aboutsummaryrefslogtreecommitdiff
path: root/noao/imred/crutil/src/t_craverage.x
blob: f7b82113c8f1317d2871e25c30cd8fe52385b2f4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
include	<error.h>
include	<imhdr.h>
include	<mach.h>

define	MAXBUF		500000	# Maximum pixel buffer

define	PLSIG		15.87	# Low percentile
define	PHSIG		84.13	# High percentile


# T_CRAVERAGE -- Detect, fix, and flag cosmic rays.  Also detect objects.
# Deviant pixels relative to a local average with the candidate pixel
# excluded and sigma are detected and replaced by the average value
# and/or written to a cosmic ray mask.  Average values above a the median
# of a background annulus are detected as objects and cosmic rays are
# excluded.  The object positions may be output in the mask.

procedure t_craverage ()

int	inlist			# Input image list
int	outlist			# Output image list
int	crlist			# Output mask list
int	avglist			# Output average list
int	siglist			# Output sigma list
int	crval			# Output cosmic ray mask value
int	objval			# Output object mask value
int	navg			# Averaging box size
int	nrej			# Number of high pixels to reject from average
int	nbkg			# Background width
int	nsig			# Sigma box size
real	lobjsig, hobjsig	# Object threshold sigmas
real	lcrsig, hcrsig		# CR threshold sigmas outside of object
real	var0			# Variance coefficient for DN^0 term
real	var1			# Variance coefficient for DN^1 term
real	var2			# Variance coefficient for DN^2 term
real	crgrw			# Cosmic ray grow radius
real	objgrw			# Object grow radius

int	i, nc, nl, nlstep, nbox, l1, l2, l3, l4, nl1, pmmode
pointer	sp, input, output, crmask, crmask1, extname, average, sigma
pointer	in, out, pm, aim, sim
pointer	inbuf, pinbuf, outbuf, pbuf, abuf, sbuf

real	clgetr()
int	clgeti(), imtopenp(), imtgetim()
pointer	immap(), imgs2s(), imgs2r(), imps2r(), imps2s()
errchk	immap, imgs2s, imgs2r, imps2r, imps2s, craverage, crgrow, imgstr

begin
	call smark (sp)
	call salloc (input, SZ_FNAME, TY_CHAR)
	call salloc (output, SZ_FNAME, TY_CHAR)
	call salloc (crmask, SZ_FNAME, TY_CHAR)
	call salloc (crmask1, SZ_FNAME, TY_CHAR)
	call salloc (average, SZ_FNAME, TY_CHAR)
	call salloc (sigma, SZ_FNAME, TY_CHAR)
	call salloc (extname, SZ_FNAME, TY_CHAR)

	# Get parameters.
	inlist = imtopenp ("input")
	outlist = imtopenp ("output")
	crlist = imtopenp ("crmask")
	avglist = imtopenp ("average")
	siglist = imtopenp ("sigma")
	crval = clgeti ("crval")
	objval = clgeti ("objval")
	navg = max (1, clgeti ("navg") / 2)
	nrej = min (clgeti ("nrej"), navg-1)
	nbkg = clgeti ("nbkg")
	nsig = clgeti ("nsig")
	lobjsig = clgetr ("lobjsig")
	hobjsig = clgetr ("hobjsig")
	lcrsig = clgetr ("lcrsig")
	hcrsig = clgetr ("hcrsig")
	nbox = 2 * (navg + nbkg) + 1
	var0 = clgetr ("var0")
	var1 = clgetr ("var1")
	var2 = clgetr ("var2")
	crgrw = clgetr ("crgrow")
	objgrw = clgetr ("objgrow")

