1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
include <error.h>
include <imhdr.h>
include <pkg/gtools.h>
# FLAT1D -- Fit a function to image lines or columns and output an image
# consisting of the ratio. Set a minimum value test to the denominator.
# The fitting parameters may be set interactively using the icfit package.
procedure flat1d ()
int listin # Input image list
int listout # Output image list
int axis # Image axis to fit
real minflat # Minimum fit value for ratio
bool interactive # Interactive?
char sample[SZ_LINE] # Sample ranges
int naverage # Sample averaging size
char function[SZ_LINE] # Curve fitting function
int order # Order of curve fitting function
real low_reject, high_reject # Rejection thresholds
int niterate # Number of rejection iterations
real grow # Rejection growing radius
char input[SZ_LINE] # Input image
char output[SZ_FNAME] # Output image
pointer in, out # IMIO pointers
pointer ic # ICFIT pointer
pointer gt # GTOOLS pointer
int imtopen(), imtgetim(), imtlen(), gt_init()
int clgeti()
real clgetr()
bool clgetb()
begin
# Get input and output lists and check that the number of images
# are the same.
call clgstr ("input", input, SZ_LINE)
listin = imtopen (input)
call clgstr ("output", input, SZ_LINE)
listout = imtopen (input)
if (imtlen (listin) != imtlen (listout)) {
call imtclose (listin)
call imtclose (listout)
call error (0, "Input and output image lists do not match")
}
# Get task parameters.
axis = clgeti ("axis")
minflat = clgetr ("minflat")
interactive = clgetb ("interactive")
# Initialize the ICFIT package.
call clgstr ("sample", sample, SZ_LINE)
naverage = clgeti ("naverage")
call clgstr ("function", function, SZ_LINE)
order = clgeti ("order")
low_reject = clgetr ("low_reject")
high_reject = clgetr ("high_reject")
niterate = clgeti ("niterate")
grow = clgetr ("grow")
call ic_open (ic)
call ic_pstr (ic, "sample", sample)
call ic_puti (ic, "naverage", naverage)
call ic_pstr (ic, "function", function)
call ic_puti (ic, "order", order)
call ic_putr (ic, "low", low_reject)
call ic_putr (ic, "high", high_reject)
call ic_puti (ic, "niterate", niterate)
call ic_putr (ic, "grow", grow)
call ic_pstr (ic, "ylabel", "")
gt = gt_init()
call gt_sets (gt, GTTYPE, "line")
# Fit each input image.
while ((imtgetim (listin, input, SZ_LINE) != EOF) &&
(imtgetim (listout, output, SZ_FNAME) != EOF)) {
iferr (call f1d_immap (input, output, in, out)) {
call erract (EA_WARN)
next
}
call f1d_flat1d (in, out, ic, gt, input, axis, minflat, interactive)
call imunmap (in)
call imunmap (out)
}
call ic_closer (ic)
call gt_free (gt)
call imtclose (listin)
call imtclose (listout)
end
# F1D_FLAT1D -- Given the image descriptor determine the fitting function
# for each line or column and create an output image. If the interactive flag
# is set then set the fitting parameters interactively.
define MAXBUF 512 * 100 # Maximum number of pixels per block
procedure f1d_flat1d (in, out, ic, gt, title, axis, minflat, interactive)
pointer in # IMIO pointer for input image
pointer out # IMIO pointer for output image
pointer ic # ICFIT pointer
pointer gt # GTOOLS pointer
char title[ARB] # Title
int axis # Image axis to fit
real minflat # Minimum value for flat division
bool interactive # Interactive?
char graphics[SZ_FNAME]
int i, nx, new
real mindata, maxdata
pointer cv, gp, sp, x, wts, indata, outdata
int f1d_getline(), f1d_getdata(), strlen()
pointer gopen()
begin
# Error check.
if (IM_NDIM (in) > 2)
call error (0, "Image dimensions > 2 are not implemented")
if (axis > IM_NDIM (in))
call error (0, "Axis exceeds image dimension")
# Allocate memory for curve fitting.
nx = IM_LEN (in, axis)
call smark (sp)
call salloc (x, nx, TY_REAL)
call salloc (wts, nx, TY_REAL)
do i = 1, nx
Memr[x+i-1] = i
call amovkr (1., Memr[wts], nx)
call ic_putr (ic, "xmin", Memr[x])
call ic_putr (ic, "xmax", Memr[x+nx-1])
