut {
dr2 = (i - middle) ** 2 + dj2
if (dr2 > midsq)
next
dx = real (i - middle) / 2.0
ana[i,j] = hpsf1 * dp_profile (psftype, dx, dy, params,
dfdx, dfdy, junk, 0)
}
}
end
# DP_PNORM -- Compute the psf normalization parameters.
double procedure dp_pnorm (ana, pixels, nxlut)
real ana[nxlut,ARB] # the computed analytic function
real pixels[ARB] # pixel storage array
int nxlut # the size of the constant lookup table
int i, j, middle, midsq, edgesq, npts, dj2, dr2
double vol
real median
real pctile()
begin
# Ensure that the profile which will be added and subtracted
# from the various lookup tables has a median value of zero
# around the rim
middle = (nxlut + 1) / 2
midsq = middle ** 2
edgesq = (middle - 2) ** 2
npts = 0
do j = 1, nxlut {
dj2 = (j - middle) ** 2
if (dj2 > midsq)
next
do i = 1, nxlut {
dr2 = (i - middle) ** 2 + dj2
if (dr2 > midsq)
next
if (dr2 < edgesq)
next
npts = npts + 1
pixels[npts] = ana[i,j]
}
}
median = pctile (pixels, npts, (npts+1) / 2)
vol = 0.0d0
do j = 1, nxlut {
dj2 = (j - middle) ** 2
if (dj2 > midsq)
next
do i = 1, nxlut {
dr2 = (i - middle) ** 2 + dj2
if (dr2 > midsq)
next
ana[i,j] = ana[i,j] - median
vol = vol + double (ana[i,j])
}
}
return (vol)
end
# DP_LTNORM -- Compute the final lookup table.
procedure dp_ltnorm (ana, v, psflut, pixels, nexp, nxlut, volume)
real ana[nxlut,ARB] # analytic part of the profile
real v[ARB] # the expansion vector
real psflut[nexp,nxlut,ARB] # the psf lookup table
real pixels[ARB] # scratch array for determining median
int nexp, nxlut # the size of the lookup table
double volume # total flux in the constant psf
int i, j, k, middle, midsq, edgesq, npts, dj2, dr2
double sum
real median, dmedian
real pctile()
begin
# Ensure that the psf which will be added and subtracted from the
# various lookup tables has a median value of zero around the rim.
middle = (nxlut + 1) / 2
midsq = middle ** 2
edgesq = (middle - 2) ** 2
do k = 2, nexp {
npts = 0
do j = 1, nxlut {
dj2 = (j - middle) ** 2
if (dj2 > midsq)
next
do i = 1, nxlut {
dr2 = (i - middle) ** 2 + dj2
if (dr2 > midsq)
next
if (dr2 < edgesq)
next
npts = npts + 1
pixels[npts] = psflut[k,i,j]
}
}
median = pctile (pixels, npts, (npts+1) / 2)
dmedian = v[k] * median
do j = 1, nxlut {
dj2 = (j - middle) ** 2
if (dj2 > midsq)
next
do i = 1, nxlut {
dr2 = (i - middle) ** 2 + dj2
if (dr2 > midsq)
next
psflut[k,i,j] = psflut[k,i,j] - median
psflut[1,i,j] = psflut[1,i,j] + dmedian
}
}
}
# Determine the net volume of each of the higher order PSF
# tables and force it to zero by subtracting a scaled copy
# of the constant psf. Scale the part that has been subtracted
# off by the mean polynomial term and add it in to the constant
# part of the psf so that at the centroid of the psf stars
# positions the psf remains unchanged.
do k = 2, nexp {
sum = 0.0d0
do j = 1, nxlut {
dj2 = (j - middle) ** 2
if (dj2 > midsq)
next
do i = 1, nxlut {
dr2 = (i - middle) ** 2 + dj2
if (dr2 > midsq)
next
sum = sum + double (psflut[k,i,j])
}
}
median = real (sum / volume)
dmedian = v[k] * median
do j = 1, nxlut {
dj2 = (j - middle) ** 2
if (dj2 > midsq)
next
do i = 1, nxlut {
dr2 = (i - middle) ** 2 + dj2
if (dr2 > midsq)
next
psflut[k,i,j] = psflut[k,i,j] - median * ana[i,j]
psflut[1,i,j] = psflut[1,i,j] + dmedian * ana[i,j]