	# Do the input images.
	Memc[crmask1] = EOS
	while (imtgetim (inlist, Memc[input], SZ_FNAME) != EOF) {
	    if (imtgetim (outlist, Memc[output], SZ_FNAME) == EOF)
		Memc[output] = EOS
	    if (imtgetim (crlist, Memc[crmask], SZ_FNAME) == EOF)
	        call strcpy (Memc[crmask1], Memc[crmask], SZ_FNAME)
	    else if (Memc[crmask] == '!')
	        call strcpy (Memc[crmask], Memc[crmask1], SZ_FNAME)
	    if (imtgetim (avglist, Memc[average], SZ_FNAME) == EOF)
		Memc[average] = EOS
	    if (imtgetim (siglist, Memc[sigma], SZ_FNAME) == EOF)
		Memc[sigma] = EOS

	    # Map the input and output images.
	    iferr {
		in = NULL; out = NULL; pm = NULL; aim = NULL; sim = NULL
		inbuf = NULL; pinbuf = NULL; outbuf = NULL; pbuf = NULL;
		abuf = NULL; sbuf=NULL

		in = immap (Memc[input], READ_ONLY, 0)
		if (Memc[output] != EOS)
		    out = immap (Memc[output], NEW_COPY, in)
		if (Memc[crmask] != EOS) {
		    if (Memc[crmask] == '!')
			call imgstr (in, Memc[crmask+1], Memc[crmask], SZ_FNAME)
		    pmmode = READ_WRITE
		    iferr (call imgstr (in, "extname", Memc[extname], SZ_FNAME))
			call strcpy ("pl", Memc[extname], SZ_FNAME)
		    call xt_maskname (Memc[crmask], Memc[extname], pmmode,
			Memc[crmask], SZ_FNAME)
		    iferr (pm = immap (Memc[crmask], pmmode, 0)) {
			pmmode = NEW_COPY
			pm = immap (Memc[crmask], pmmode, in)
		    }
		}
		if (Memc[average] != EOS)
		    aim = immap (Memc[average], NEW_COPY, in)
		if (Memc[sigma] != EOS)
		    sim = immap (Memc[sigma], NEW_COPY, in)

		# Go through the input in large blocks of lines.  If the
		# block is smaller than the whole image overlap the blocks
		# so the average only has boundaries at the ends of the image.
		# However, the output is done in non-overlapping blocks with
		# the pointers are adjusted so that addresses can be in the
		# space of the input block.  CRAVERAGE does not address
		# outside of the output data block.  Set the mask values
		# based on the distances to the nearest good pixels.

		nc = IM_LEN(in,1)
		nl = IM_LEN(in,2)
		nlstep = max (1, MAXBUF / nc - nbox)

		do i = 1, nl, nlstep {
		    l1 = i
		    l2 = min (nl, i + nlstep - 1)
		    l3 = max (1, l1 - nbox / 2)
		    l4 = min (nl, l2 + nbox / 2)
		    nl1 = l4 - l3 + 1
		    inbuf = imgs2r (in, 1, nc, l3, l4)
		    if (out != NULL)
			outbuf = imps2r (out, 1, nc, l1, l2) - (l1 - l3) * nc
		    if (pm != NULL) {
			if (pmmode == READ_WRITE) {
			    pinbuf = imgs2s (pm, 1, nc, l3, l4)
			    pbuf = imps2s (pm, 1, nc, l1, l2)
			    call amovs (Mems[pinbuf+(l1-l3)*nc],
				Mems[pbuf], nc*(l2-l1+1))
			    pbuf = pbuf - (l1 - l3) * nc
			} else {
			    pinbuf = NULL
			    pbuf = imps2s (pm, 1, nc, l1, l2)
			    call aclrs (Mems[pbuf], nc*(l2-l1+1))
			    pbuf = pbuf - (l1 - l3) * nc
			}
		    }
		    if (aim != NULL)
			abuf = imps2r (aim, 1, nc, l1, l2) - (l1 - l3) * nc
		    if (sim != NULL)
			sbuf = imps2r (sim, 1, nc, l1, l2) - (l1 - l3) * nc
		    if (pinbuf == NULL)
			call craverage (inbuf, outbuf, pbuf, abuf, sbuf,
			    nc, nl1, l1-l3+1, l2-l3+1, navg, nrej, nbkg,
			    var0, var1, var2, nsig, lcrsig, hcrsig,
			    lobjsig, hobjsig, crval, objval)
		    else
			call craverage1 (inbuf, pinbuf, outbuf, pbuf, abuf,
			    sbuf, nc, nl1, l1-l3+1, l2-l3+1, navg, nrej, nbkg,
			    var0, var1, var2, nsig, lcrsig, hcrsig,
			    lobjsig, hobjsig, crval, objval)
		}

