1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
include <imhdr.h>
include <mach.h>
define MAXBUF 500000 # Maximum pixel buffer
define PLSIG 15.87 # Low percentile
define PHSIG 84.13 # High percentile
# T_CRMEDIAN -- Detect, fix, and flag cosmic rays.
# Deviant pixels relative to a local median and sigma are detected and
# replaced by the median value and/or written to a cosmic ray mask.
procedure t_crmedian ()
pointer input # Input image
pointer output # Output image
pointer crmask # Output mask
pointer median # Output median
pointer sigma # Output sigma
pointer residual # Output residual
real var0 # Variance coefficient for DN^0 term
real var1 # Variance coefficient for DN^1 term
real var2 # Variance coefficient for DN^2 term
real lsig, hsig # Threshold sigmas
int ncmed, nlmed # Median box size
int ncsig, nlsig # Sigma box size
int i, nc, nl, nlstep, l1, l2, l3, l4, nl1
pointer sp, extname, in, out, pm, mim, sim, rim
pointer inbuf, outbuf, pmbuf, mbuf, sbuf, rbuf
real clgetr()
int clgeti(), nowhite()
pointer immap(), imgs2r(), imps2r(), imps2s()
errchk immap, imgs2r, imps2r, imps2s, crmedian, imgstr
begin
call smark (sp)
call salloc (input, SZ_FNAME, TY_CHAR)
call salloc (output, SZ_FNAME, TY_CHAR)
call salloc (crmask, SZ_FNAME, TY_CHAR)
call salloc (residual, SZ_FNAME, TY_CHAR)
call salloc (median, SZ_FNAME, TY_CHAR)
call salloc (sigma, SZ_FNAME, TY_CHAR)
call salloc (extname, SZ_FNAME, TY_CHAR)
# Get parameters.
call clgstr ("input", Memc[input], SZ_FNAME)
call clgstr ("output", Memc[output], SZ_FNAME)
call clgstr ("crmask", Memc[crmask], SZ_FNAME)
call clgstr ("median", Memc[median], SZ_FNAME)
call clgstr ("sigma", Memc[sigma], SZ_FNAME)
call clgstr ("residual", Memc[residual], SZ_FNAME)
var0 = clgetr ("var0")
var1 = clgetr ("var1")
var2 = clgetr ("var2")
lsig = clgetr ("lsigma")
hsig = clgetr ("hsigma")
ncmed = clgeti ("ncmed")
nlmed = clgeti ("nlmed")
ncsig = clgeti ("ncsig")
nlsig = clgeti ("nlsig")
# Map the input and output images.
in = NULL; out = NULL; pm = NULL; mim = NULL; sim = NULL; rim = NULL
inbuf = NULL; outbuf = NULL; pmbuf = NULL
mbuf = NULL; sbuf=NULL; rbuf = NULL
in = immap (Memc[input], READ_ONLY, 0)
if (nowhite (Memc[output], Memc[output], SZ_FNAME) > 0)
out = immap (Memc[output], NEW_COPY, in)
if (nowhite (Memc[crmask], Memc[crmask], SZ_FNAME) > 0) {
if (Memc[crmask] == '!')
call imgstr (in, Memc[crmask+1], Memc[crmask], SZ_FNAME)
iferr (call imgstr (in, "extname", Memc[extname], SZ_FNAME))
call strcpy ("pl", Memc[extname], SZ_FNAME)
call xt_maskname (Memc[crmask], Memc[extname], 0, Memc[crmask],
SZ_FNAME)
pm = immap (Memc[crmask], NEW_COPY, in)
}
if (nowhite (Memc[median], Memc[median], SZ_FNAME) > 0)
mim = immap (Memc[median], NEW_COPY, in)
if (nowhite (Memc[sigma], Memc[sigma], SZ_FNAME) > 0)
sim = immap (Memc[sigma], NEW_COPY, in)
if (nowhite (Memc[residual], Memc[residual], SZ_FNAME) > 0)
rim = immap (Memc[residual], NEW_COPY, in)