# If the interactive flag is set then use icg_fit to set the
# fitting parameters. Get_fitline returns EOF when the user
# is done. The weights are reset since the user may delete
# points.
if (interactive) {
call clgstr ("graphics", graphics, SZ_FNAME)
gp = gopen (graphics, NEW_FILE, STDGRAPH)
i = strlen (title)
indata = NULL
while (f1d_getline (ic, gt, in, axis, title, indata) != EOF) {
title[i + 1] = EOS
call icg_fit (ic, gp, "cursor", gt, cv, Memr[x], Memr[indata],
Memr[wts], nx)
call amovkr (1., Memr[wts], nx)
}
call gclose (gp)
}
# Loop through the input image and create an output image.
new = YES
while (f1d_getdata (in, out, axis, MAXBUF, indata, outdata) != EOF) {
call alimr (Memr[indata], nx, mindata, maxdata)
if (maxdata >= minflat) {
call ic_fit (ic, cv, Memr[x], Memr[indata], Memr[wts],
nx, new, YES, new, new)
new = NO
call cvvector (cv, Memr[x], Memr[outdata], nx)
}
call f1d_flat (Memr[indata], Memr[outdata], Memr[outdata], nx,
minflat, mindata, maxdata)
}
call imaddr (out, "ccdmean", 1.)
call cvfree (cv)
call sfree (sp)
end
# F1D_IMMAP -- Map images for flat1d.
procedure f1d_immap (input, output, in, out)
char input[ARB] # Input image
char output[ARB] # Output image
pointer in # Input IMIO pointer
pointer out # Output IMIO pointer
pointer sp, root, sect, line, data
int access(), impnlr()
pointer immap()
errchk immap
begin
# Get the root name and section of the input image.
call smark (sp)
call salloc (root, SZ_FNAME, TY_CHAR)
call salloc (sect, SZ_FNAME, TY_CHAR)
call get_root (input, Memc[root], SZ_FNAME)
call get_section (input, Memc[sect], SZ_FNAME)
# If the output image is not accessible then create it as a new copy
# of the full input image and initialize to unit response.
if (access (output, READ_WRITE, BINARY_FILE) == NO) {
in = immap (Memc[root], READ_ONLY, 0)
out = immap (output, NEW_COPY, in)
IM_PIXTYPE(out) = TY_REAL
call salloc (line, IM_MAXDIM, TY_LONG)
call amovkl (long (1), Meml[line], IM_MAXDIM)
while (impnlr (out, data, Meml[line]) != EOF)
call amovkr (1., Memr[data], IM_LEN(out, 1))
call imunmap (in)
call imunmap (out)
}
# Map the input and output images.
in = immap (input, READ_ONLY, 0)
call sprintf (Memc[root], SZ_FNAME, "%s%s")
call pargstr (output)
call pargstr (Memc[sect])
out = immap (Memc[root], READ_WRITE, 0)
call sfree (sp)
end
# F1D_GETDATA -- Get a line of image data.
int procedure f1d_getdata (in, out, axis, maxbuf, indata, outdata)
pointer in # Input IMIO pointer
pointer out # Output IMIO pointer
int axis # Image axis
int maxbuf # Maximum buffer size for column axis
pointer indata # Input data pointer
pointer outdata # Output data pointer
int i, index, last_index, col1, col2, nc, ncols, nlines, ncols_block
pointer inbuf, outbuf, ptr
pointer imgl1r(), impl1r(), imgl2r(), impl2r(), imgs2r(), imps2r()
data index/0/
begin
# Increment to the next image vector.
index = index + 1
# Initialize for the first vector.
if (index == 1) {
ncols = IM_LEN (in, 1)
if (IM_NDIM (in) == 1)
nlines = 1
else
nlines = IM_LEN (in, 2)
switch (axis) {
case 1:
last_index = nlines
case 2:
last_index = ncols
ncols_block = max (1, min (ncols, maxbuf / nlines))
col2 = 0
call malloc (indata, nlines, TY_REAL)
call malloc (outdata, nlines, TY_REAL)
}
}
# Finish up if the last vector has been done.
if (index > last_index) {
if (axis == 2) {
ptr = outbuf + index - 1 - col1
do i = 1, nlines {
Memr[ptr] = Memr[outdata+i-1]
ptr = ptr + nc
}
call mfree (indata, TY_REAL)
call mfree (outdata, TY_REAL)
}
index = 0
return (EOF)