		# Grow regions if desired.  The routines are nops if the
		# grow is zero.

		if (pm != NULL) {
		    if (pmmode != READ_WRITE) {
			call imunmap (pm)
			iferr (pm = immap (Memc[crmask], READ_WRITE, 0))
			    call error (1, "Can't reopen mask for growing")
		    }

		    if (crval == objval)
			call crgrow (pm, max (crgrw, objgrw), crval, crval)
		    else {
			call crgrow (pm, crgrw, crval, crval)
			call crgrow (pm, objgrw, objval, objval)
		    }
		}
	    } then
		call erract (EA_WARN)

	    if (sim != NULL)
		call imunmap (sim)
	    if (aim != NULL)
		call imunmap (aim)
	    if (pm != NULL)
		call imunmap (pm)
	    if (out != NULL)
		call imunmap (out)
	    call imunmap (in)
	}

	call imtclose (inlist)
	call imtclose (outlist)
	call imtclose (crlist)
	call imtclose (avglist)
	call imtclose (siglist)

	call sfree (sp)
end


# CRAVERAGE -- Detect, replace, and flag cosmic rays.
# A local background is computed using moving box averages to avoid
# contaminating bad pixels.  If variance model is given then that is
# used otherwise a local sigma is computed in blocks (it is not a moving box
# for efficiency) by using a percentile point of the sorted pixel values to
# estimate the width of the distribution uncontaminated by bad pixels).  Once
# the background and sigma are known deviant pixels are found by using sigma
# threshold factors.

procedure craverage (in, out, pout, aout, sout, nc, nl, nl1, nl2,
	navg, nrej, nbkg, var0, var1, var2, nsig, lcrsig, hcrsig,
	lobjsig, hobjsig crval, objval)

pointer	in			#I Input data
pointer	out			#O Output data
pointer	pout			#O Output mask (0=good, 1=bad)
pointer	aout			#O Output averages
pointer	sout			#O Output sigmas
int	nc, nl			#I Number of columns and lines
int	nl1, nl2		#I Lines to compute
int	navg			#I Averaging box half-size
int	nrej			#I Number of high pixels to reject from average
int	nbkg			#I Median background width
real	var0			#I Variance coefficient for DN^0 term
real	var1			#I Variance coefficient for DN^1 term
real	var2			#I Variance coefficient for DN^2 term
int	nsig			#I Sigma box size
real	lcrsig, hcrsig		#I Threshold sigmas outside of object
real	lobjsig, hobjsig	#I Object threshold sigmas
int	crval			#I CR mask value
int	objval			#I Object mask value

int	i, j, c, c1, c2, c3, c4, l, l1, l2, l3, l4, n1, n2
int	navg2, nbkg2, nsig2, plsig, phsig
real	data, avg, bkg, sigma, losig, hosig
real	low, high, cravg(), amedr()
pointer	stack, avgs, bkgs, sigs, work1, work2
pointer	ptr1, ptr2, ip, op, pp, ap, sp

begin
	navg2 = (2 * navg + 1) ** 2
	nbkg2 = (2 * (navg + nbkg) + 1) ** 2 - navg2
	nsig2 = nsig * nsig

	call smark (stack)
	call salloc (avgs, nc, TY_REAL)
	call salloc (bkgs, nc, TY_REAL)
	call salloc (sigs, nc, TY_REAL)
	call salloc (work1, navg2, TY_REAL)
	call salloc (work2, max (nsig2, nbkg2), TY_REAL)