# Go through the input in large blocks of lines. If the
# block is smaller than the whole image overlap the blocks
# so the median only has boundaries at the ends of the image.
# However, the output is done in non-overlapping blocks with
# the pointers are adjusted so that addresses can be in the space
# of the input block. CRMEDIAN does not address outside of
# the output data block. Set the mask values based on the
# distances to the nearest good pixels.
nc = IM_LEN(in,1)
nl = IM_LEN(in,2)
nlstep = max (1, MAXBUF / nc - nlmed)
do i = 1, nl, nlstep {
l1 = i
l2 = min (nl, i + nlstep - 1)
l3 = max (1, l1 - nlmed / 2)
l4 = min (nl, l2 + nlmed / 2)
nl1 = l4 - l3 + 1
inbuf = imgs2r (in, 1, nc, l3, l4)
if (out != NULL)
outbuf = imps2r (out, 1, nc, l1, l2) - (l1 - l3) * nc
if (pm != NULL)
pmbuf = imps2s (pm, 1, nc, l1, l2) - (l1 - l3) * nc
if (mim != NULL)
mbuf = imps2r (mim, 1, nc, l1, l2) - (l1 - l3) * nc
if (sim != NULL)
sbuf = imps2r (sim, 1, nc, l1, l2) - (l1 - l3) * nc
if (rim != NULL)
rbuf = imps2r (rim, 1, nc, l1, l2) - (l1 - l3) * nc
call crmedian (inbuf, outbuf, pmbuf, mbuf, sbuf, rbuf,
nc, nl1, l1-l3+1, l2-l3+1, ncmed, nlmed, var0, var1, var2,
ncsig, nlsig, lsig, hsig)
}
if (rim != NULL)
call imunmap (rim)
if (sim != NULL)
call imunmap (sim)
if (mim != NULL)
call imunmap (mim)
if (pm != NULL)
call imunmap (pm)
if (out != NULL)
call imunmap (out)
call imunmap (in)
call sfree (sp)
end
# CRMEDIAN -- Detect, replace, and flag cosmic rays.
# A local background is computed using moving box medians to avoid
# contaminating bad pixels. If variance model is given then that is
# used otherwise a local sigma is computed in blocks (it is not a moving box
# for efficiency) by using a percentile point of the sorted pixel values to
# estimate the width of the distribution uncontaminated by bad pixels). Once
# the background and sigma are known deviant pixels are found by using sigma
# threshold factors.
procedure crmedian (in, out, pout, mout, sout, rout, nc, nl, nl1, nl2,
ncmed, nlmed, var0, var1, var2, ncsig, nlsig, lsig, hsig)
pointer in #I Input data
pointer out #O Output data
pointer pout #O Output mask (0=good, 1=bad)
pointer mout #O Output medians
pointer sout #O Output sigmas
pointer rout #O Output residuals
int nc, nl #I Number of columns and lines
int nl1, nl2 #I Lines to compute
int ncmed, nlmed #I Median box size
real var0 # Variance coefficient for DN^0 term
real var1 # Variance coefficient for DN^1 term
real var2 # Variance coefficient for DN^2 term
int ncsig, nlsig #I Sigma box size
real lsig, hsig #I Threshold sigmas
int i, j, k, l, m, plsig, phsig
real data, med, sigma, low, high, amedr()
pointer stack, meds, sigs, work, ptr, ip, op, pp, mp, sp, rp
begin
call smark (stack)
call salloc (meds, nc, TY_REAL)
call salloc (sigs, nc, TY_REAL)
call salloc (work, max (ncsig*nlsig, ncmed*nlmed), TY_REAL)
if (var0 != 0. && var1 == 0. && var2 ==0.)
call amovkr (sqrt(var0), Memr[sigs], nc)
meds = meds - 1
sigs = sigs - 1
i = ncsig * nlsig
plsig = nint (PLSIG*i/100.-1)
phsig = nint (PHSIG*i/100.-1)
do i = nl1, nl2 {
# Compute median and output if desired. This is a moving median.
l = min (nl, i+nlmed/2)
l = max (1, l-nlmed+1)
mp = mout + (i - 1) * nc
do j = 1, nc {
k = min (nc, j+ncmed/2)
k = max (1, k-ncmed+1)
ptr = work
ip = in + (l - 1) * nc + k - 1
do m = l, l+nlmed-1 {
call amovr (Memr[ip], Memr[ptr], ncmed)
ip = ip + nc
ptr = ptr + ncmed
}
med = amedr (Memr[work], ncmed * nlmed)
Memr[meds+j] = med
if (mout != NULL) {
Memr[mp] = med
mp = mp + 1
}
}
# Compute sigmas and output if desired.
if (var0 != 0. || var1 != 0. || var2 != 0.) {
if (var1 != 0.) {
if (var2 != 0.) {
do j = 1, nc {
data = max (0., Memr[meds+j])
Memr[sigs+j] = sqrt (var0 + var1*data + var2*data**2)
}
} else {
do j = 1, nc {
data = max (0., Memr[meds+j])
Memr[sigs+j] = sqrt (var0 + var1 * data)
}
}
} else if (var2 != 0.) {
do j = 1, nc {
data = max (0., Memr[meds+j])
Memr[sigs+j] = sqrt (var0 + var2 * data**2)
}
}
} else {
# Compute sigmas from percentiles. This is done in blocks.
if (mod (i-nl1, nlsig) == 0 && i<nl-nlsig+1) {
do j = 1, nc-ncsig+1, ncsig {
ptr = work
ip = in + (i - 1) * nc + j - 1
do k = i, i+nlsig-1 {
call amovr (Memr[ip], Memr[ptr], ncsig)
ip = ip + nc
ptr = ptr + ncsig
}
call asrtr (Memr[work], Memr[work], ncsig*nlsig)
sigma = (Memr[work+phsig] - Memr[work+plsig]) / 2.
