aboutsummaryrefslogtreecommitdiff
path: root/noao/imred/quadred/src/quad/gainmeasure.x
blob: 592cf7cf6d4ebaedd2cae8b0ca72c028ddfe7e00 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
include <imhdr.h>
include "quadgeom.h"

define  OPT_REFLECT     4

# GAINMEASURE -- Calculate the gain (e/ADU) and RON of a CCD using the CTIO
# (Bruce Attwood) algorithm.
# Input are a pair of high signal level exposures (Flat1, Flat2) and a pair of
# zero exposures (Zero1, Zero2). We then calculate:
#
#    epadu = <Flat1> + <Flat2> - (<Zero1> + <Zero2>) / var{Diff_F} - Var{Diff_Z}
#    RON   = RMS {Diff_Z} * epadu / sqrt(2)
#
# Where:
#
#    diff_Z = Zero1 - Zero2
#    diff_F = Flat1 - Flat2
#
# The statistics must be calculated for regions free of bad pixels and other
# defects, and with reasonably uniform illumination. 

procedure t_gainmeasure ()

pointer	flat1, flat2		#TI High level images
pointer	zero1, zero2		#TI Zero level images
char	section[SZ_LINE]	#TI Section for calculation

char	buffer[SZ_LINE]
int	npix, x1, x2, y1, y2, amp
pointer	sp, f1, f2, z1, z2, fd, zd, qg
real	f1bar,   f2bar,   z1bar,   z2bar,   fdbar,   zdbar
real	f1sigma, f2sigma, z1sigma, z2sigma, fdsigma, zdsigma
real	div, epadu, ron
bool	headers

pointer	immap(), imgs2r()
bool	clgetb(), quadsect()
int	hdmaccf()

begin
        # Open instrument file
        call clgstr    ("instrument",  buffer,  SZ_FNAME)
        call hdmopen   (buffer)

	# Map input images
	call clgstr ("flat1",   buffer, SZ_LINE)
	flat1 = immap (buffer,  READ_ONLY, 0)

	call clgstr ("flat2",   buffer, SZ_LINE)
	flat2 = immap (buffer,  READ_ONLY, 0)

	call clgstr ("zero1",   buffer, SZ_LINE)
	zero1 = immap (buffer,  READ_ONLY, 0)

	call clgstr ("zero2",   buffer, SZ_LINE)
	zero2 = immap (buffer,  READ_ONLY, 0)

        # Get section over which measurement is to be made.
        call clgstr ("section", section, SZ_LINE)

	# See if headers are to be printed
	headers = clgetb ("print_headers")

        # Set-up quadgeom structure. We blithely assume all images are the same.
        call quadalloc (qg)

	if (hdmaccf (flat1, "HDR_REV") == NO) {
	    call quadgeom  (flat1, qg, "", "")
	} else {
	    call qghdr2 (flat1, qg)
	}
#       call quaddump  (qg)

	if (headers) {
	    call printf ("#")
	    do amp = 1, QG_NAMPS (qg) {
		call printf ("%9wAmp%2s%5w")
		    call pargstr (Memc[QG_AMPID (qg, amp)])
	    }
	    call printf ("\n")

	    call printf ("#")
	    do amp = 1, QG_NAMPS (qg) {
		call printf ("%5wGain%4wRON%3w")
	    }
	    call printf ("\n")
	    call printf ("#")
	    do amp = 1, QG_NAMPS (qg) {
		call printf ("%3w(e-/ADU)%2w(e-)%2w")
	    }
	    call printf ("\n")
	}

	call printf ("%1w")
        do amp = 1, QG_NAMPS (qg) {
 
            if (quadsect (qg, section, OPT_REFLECT, amp, x1, x2, y1, y2)) {

		npix = (abs(y2 - y1) + 1) * (abs(x2 - x1) + 1)

		# Allocate working arrays
		call smark  (sp)
		call salloc (fd, npix, TY_REAL)
		call salloc (zd, npix, TY_REAL)

		# Read data 
		f1 = imgs2r (flat1, x1, x2, y1, y2)
		f2 = imgs2r (flat2, x1, x2, y1, y2)
		z1 = imgs2r (zero1, x1, x2, y1, y2)
		z2 = imgs2r (zero2, x1, x2, y1, y2)

		# Calculate differences
		call asubr (Memr[f1], Memr[f2], Memr[fd], npix)
		call asubr (Memr[z1], Memr[z2], Memr[zd], npix)

		# Calculate means and standard deviations
		call aavgr (Memr[f1], npix, f1bar, f1sigma)
		call aavgr (Memr[f2], npix, f2bar, f2sigma)
		call aavgr (Memr[z1], npix, z1bar, z1sigma)
		call aavgr (Memr[z2], npix, z2bar, z2sigma)
		call aavgr (Memr[fd], npix, fdbar, fdsigma)
		call aavgr (Memr[zd], npix, zdbar, zdsigma)

#		call eprintf ("f1bar=%g f1sigma=%g\n")
#		    call pargr (f1bar)
#		    call pargr (f1sigma)
#		call eprintf ("f2bar=%g f2sigma=%g\n")
#		    call pargr (f2bar)
#		    call pargr (f2sigma)
#		call eprintf ("z1bar=%g z1sigma=%g\n")
#		    call pargr (z1bar)
#		    call pargr (z1sigma)
#		call eprintf ("z2bar=%g z2sigma=%g\n")
#		    call pargr (z2bar)
#		    call pargr (z2sigma)
#		call eprintf ("fdbar=%g fdsigma=%g\n")
#		    call pargr (fdbar)
#		    call pargr (fdsigma)
#		call eprintf ("zdbar=%g zdsigma=%g\n")
#		    call pargr (zdbar)
#		    call pargr (zdsigma)

		div  = fdsigma**2 - zdsigma**2
		if (div > 0.0) {
		    epadu = ((f1bar + f2bar) - (z1bar + z2bar)) / div
		    ron   = epadu * zdsigma / 1.41421356
		} else {
		    epadu = INDEF
		    ron   = INDEF
		}

		# Print results
		call printf ("%3w%6.2f%2w%6.2f%2w")
		    call pargr (epadu)
		    call pargr (ron)

	    # Free working arrays
	    call sfree (sp)

	    }
	}

	call printf ("\n")

	# Tidy up
	call imunmap (flat1)
	call imunmap (flat2)
	call imunmap (zero1)
	call imunmap (zero2)
end