	if (var0 != 0. && var1 == 0. && var2 ==0.)
	    call amovkr (sqrt(var0), Memr[sigs], nc)

	avgs = avgs - 1
	sigs = sigs - 1
	bkgs = bkgs - 1

	plsig = nint (PLSIG*nsig2/100.-1)
	phsig = nint (PHSIG*nsig2/100.-1)
	losig = lobjsig / sqrt (real(navg2-1))
	hosig = hobjsig / sqrt (real(navg2-1))

	do l = nl1, nl2 {
	    # Compute statistics.
	    l1 = max (1, l-navg-nbkg)
	    l2 = max (1, l-navg)
	    l3 = min (nl, l+navg)
	    l4 = min (nl, l+navg+nbkg)
	    ap = aout + (l - 1) * nc
	    do c = 1, nc {
		c1 = max (1, c-navg-nbkg)
		c2 = max (1, c-navg)
		c3 = min (nc, c+navg)
		c4 = min (nc, c+navg+nbkg)
		ptr1 = work1
		ptr2 = work2
		n1 = 0
		n2 = 0
		do j = l1, l2-1 {
		    ip = in + (j - 1) * nc + c1 - 1
		    do i = c1, c4 {
			Memr[ptr2] = Memr[ip]
			n2 = n2 + 1
			ptr2 = ptr2 + 1
			ip = ip + 1
		    }
		}
		do j = l2, l3 {
		    ip = in + (j - 1) * nc + c1 - 1
		    do i = c1, c2-1 {
			Memr[ptr2] = Memr[ip]
			n2 = n2 + 1
			ptr2 = ptr2 + 1
			ip = ip + 1
		    }
		    do i = c2, c3 {
			if (j != l || i != c) {
			    Memr[ptr1] = Memr[ip]
			    n1 = n1 + 1
			    ptr1 = ptr1 + 1
			}
			ip = ip + 1
		    }
		    do i = c3+1, c4 {
			Memr[ptr2] = Memr[ip]
			n2 = n2 + 1
			ptr2 = ptr2 + 1
			ip = ip + 1
		    }
		}
		do j = l3+1, l4 {
		    ip = in + (j - 1) * nc + c1 - 1
		    do i = c1, c4 {
			Memr[ptr2] = Memr[ip]
			n2 = n2 + 1
			ptr2 = ptr2 + 1
			ip = ip + 1
		    }
		}
		avg = cravg (Memr[work1], n1, nrej)
		bkg = amedr (Memr[work2], n2)
		Memr[bkgs+c] = bkg
		Memr[avgs+c] = avg
		if (aout != NULL) {
		    Memr[ap] = avg - bkg
		    ap = ap + 1
		}
	    }

	    # Compute sigmas and output if desired.
	    if (var0 != 0. || var1 != 0. || var2 != 0.) {
		if (var1 != 0.) {
		    if (var2 != 0.) {
			do c = 1, nc {
			    data = max (0., Memr[avgs+c])
			    Memr[sigs+c] = sqrt (var0+var1*data+var2*data**2)
			}
		    } else {
			do c = 1, nc {
			    data = max (0., Memr[avgs+c])
			    Memr[sigs+c] = sqrt (var0 + var1 * data)
			}
		    }
		} else if (var2 != 0.) {
		    do c = 1, nc {
			data = max (0., Memr[avgs+c])
			Memr[sigs+c] = sqrt (var0 + var2 * data**2)
		    }
		}
	    } else {
		# Compute sigmas from percentiles.  This is done in blocks.
		if (mod (l-nl1, nsig) == 0 && l<nl-nsig+1) {
		    do c = 1, nc-nsig+1, nsig {
			ptr2 = work2
			n2 = 0
			do j = l, l+nsig-1 {
			    ip = in + (j - 1) * nc + c - 1
			    do i = 1, nsig {
				Memr[ptr2] = Memr[ip]
				n2 = n2 + 1
				ptr2 = ptr2 + 1
				ip = ip + 1
			    }
			}
			call asrtr (Memr[work2], Memr[work2], n2)
			sigma = (Memr[work2+phsig] - Memr[work2+plsig]) / 2.
			call amovkr (sigma, Memr[sigs+c], nsig)
		    }
		    call amovkr (sigma, Memr[sigs+c], nc-c+1)
		}
	    }
	    if (sout != NULL) {
		sp = sout + (l - 1) * nc
		do c = 1, nc {
		    Memr[sp] = Memr[sigs+c]
		    sp = sp + 1
		}
	    }