call amovkr (sigma, Memr[sigs+j], ncsig)
}
call amovkr (sigma, Memr[sigs+j], nc-j+1)
}
}
if (sout != NULL) {
sp = sout + (i - 1) * nc
do j = 1, nc {
Memr[sp] = Memr[sigs+j]
sp = sp + 1
}
}
# Detect, fix, and flag cosmic rays.
if (rout == NULL) {
if (pout == NULL) {
ip = in + (i - 1) * nc
op = out + (i - 1) * nc
do j = 1, nc {
data = Memr[ip]
med = Memr[meds+j]
sigma = Memr[sigs+j]
low = med - lsig * sigma
high = med + hsig * sigma
if (data < low || data > high)
Memr[op] = med
else
Memr[op] = data
ip = ip + 1
op = op + 1
}
} else if (out == NULL) {
ip = in + (i - 1) * nc
pp = pout + (i - 1) * nc
do j = 1, nc {
data = Memr[ip]
med = Memr[meds+j]
sigma = Memr[sigs+j]
low = med - lsig * sigma
high = med + hsig * sigma
if (data < low || data > high)
Mems[pp] = 1
else
Mems[pp] = 0
ip = ip + 1
pp = pp + 1
}
} else {
ip = in + (i - 1) * nc
op = out + (i - 1) * nc
pp = pout + (i - 1) * nc
do j = 1, nc {
data = Memr[ip]
med = Memr[meds+j]
sigma = Memr[sigs+j]
low = med - lsig * sigma
high = med + hsig * sigma
if (data < low || data > high) {
Memr[op] = med
Mems[pp] = 1
} else {
Memr[op] = data
Mems[pp] = 0
}
ip = ip + 1
op = op + 1
pp = pp + 1
}
}
} else {
if (pout == NULL && out == NULL) {
ip = in + (i - 1) * nc
rp = rout + (i - 1) * nc
do j = 1, nc {
data = Memr[ip]
med = Memr[meds+j]
sigma = Memr[sigs+j]
if (sigma > 0.)
Memr[rp] = (data - med) / sigma
else {
if ((data - med) < 0.)
Memr[rp] = -MAX_REAL
else
Memr[rp] = MAX_REAL
}
ip = ip + 1
rp = rp + 1
}
} else if (pout == NULL) {
ip = in + (i - 1) * nc
op = out + (i - 1) * nc
rp = rout + (i - 1) * nc
do j = 1, nc {
data = Memr[ip]
med = Memr[meds+j]
sigma = Memr[sigs+j]
low = med - lsig * sigma
high = med + hsig * sigma
if (data < low || data > high)
Memr[op] = med
else
Memr[op] = data
if (sigma > 0.)
Memr[rp] = (data - med) / sigma
else {
if ((data - med) < 0.)
Memr[rp] = -MAX_REAL
else
Memr[rp] = MAX_REAL
}
ip = ip + 1
op = op + 1
rp = rp + 1
}
} else if (out == NULL) {
ip = in + (i - 1) * nc
pp = pout + (i - 1) * nc
rp = rout + (i - 1) * nc
do j = 1, nc {
data = Memr[ip]
med = Memr[meds+j]
sigma = Memr[sigs+j]
low = med - lsig * sigma
high = med + hsig * sigma
if (data < low || data > high)
Mems[pp] = 1
else
Mems[pp] = 0
if (sigma > 0.)
Memr[rp] = (data - med) / sigma
else {
if ((data - med) < 0.)
Memr[rp] = -MAX_REAL
else
Memr[rp] = MAX_REAL
}
ip = ip + 1
pp = pp + 1
rp = rp + 1
}
} else {
ip = in + (i - 1) * nc
op = out + (i - 1) * nc
pp = pout + (i - 1) * nc
rp = rout + (i - 1) * nc
do j = 1, nc {
data = Memr[ip]
med = Memr[meds+j]
sigma = Memr[sigs+j]
low = med - lsig * sigma
high = med + hsig * sigma
if (data < low || data > high) {
Memr[op] = med
Mems[pp] = 1
} else {
Memr[op] = data
Mems[pp] = 0
}
if (sigma > 0.)
Memr[rp] = (data - med) / sigma
else {
if ((data - med) < 0.)
Memr[rp] = -MAX_REAL
else
Memr[rp] = MAX_REAL
}
ip = ip + 1
op = op + 1
pp = pp + 1
rp = rp + 1
}
}
}
}
call sfree (stack)
end
|