}
}
}
end
# DP_FSATURATED -- Fit the saturated stars.
int procedure dp_fsaturated (dao, im, id, xcen, ycen, h, sky, sat, nstars)
pointer dao # pointer to the main daophot structure
pointer im # pointer to the input image
int id[ARB] # array of stellar ids
real xcen[ARB] # array of stellar y coordinates
real ycen[ARB] # array of stellar y coordinates
real h[ARB] # array of stellar amplitudes
real sky[ARB] # array of sky values
int sat[ARB] # array of saturation indicators
int nstars # number of stars
int nfit, nsat, istar, lowx, lowy, nxpix, nypix, recenter, fitsky
int clipexp, ier, niter
pointer psf, psffit, subim, psflut
real x, y, dx, dy, skyval, scale, errmag, chi, sharp, cliprange
int dp_pkfit()
pointer dp_gsubrast()
begin
# Get some pointers.
psf = DP_PSF(dao)
psffit = DP_PSFFIT(dao)
# Allocate memory.
call dp_pksetup (dao)
call dp_mempk (dao, 3)
# Save the default values of some critical parameters.
recenter = DP_RECENTER(dao)
fitsky = DP_FITSKY(dao)
psflut = DP_PSFLUT(psffit)
clipexp = DP_CLIPEXP(dao)
cliprange = DP_CLIPRANGE(dao)
# Set some fitting parameters.
DP_RECENTER(dao) = YES
DP_FITSKY(dao) = NO
DP_CLIPEXP(dao) = 8
DP_CLIPRANGE(dao) = 2.5
DP_PSFLUT(psffit) = DP_POLDLUT(psf)
nfit = 0
nsat = 0
do istar = 1, nstars {
# Skip saturated stars.
if (sat[istar] == NO)
next
nsat = nsat + 1
# Get the data.
subim = dp_gsubrast (im, xcen[istar], ycen[istar], DP_PSFRAD(dao),
lowx, lowy, nxpix, nypix)
if (subim == NULL)
next
# Set the intial values for the fit parameters.
x = xcen[istar] - lowx + 1.0
y = ycen[istar] - lowy + 1.0
dx = (xcen[istar] - 1.0) / DP_PSFX(psffit) - 1.0
dy = (ycen[istar] - 1.0) / DP_PSFY(psffit) - 1.0
skyval = sky[istar]
scale = 3.0
# Fit the star.
ier = dp_pkfit (dao, Memr[subim], nxpix, nypix, 0.5 *
DP_PSFRAD(dao), x, y, dx, dy, scale, skyval, errmag, chi,
sharp, niter)
# Compute the fit parameters.
if (ier != PKERR_OK) {
scale = INDEFR
errmag = INDEFR
niter = 0
chi = INDEFR
sharp = INDEFR
} else {
nfit = nfit + 1
xcen[istar] = x + lowx - 1.0
ycen[istar] = y + lowy - 1.0
h[istar] = scale * h[1]
errmag = 1.085736 * errmag / scale
if (errmag >= 2.0)
errmag = INDEFR
scale = DP_PSFMAG(psffit) - 2.5 * log10 (scale)
}
if (DP_VERBOSE(dao) == YES) {
if (nsat == 1)
call printf ("\nFit for saturated stars\n")
call printf (
" %6d %7.2f %7.2f %8.3f %6.3f %3d %7.2f %7.2f\n")
call pargi (id[istar])
call pargr (xcen[istar])
call pargr (ycen[istar])
call pargr (scale)
call pargr (errmag)
call pargi (niter)
call pargr (chi)
call pargr (sharp)
}
}
if (DP_VERBOSE(dao) == YES && nsat > 0)
call printf ("\n")
# Restore the default values of some critical parameters.
DP_RECENTER(dao) = recenter
DP_FITSKY(dao) = fitsky
DP_CLIPEXP(dao) = clipexp
DP_CLIPRANGE(dao) = cliprange
DP_PSFLUT(psffit) = psflut
# Free memory.
call dp_pkclose (dao)
return (nfit)
end
# DP_PCOPY -- Make a copy of the psf in correct storage order.
procedure dp_pcopy (inlut, outlut, nx, ny, nexp)
real inlut[nexp,nx,ny] # the input look-up table
real outlut[nx,ny,nexp] # the output look-up table
int nx,ny,nexp # the size of the look-up table
int k,i,j
begin
do k = 1, nexp {
do j = 1, ny {
do i = 1, nx {
outlut[i,j,k] = inlut[k,i,j]
}
}
}
end
|