	    # Detect, fix, and flag cosmic rays.
	    if (pout == NULL && out == NULL)
		;
	    else if (pout == NULL) {
		ip = in + (l - 1) * nc
		op = out + (l - 1) * nc
		do c = 1, nc {
		    data = Memr[ip]
		    avg = Memr[avgs+c]
		    bkg = Memr[bkgs+c]
		    sigma = Memr[sigs+c]
		    low = bkg - losig * sigma
		    high = bkg + hosig * sigma
		    if (avg < low || avg > high) {
			Memr[op] = data
		    } else {
			low = avg - lcrsig * sigma
			high = avg + hcrsig * sigma
			if (data < low || data > high)
			    Memr[op] = avg
			else
			    Memr[op] = data
		    }
		    ip = ip + 1
		    op = op + 1
		}
	    } else if (out == NULL) {
		ip = in + (l - 1) * nc
		pp = pout + (l - 1) * nc
		do c = 1, nc {
		    data = Memr[ip]
		    avg = Memr[avgs+c]
		    bkg = Memr[bkgs+c]
		    sigma = Memr[sigs+c]
		    low = bkg - losig * sigma
		    high = bkg + hosig * sigma
		    if (avg < low || avg > high)
			Mems[pp] = objval
		    else {
			low = avg - lcrsig * sigma
			high = avg + hcrsig * sigma
			if (data < low || data > high)
			    Mems[pp] = crval
		    }
		    ip = ip + 1
		    pp = pp + 1
		}
	    } else {
		ip = in + (l - 1) * nc
		op = out + (l - 1) * nc
		pp = pout + (l - 1) * nc
		do c = 1, nc {
		    data = Memr[ip]
		    avg = Memr[avgs+c]
		    bkg = Memr[bkgs+c]
		    sigma = Memr[sigs+c]
		    low = bkg - losig * sigma
		    high = bkg + hosig * sigma
		    if (avg < low || avg > high) {
			Memr[op] = data
			Mems[pp] = objval
		    } else {
			low = avg - lcrsig * sigma
			high = avg + hcrsig * sigma
			if (data < low || data > high) {
			    Memr[op] = avg
			    Mems[pp] = crval
			} else
			    Memr[op] = data
		    }
		    ip = ip + 1
		    op = op + 1
		    pp = pp + 1
		}
	    }
	}

	call sfree (stack)
end


# CRAVERAGE1 -- Detect, replace, and flag cosmic rays checking input mask.
# A local background is computed using moving box averages to avoid
# contaminating bad pixels.  If variance model is given then that is
# used otherwise a local sigma is computed in blocks (it is not a moving box
# for efficiency) by using a percentile point of the sorted pixel values to
# estimate the width of the distribution uncontaminated by bad pixels).  Once
# the background and sigma are known deviant pixels are found by using sigma
# threshold factors.