}
# Get the next image vector.
switch (axis) {
case 1:
if (IM_NDIM (in) == 1) {
indata = imgl1r (in)
outdata = impl1r (out)
} else {
indata = imgl2r (in, index)
outdata = impl2r (out, index)
}
case 2:
if (index > 1) {
ptr = outbuf + index - 1 - col1
do i = 1, nlines {
Memr[ptr] = Memr[outdata+i-1]
ptr = ptr + nc
}
}
if (index > col2) {
col1 = col2 + 1
col2 = min (ncols, col1 + ncols_block - 1)
inbuf = imgs2r (in, col1, col2, 1, nlines)
outbuf = imps2r (out, col1, col2, 1, nlines)
nc = col2 - col1 + 1
}
ptr = inbuf + index - col1
do i = 1, nlines {
Memr[indata+i-1] = Memr[ptr]
ptr = ptr + nc
}
}
return (index)
end
# F1D_FLAT -- For the flat field values by ratioing the image data by the fit.
# If the fit value is less than minflat then the ratio is set to 1.
procedure f1d_flat (data, fit, flat, npts, minflat, mindata, maxdata)
real data[npts] # Image data
real fit[npts] # Fit to image data
real flat[npts] # Ratio of image data to the fit
int npts # Number of points
real minflat # Minimum fit value for ratio
real mindata # Minimum data value
real maxdata # Maximum data value
int i
begin
if (mindata >= minflat)
call adivr (data, fit, flat, npts)
else if (maxdata < minflat)
call amovkr (1., flat, npts)
else {
do i = 1, npts {
if (fit[i] < minflat)
flat[i] = 1.
else
flat[i] = data[i] / fit[i]
}
}
end
# F1D_GETLINE -- Get image data to be fit interactively. Return EOF
# when the user enters EOF or CR. Default is 1 and the out of bounds
# requests are silently limited to the nearest in edge.
int procedure f1d_getline (ic, gt, im, axis, title, data)
pointer ic # ICFIT pointer
pointer gt # GTOOLS pointer
pointer im # IMIO pointer
int axis # Image axis
char title[ARB] # Title
pointer data # Image data
char line[SZ_LINE]
int i, j, stat, imlen
pointer x
int getline(), nscan()
pointer imgl1r()
data stat/EOF/
begin
# If the image is one dimensional do not prompt.
if (IM_NDIM (im) == 1) {
if (stat == EOF) {
call sprintf (title, SZ_LINE, "%s\n%s")
call pargstr (title)
call pargstr (IM_TITLE(im))
call gt_sets (gt, GTTITLE, title)
call mfree (data, TY_REAL)
call malloc (data, IM_LEN(im, 1), TY_REAL)
call amovr (Memr[imgl1r(im)], Memr[data], IM_LEN(im, 1))
stat = OK
} else
stat = EOF
return (stat)
}
# If the image is two dimensional prompt for the line or column.
switch (axis) {
case 1:
imlen = IM_LEN (im, 2)
call sprintf (title, SZ_LINE, "%s: Fit line =")
call pargstr (title)
case 2:
imlen = IM_LEN (im, 1)
call sprintf (title, SZ_LINE, "%s: Fit column =")
call pargstr (title)
}
call printf ("%s ")
call pargstr (title)
call flush (STDOUT)
if (getline(STDIN, line) == EOF)
return (EOF)
call sscan (line)
call gargi (i)
call gargi (j)
switch (nscan()) {
case 0:
stat = EOF
return (stat)
case 1:
i = max (1, min (imlen, i))
j = i
case 2:
i = max (1, min (imlen, i))
j = max (1, min (imlen, j))
}
call sprintf (title, SZ_LINE, "%s %d - %d\n%s")
call pargstr (title)
call pargi (i)
call pargi (j)
call pargstr (IM_TITLE(im))
call gt_sets (gt, GTTITLE, title)
switch (axis) {
case 1:
call ic_pstr (ic, "xlabel", "Column")
call xt_21imavg (im, axis, 1, IM_LEN(im, 1), i, j, x, data, imlen)
case 2:
call ic_pstr (ic, "xlabel", "Line")
call xt_21imavg (im, axis, i, j, 1, IM_LEN(im, 2), x, data, imlen)
}
call mfree (x, TY_REAL)
stat = OK
return (stat)
end
|