1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
include <gset.h>
include <mach.h>
include <pkg/gtools.h>
include "hdicfit.h"
define MSIZE 2.0
# HDIC_EBARS -- Plot data points with their error bars as markers. The
# independent variable is fog subtracted transformed density.
procedure hdic_ebars (ic, gp, gt, x, y, wts, ebw, npts)
pointer ic # Pointer to ic structure
pointer gp # Pointer to graphics stream
pointer gt # Pointer to gtools structure
double x[ARB] # Array of independent variables
double y[ARB] # Array of dependent variables
double wts[ARB] # Array of weights
double ebw[ARB] # Error bar half width (positive number)
int npts # Number of points
pointer sp, xr, yr, sz
int orig_mark, i, xaxis, yaxis, mark, added_mark
real size, dx, dy, szmk
int gt_geti()
bool fp_equald()
include "hdic.com"
begin
call smark (sp)
xaxis = (IC_AXES (ic, IC_GKEY(ic), 1))
yaxis = (IC_AXES (ic, IC_GKEY(ic), 2))
if (xaxis == 'x' || xaxis == 'u')
orig_mark = GM_HEBAR
else if (yaxis == 'x' || yaxis == 'u')
orig_mark = GM_VEBAR
else {
call eprintf ("Choose graph type with axes 'u' or 'x'\n")
call sfree (sp)
return
}
added_mark = GM_CIRCLE
call salloc (xr, npts, TY_REAL)
call salloc (yr, npts, TY_REAL)
call salloc (sz, npts, TY_REAL)
call achtdr (x, Memr[xr], npts)
call achtdr (y, Memr[yr], npts)
call achtdr (ebw, Memr[sz], npts)
if (IC_OVERPLOT(ic) == NO) {
# Start a new plot
call gclear (gp)
# Set the graph scale and axes
call gascale (gp, Memr[xr], npts, 1)
call gascale (gp, Memr[yr], npts, 2)
# If plotting HD curve, set wy2 to maxden, which may have
# been updated if a new endpoint was added.
if ((IC_AXES (ic, IC_GKEY(ic), 1) == 'y') &&
(IC_AXES (ic, IC_GKEY(ic), 2) == 'u'))
call gswind (gp, INDEF, INDEF, INDEF, real (maxden))
call gt_swind (gp, gt)
call gt_labax (gp, gt)
}
call ggscale (gp, 0.0, 0.0, dx, dy)
do i = 1, npts {
size = Memr[sz+i-1] # Sizes are WCS units; transform them
if (gt_geti (gt, GTTRANSPOSE) == NO) {
size = size / dx
mark = orig_mark
szmk = size
# Check for added point
if (fp_equald (ebw[i], ADDED_PT)) {
szmk = MSIZE
mark = added_mark
}
# Check for deleted point
if (fp_equald (wts[i], 0.0D0)) {
szmk = MSIZE
mark = mark + GM_CROSS
}
call gmark (gp, Memr[xr+i-1], Memr[yr+i-1], mark, szmk, szmk)
} else {
size = size / dy
szmk = size
mark = orig_mark
# Check for added point
if (fp_equald (ebw[i], ADDED_PT)) {
szmk = MSIZE
mark = added_mark
}
# Check for deleted point
if (fp_equald (wts[i], 0.0D0)) {
szmk = MSIZE
mark = mark + GM_CROSS
}
call gmark (gp, Memr[yr+i-1], Memr[xr+i-1], mark, szmk, szmk)
}
}
IC_OVERPLOT(ic) = NO
call sfree (sp)
end
# HDIC_EBW -- Calculate error bar width for plotting points. Width is
# returned in NDC units.
procedure hdic_ebw (ic, density, indv, sdev, ebw, npts)
pointer ic # Pointer to ic structure
double density[ARB] # Untransformed density NOT fog subtracted
double indv[ARB] # Transformed density above fog
double sdev[ARB] # Array of standard deviation values, density units
double ebw[ARB] # Error bar half width (positive numbers)
int npts # Number of data points
double fog
pointer sp, denaf, outwe
int xaxis, yaxis, i
bool fp_equald()
real ic_getr()
begin
xaxis = (IC_AXES (ic, IC_GKEY(ic), 1))
yaxis = (IC_AXES (ic, IC_GKEY(ic), 2))
if (xaxis == 'u' || yaxis == 'u') {
call amovd (sdev, ebw, npts)
return
}
call smark (sp)
call salloc (denaf, npts, TY_DOUBLE)
call salloc (outwe, npts, TY_DOUBLE)
fog = double (ic_getr (ic, "fog"))
call asubkd (density, fog, Memd[denaf], npts)
call aaddd (Memd[denaf], sdev, Memd[denaf], npts)
call hdic_ebtran (Memd[denaf], Memd[outwe], npts, IC_TRANSFORM(ic))
# Subtract transformed values to get errors. Then check for
# added points, which are flagged with ebw=ADDED_PT.
call asubd (Memd[outwe], indv, ebw, npts)
do i = 1, npts {
if (fp_equald (sdev[i], ADDED_PT))
ebw[i] = ADDED_PT
}
call sfree (sp)
end
# HDIC_EBTRAN -- Apply transformation, generating a vector of independent
# variables from a density vector. The independent variable vector is the
# standard deviation values and the output values are the errors. This
# routine checks for ADDED_PT valued standard deviation, which indicates an
# added point.
procedure hdic_ebtran (density, ind_var, npts, transform)
double density[npts] # Density vector - input
double ind_var[npts] # Ind variable vector - filled on output
int npts # Length of data vectors
int transform # Integer code for transform type
int i
bool fp_equald()
begin
switch (transform) {
case HD_LOGO:
do i = 1, npts {
if (fp_equald (density[i], 0.0))
ind_var[i] = 0.0
else
ind_var[i] = log10 ((10. ** density[i]) - 1.0)
}
case HD_K75:
do i = 1, npts {
if (fp_equald (density[i], 0.0))
ind_var[i] = 0.0
else
ind_var[i] = density[i] + 0.75*log10(1.- 10.**(-density[i]))
}
case HD_K50:
do i = 1, npts {
if (fp_equald (density[i], 0.0))
ind_var[i] = 0.0
else
ind_var[i] = density[i] + 0.50*log10(1.- 10.**(-density[i]))
}
case HD_NONE:
call amovd (density, ind_var, npts)
default:
call error (0, "Unrecognized transformation in HDIC_EBTRAN")
}
end
|