procedure craverage1 (in, pin, out, pout, aout, sout, nc, nl, nl1, nl2,
	navg, nrej, nbkg, var0, var1, var2, nsig, lcrsig, hcrsig,
	lobjsig, hobjsig crval, objval)

pointer	in			#I Input data
pointer	pin			#I Pixel mask data
pointer	out			#O Output data
pointer	pout			#O Output mask (0=good, 1=bad)
pointer	aout			#O Output averages
pointer	sout			#O Output sigmas
int	nc, nl			#I Number of columns and lines
int	nl1, nl2		#I Lines to compute
int	navg			#I Averaging box half-size
int	nrej			#I Number of high pixels to reject from average
int	nbkg			#I Median background width
real	var0			#I Variance coefficient for DN^0 term
real	var1			#I Variance coefficient for DN^1 term
real	var2			#I Variance coefficient for DN^2 term
int	nsig			#I Sigma box size
real	lcrsig, hcrsig		#I Threshold sigmas outside of object
real	lobjsig, hobjsig	#I Object threshold sigmas
int	crval			#I CR mask value
int	objval			#I Object mask value

int	i, j, c, c1, c2, c3, c4, l, l1, l2, l3, l4, n1, n2
int	navg2, nbkg2, nsig2, plsig, phsig
real	data, avg, bkg, sigma, losig, hosig
real	low, high, cravg(), amedr()
pointer	stack, avgs, bkgs, sigs, work1, work2
pointer	ptr1, ptr2, ip, mp, op, pp, ap, sp

begin
	navg2 = (2 * navg + 1) ** 2
	nbkg2 = (2 * (navg + nbkg) + 1) ** 2 - navg2
	nsig2 = nsig * nsig

	call smark (stack)
	call salloc (avgs, nc, TY_REAL)
	call salloc (bkgs, nc, TY_REAL)
	call salloc (sigs, nc, TY_REAL)
	call salloc (work1, navg2, TY_REAL)
	call salloc (work2, max (nsig2, nbkg2), TY_REAL)

	if (var0 != 0. && var1 == 0. && var2 ==0.)
	    call amovkr (sqrt(var0), Memr[sigs], nc)

	avgs = avgs - 1
	sigs = sigs - 1
	bkgs = bkgs - 1

	losig = lobjsig / sqrt (real(navg2-1))
	hosig = hobjsig / sqrt (real(navg2-1))

	do l = nl1, nl2 {
	    # Compute statistics.
	    l1 = max (1, l-navg-nbkg)
	    l2 = max (1, l-navg)
	    l3 = min (nl, l+navg)
	    l4 = min (nl, l+navg+nbkg)
	    ap = aout + (l - 1) * nc
	    do c = 1, nc {
		c1 = max (1, c-navg-nbkg)
		c2 = max (1, c-navg)
		c3 = min (nc, c+navg)
		c4 = min (nc, c+navg+nbkg)
		ptr1 = work1
		ptr2 = work2
		n1 = 0
		n2 = 0
		do j = l1, l2-1 {
		    ip = in + (j - 1) * nc + c1 - 1
		    mp = pin + (j - 1) * nc + c1 - 1
		    do i = c1, c4 {
			if (Mems[mp] == 0) {
			    Memr[ptr2] = Memr[ip]
			    n2 = n2 + 1
			    ptr2 = ptr2 + 1
			}
			ip = ip + 1
			mp = mp + 1
		    }
		}
		do j = l2, l3 {
		    ip = in + (j - 1) * nc + c1 - 1
		    mp = pin + (j - 1) * nc + c1 - 1
		    do i = c1, c2-1 {
			if (Mems[mp] == 0) {
			    Memr[ptr2] = Memr[ip]
			    n2 = n2 + 1
			    ptr2 = ptr2 + 1
			}
			ip = ip + 1
			mp = mp + 1
		    }
		    do i = c2, c3 {
			if ((j != l || i != c) && Mems[mp] == 0) {
			    Memr[ptr1] = Memr[ip]
			    n1 = n1 + 1
			    ptr1 = ptr1 + 1
			}
			ip = ip + 1
			mp = mp + 1
		    }
		    do i = c3+1, c4 {
			if (Mems[mp] == 0) {
			    Memr[ptr2] = Memr[ip]
			    n2 = n2 + 1
			    ptr2 = ptr2 + 1
			}
			ip = ip + 1
			mp = mp + 1
		    }
		}
		do j = l3+1, l4 {
		    ip = in + (j - 1) * nc + c1 - 1
		    mp = pin + (j - 1) * nc + c1 - 1
		    do i = c1, c4 {
			if (Mems[mp] == 0) {
			    Memr[ptr2] = Memr[ip]
			    n2 = n2 + 1
			    ptr2 = ptr2 + 1
			}
			ip = ip + 1
		    }
		}
		if (n1 > 0)
		    avg = cravg (Memr[work1], n1, nrej)
		else
		    avg = INDEFR
		if (n2 > 0)
		    bkg = amedr (Memr[work2], n2)
		else
		    bkg = INDEFR
		Memr[bkgs+c] = bkg
		Memr[avgs+c] = avg
		if (aout != NULL) {
		    if (IS_INDEFR(avg) || IS_INDEFR(bkg))
			Memr[ap] = 0.
		    else
			Memr[ap] = avg - bkg
		    ap = ap + 1
		}
	    }

