1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
include <imhdr.h>
include "quadgeom.h"
define SZ_KEYWRD 8 # Chars in FITS keyword
# QGHDR2 -- Set up section information in quadgeom structure based on
# information in the image header.
procedure qghdr2 (im, qg)
pointer im #I Pointer to input image.
pointer qg #IO Pointer to open quadgeom structure.
pointer sp, keyword, hdrvalue, section
int amp
int ax1, ax2, axs, ay1, ay2, ays
int bx1, bx2, bxs, by1, by2, bys
int cx1, cx2, cxs, cy1, cy2, cys
int dx1, dx2, dxs, dy1, dy2, dys
int tx1, tx2, txs, ty1, ty2, tys
int hdmaccf()
begin
# Get stack space
call smark (sp)
call salloc (keyword, SZ_KEYWRD, TY_CHAR)
call salloc (hdrvalue, SZ_LINE, TY_CHAR)
call salloc (section, SZ_LINE, TY_CHAR)
# Get input image dimensions.
QG_NX (qg, 0) = IM_LEN(im, 1)
QG_NY (qg, 0) = IM_LEN(im, 2)
# Get number of active amplifiers in Y and X.
call hdmgstr (im, "nampsyx", Memc[hdrvalue], SZ_LINE)
call sscan (Memc[hdrvalue])
call gargi (QG_NAMPSY(qg))
call gargi (QG_NAMPSX(qg))
QG_NAMPS(qg) = QG_NAMPSY(qg) * QG_NAMPSX(qg)
if (QG_NAMPS(qg) > QG_MAXAMPS)
call error (0, "CCD has too many read-outs for this program")
# Get decode and order list of active amplifiers.
call hdmgstr (im, "amplist", Memc[hdrvalue], SZ_LINE)
call ampnames (qg, Memc[hdrvalue])
# Read geometry keywords for each amplifier from header.
do amp = 1, QG_NAMPS (qg) {
# Ampsec (ASECyx keyword)
#
call sprintf (Memc[keyword], SZ_KEYWRD, "ASEC%2s")
call pargstr (Memc[QG_AMPID(qg, amp)])
call hdmgstr (im, Memc[keyword], Memc[section], SZ_LINE)
ax1 = 1
ax2 = QG_NX(qg, 0) / QG_NAMPSX(qg)
axs = 1
ay1 = 1
ay2 = QG_NY(qg, 0) / QG_NAMPSY(qg)
ays = 1
call ccd_section (Memc[section], ax1, ax2, axs, ay1, ay2, ays)
QG_AX1(qg, amp) = ax1
QG_AX2(qg, amp) = ax2
QG_AY1(qg, amp) = ay1
QG_AY2(qg, amp) = ay2
# Set X and Y dimensions of subimage read out by each amplifier
QG_NX(qg, amp) = ax2 - ax1 + 1
QG_NY(qg, amp) = ay2 - ay1 + 1
# Datasec (DSECyx keyword)
#
call sprintf (Memc[keyword], SZ_KEYWRD, "DSEC%2s")
call pargstr (Memc[QG_AMPID(qg, amp)])
call hdmgstr (im, Memc[keyword], Memc[section], SZ_LINE)
dx1 = ax1
dx2 = ax2
dxs = 1
dy1 = ay1
dy2 = ay2
dys = 1
call ccd_section (Memc[section], dx1, dx2, dxs, dy1, dy2, dys)
QG_DX1(qg, amp) = dx1 - ax1 + 1
QG_DX2(qg, amp) = dx2 - ax1 + 1
QG_DY1(qg, amp) = dy1 - ay1 + 1
QG_DY2(qg, amp) = dy2 - ay1 + 1
# CCDsec (CSECyx keyword)
#
call sprintf (Memc[keyword], SZ_KEYWRD, "CSEC%2s")