	    # Compute sigmas and output if desired.
	    if (var0 != 0. || var1 != 0. || var2 != 0.) {
		if (var1 != 0.) {
		    if (var2 != 0.) {
			do c = 1, nc {
			    data = max (0., Memr[avgs+c])
			    Memr[sigs+c] = sqrt (var0+var1*data+var2*data**2)
			}
		    } else {
			do c = 1, nc {
			    data = max (0., Memr[avgs+c])
			    Memr[sigs+c] = sqrt (var0 + var1 * data)
			}
		    }
		} else if (var2 != 0.) {
		    do c = 1, nc {
			data = max (0., Memr[avgs+c])
			Memr[sigs+c] = sqrt (var0 + var2 * data**2)
		    }
		}
	    } else {
		# Compute sigmas from percentiles.  This is done in blocks.
		if (mod (l-nl1, nsig) == 0 && l<nl-nsig+1) {
		    do c = 1, nc-nsig+1, nsig {
			ptr2 = work2
			n2 = 0
			do j = l, l+nsig-1 {
			    ip = in + (j - 1) * nc + c - 1
			    mp = pin + (j - 1) * nc + c - 1
			    do i = 1, nsig {
				if (Mems[mp] == 0) {
				    Memr[ptr2] = Memr[ip]
				    n2 = n2 + 1
				    ptr2 = ptr2 + 1
				}
				ip = ip + 1
				mp = mp + 1
			    }
			}
			if (n2 > 10) {
			    call asrtr (Memr[work2], Memr[work2], n2)
			    plsig = nint (PLSIG*n2/100.-1)
			    phsig = nint (PHSIG*n2/100.-1)
			    sigma = (Memr[work2+phsig]-Memr[work2+plsig])/2.
			} else
			    sigma = INDEFR
			call amovkr (sigma, Memr[sigs+c], nsig)
		    }
		    call amovkr (sigma, Memr[sigs+c], nc-c+1)
		}
	    }
	    if (sout != NULL) {
		sp = sout + (l - 1) * nc
		do c = 1, nc {
		    sigma = Memr[sigs+c]
		    if (IS_INDEFR(sigma))
			Memr[sp] = 0.
		    else
			Memr[sp] = sigma
		    sp = sp + 1
		}
	    }

	    # Detect, fix, and flag cosmic rays.
	    if (pout == NULL && out == NULL)
		;
	    if (pout == NULL) {
		ip = in + (l - 1) * nc
		mp = pin + (l - 1) * nc
		op = out + (l - 1) * nc
		do c = 1, nc {
		    data = Memr[ip]
		    avg = Memr[avgs+c]
		    bkg = Memr[bkgs+c]
		    sigma = Memr[sigs+c]
		    if (!(Mems[mp] != 0 || IS_INDEFR(avg) ||
			IS_INDEFR(bkg) || IS_INDEFR(sigma))) {
			low = bkg - losig * sigma
			high = bkg + hosig * sigma
			if (avg < low || avg > high) {
			    Memr[op] = data
			} else {
			    low = avg - lcrsig * sigma
			    high = avg + hcrsig * sigma
			    if (data < low || data > high)
				Memr[op] = avg
			    else
				Memr[op] = data
			}
		    } else
			Memr[op] = data
		    ip = ip + 1
		    mp = mp + 1
		    op = op + 1
		}
	    } else if (out == NULL) {
		ip = in + (l - 1) * nc
		mp = pin + (l - 1) * nc
		pp = pout + (l - 1) * nc
		do c = 1, nc {
		    data = Memr[ip]
		    avg = Memr[avgs+c]
		    bkg = Memr[bkgs+c]
		    sigma = Memr[sigs+c]
		    if (!(Mems[mp] != 0 || IS_INDEFR(avg) ||
			IS_INDEFR(bkg) || IS_INDEFR(sigma))) {
			low = bkg - losig * sigma
			high = bkg + hosig * sigma
			if (avg < low || avg > high)
			    Mems[pp] = objval
			else {
			    low = avg - lcrsig * sigma
			    high = avg + hcrsig * sigma
			    if (data < low || data > high)
				Mems[pp] = crval
			}
		    }
		    ip = ip + 1
		    mp = mp + 1
		    pp = pp + 1
		}
	    } else {
		ip = in + (l - 1) * nc
		mp = pin + (l - 1) * nc
		op = out + (l - 1) * nc
		pp = pout + (l - 1) * nc
		do c = 1, nc {
		    data = Memr[ip]
		    avg = Memr[avgs+c]
		    bkg = Memr[bkgs+c]
		    sigma = Memr[sigs+c]
		    if (!(Mems[mp] != 0 || IS_INDEFR(avg) ||
			IS_INDEFR(bkg) || IS_INDEFR(sigma))) {
			low = bkg - losig * sigma
			high = bkg + hosig * sigma
			if (avg < low || avg > high) {
			    Memr[op] = data
			    Mems[pp] = objval
			} else {
			    low = avg - lcrsig * sigma
			    high = avg + hcrsig * sigma
			    if (data < low || data > high) {
				Memr[op] = avg
				Mems[pp] = crval
			    } else
				Memr[op] = data
			}
		    } else
			Memr[op] = data
		    ip = ip + 1
		    mp = mp + 1
		    op = op + 1
		    pp = pp + 1
		}
	    }
	}

	call sfree (stack)
end


# CRAVG -- Compute average with the highest nrej points excluded.
# When nrej is greater than 2 the data array will be returned sorted.

real procedure cravg (data, npts, nrej)

real	data[npts]		#I Input data (will be sorted if nrej>2)
int	npts			#I Number of data points
int	nrej			#I Number of data points to reject

int	i
real	sum, max1, max2, val

begin
	if (npts <= nrej)
	    return (INDEFR)

	switch (nrej) {
	case 0:
	    sum = 0.
	    do i = 1, npts
		sum = sum + data[i]
	case 1:
	    sum = 0.
	    max1 = data[1]
	    do i = 2, npts {
		val = data[i]
		if (val > max1) {
		    sum = sum + max1
		    max1 = val
		} else
		    sum = sum + val
	    }
	case 2:
	    sum = 0.
	    max1 = min (data[1], data[2])
	    max2 = max (data[1], data[2])
	    do i = 3, npts {
		val = data[i]
		if (val > max1) {
		    sum = sum + max1
		    if (val > max2) {
			max1 = max2
			max2 = val
		    } else
			max1 = val
		} else
		    sum = sum + val
	    }
	default:
	    call asrtr (data, data, npts)
	    sum = 0.
	    do i = 1, npts-nrej
		sum = sum + data[i]
	}

	return (sum / (npts - nrej))
end