call pargstr (Memc[QG_AMPID(qg, amp)])
call hdmgstr (im, Memc[keyword], Memc[section], SZ_LINE)
cx1 = dx1
cx2 = dx2
cxs = 1
cy1 = dy1
cy2 = dy2
cys = 1
call ccd_section (Memc[section], cx1, cx2, cxs, cy1, cy2, cys)
QG_CX1(qg, amp) = cx1
QG_CX2(qg, amp) = cx2
QG_CY1(qg, amp) = cy1
QG_CY2(qg, amp) = cy2
# Trimsec (TSECyx keyword)
#
call sprintf (Memc[keyword], SZ_KEYWRD, "TSEC%2s")
call pargstr (Memc[QG_AMPID(qg, amp)])
if (hdmaccf (im, Memc[keyword]) == YES) {
call hdmgstr (im, Memc[keyword], Memc[section], SZ_LINE)
tx1 = dx1
tx2 = dx2
txs = 1
ty1 = dy1
ty2 = dy2
tys = 1
call ccd_section (Memc[section], tx1, tx2, txs, ty1, ty2, tys)
QG_TX1(qg, amp) = tx1 - ax1 + 1
QG_TX2(qg, amp) = tx2 - ax1 + 1
QG_TY1(qg, amp) = ty1 - ay1 + 1
QG_TY2(qg, amp) = ty2 - ay1 + 1
QG_PHANTOM(qg, amp) = NO
} else {
QG_TX1(qg, amp) = 0
QG_TX2(qg, amp) = 0
QG_TY1(qg, amp) = 0
QG_TY2(qg, amp) = 0
# If the image has not been reduced this must be a phantom
if (hdmaccf (im, "trim") == NO) {
QG_PHANTOM(qg, amp) = YES
} else {
QG_PHANTOM(qg, amp) = NO
}
}
# Biassec (BSECyx keyword)
#
call sprintf (Memc[keyword], SZ_KEYWRD, "BSEC%2s")
call pargstr (Memc[QG_AMPID(qg, amp)])
if (hdmaccf (im, Memc[keyword]) == YES) {
call hdmgstr (im, Memc[keyword], Memc[section], SZ_LINE)
bx1 = 0
bx2 = 0
bxs = 1
by1 = 0
by2 = 0
bys = 1
call ccd_section (Memc[section], bx1, bx2, bxs, by1, by2, bys)
QG_BX1(qg, amp) = bx1 - ax1 + 1
QG_BX2(qg, amp) = bx2 - ax1 + 1
QG_BY1(qg, amp) = by1 - ay1 + 1
QG_BY2(qg, amp) = by2 - ay1 + 1
} else {
QG_BX1(qg, amp) = 0
QG_BX2(qg, amp) = 0
QG_BY1(qg, amp) = 0
QG_BY2(qg, amp) = 0
}
}
call sfree (sp)
end
procedure ampnames (qg, amplist)
pointer qg #I/O Pointer to open quadgeom structure
char amplist[ARB] #I List of active amplifiers
int amp, nch
pointer sp, ampnum
int strdic(), itoc()
begin
call smark (sp)
call salloc (ampnum, QG_NAMPS (qg), TY_INT)
# parse amplist into array of ordinal numbers
call sscan (amplist)
do amp = 1, QG_NAMPS (qg) {
call gargi (Memi[ampnum+amp-1])
}
# Sort ordinal numbers into increasing order
call asrti (Memi[ampnum], Memi[ampnum], QG_NAMPS(qg))
# Convert ordinal numbers back into id strings
do amp = 1, QG_NAMPS (qg) {
call malloc (QG_AMPID(qg, amp), SZ_AMPID, TY_CHAR)
nch = itoc (Memi[ampnum+amp-1], Memc[QG_AMPID(qg, amp)], SZ_AMPID)
}
# Set AMPTYPE codes
do amp = 1, QG_NAMPS (qg) {
QG_AMPTYPE (qg, amp) = strdic (Memc[QG_AMPID (qg, amp)],
Memc[QG_AMPID (qg, amp)], SZ_AMPID, AMPDICT)
}
call sfree (sp)
end
|