1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
include <imhdr.h>
include "quadgeom.h"
# QUADSECTIONS.X -- File header comment.
define OPTION_DICT "|biassec|datasec|trimsec|reflect|duplicate|"
define OPT_BIASSEC 1
define OPT_DATASEC 2
define OPT_TRIMSEC 3
define OPT_REFLECT 4
define OPT_DUPLICATE 5
define DEFAULT_MACRO "$I$S\\n"
# QUADSECTIONS -- Quadsections task.
procedure t_quadsections ()
pointer inlist #TI List of input image name.
char instrument[SZ_FNAME] #TI Instrument translation file
char section[SZ_LINE] #TI Section of CCD required
int option #TI Type of section required
char format[SZ_LINE] #TI strmac macro string for building output
int xtrim1 #TI X pixels to trim at start of data
int xtrim2 #TI X pixels to trim at end of data
int ytrim1 #TI Y pixels to trim at start of data
int ytrim2 #TI Y pixels to trim at end of data
int xskip1 #TI X pixels to skip at start of overscan
int xskip2 #TI X pixels to skip at end of overscan
char buffer[SZ_LINE], input[SZ_LINE]
int clgwrd(), imtopenp(), imtgetim()
begin
# Open input image
inlist = imtopenp ("images")
# Open instrument file
call clgstr ("instrument", instrument, SZ_FNAME)
call hdmopen (instrument)
# Get option.
option = clgwrd ("window", buffer, SZ_LINE, OPTION_DICT)
# Get default section
call clgstr ("section", section, SZ_LINE)
# Get user defined trim and overscan margins
#xtrim1 = clgeti ("xtrim1")
#xtrim2 = clgeti ("xtrim2")
#ytrim1 = clgeti ("ytrim1")
#ytrim2 = clgeti ("ytrim2")
#xskip1 = clgeti ("xskip1")
#xskip2 = clgeti ("xskip2")
xtrim1 = INDEFI
xtrim2 = INDEFI
ytrim1 = INDEFI
ytrim2 = INDEFI
xskip1 = INDEFI
xskip2 = INDEFI
# Get format string and convert to a strmac macro string.
call clgstr ("template", format, SZ_LINE)
if (format[1] == EOS)
call sprintf (format, SZ_LINE, "%s")
call pargstr (DEFAULT_MACRO)
call qsmkmacro (format, format, SZ_LINE)
while (imtgetim (inlist, input, SZ_LINE) != EOF) {
call quadsections (input, section, xtrim1, xtrim2, ytrim1, ytrim2,
xskip1, xskip2, option, format)
}
# Tidy up
call hdmclose ()
call imtclose (inlist)
end
# QUADSECTIONS -- ???
procedure quadsections (input, section, xtrim1, xtrim2, ytrim1, ytrim2,
xskip1, xskip2, option, format)
char input[SZ_FNAME] #I Input image name.
char section[SZ_LINE] #I Default section specification
int xtrim1 #I X pixels to trim at start of data
int xtrim2 #I X pixels to trim at end of data
int ytrim1 #I Y pixels to trim at start of data
int ytrim2 #I Y pixels to trim at end of data
int xskip1 #I X pixels to skip at start of overscan
int xskip2 #I X pixels to skip at end of overscan
int option #I Type of section required
char format[SZ_LINE] #I strmac macro string for building output
char image[SZ_LINE], argstr[SZ_LINE], buffer[SZ_LINE]
char insection[SZ_LINE], outsection[SZ_LINE]
int amp, arg[9], len
int i, x1, x2, y1, y2
pointer in, qg
bool reduced
pointer immap()
int hdmaccf(), gstrcpy(), strlen(), strmac()
bool quadsect()
begin
# Parse input into an image name and an image section.
call imgimage (input, image, SZ_LINE)
call imgsection (input, insection, SZ_LINE)
# if no section was supplied in the image name use the default section.
if (insection[1] == EOS) {
call strcpy (section, insection, SZ_LINE)
}
# Open input image
in = immap (image, READ_ONLY, 0)
# Determine if image has been trimmed or not
reduced = (hdmaccf (in, "trim") == YES)
if (reduced) {
# OPT_BIASSEC does not make sense for reduced images.
if (option == OPT_BIASSEC)
return
# Trimsec and datasec are identical for reduced images
if (option == OPT_TRIMSEC)
option = OPT_DATASEC
}
# Set-up quadgeom structure
call quadalloc (qg)
if (hdmaccf (in, "HDR_REV") == NO) {
if (reduced) {
call quadgeomred (in, qg)
} else {
call quadgeom (in, qg, "", "")
}
} else {
call qghdr2 (in, qg)
}
# call quaddump (qg)
# Adjust quadgeom structure for user trim and overscan margins
if (! reduced) {
call qguser (qg, xtrim1, xtrim2, ytrim1, ytrim2, xskip1, xskip2)
}
# call quaddump (qg)
# Store image name as first argument in macro argument string "argstr"
arg[1] = 1
arg[2] = 1 + arg[1] + gstrcpy (image, argstr, SZ_LINE)
# Blank output string
buffer[1] = EOS
# Determine the intersection of the specified section with the portion
# of the image read through each readout.
do amp = 1, QG_NAMPS (qg) {
# skip any phantoms in raw images
if (QG_PHANTOM (qg, amp) == NO) {
if (quadsect (qg, insection, option, amp, x1, x2, y1, y2)) {
# Build resulting section string ...
call sprintf (outsection, SZ_LINE, "[%d:%d,%d:%d]")
call pargi (x1)
call pargi (x2)
call pargi (y1)
call pargi (y2)
# ... and save it as second argument
arg[3] = 1 + arg[2] + gstrcpy (outsection, argstr[arg[2]],
SZ_LINE-arg[2]+1)
# Save Ampid as third argument
call strcpy (Memc[QG_AMPID(qg, amp)], argstr[arg[3]],
SZ_LINE-arg[3]+1)
# Process macro string
i = strmac (format, argstr, buffer, SZ_LINE)
call printf (buffer)
}
}
}
# Output <lf> if format does not explicitly include one.
len = strlen (buffer)
if ((len > 2) && !(buffer[len-1]=='\\' && buffer[len]=='n')) {
call printf ("\n")
}
call flush (STDOUT)
# Tidy up
call quadfree (qg)
call imunmap (in)
end
# QSMKMACRO -- Perform the following substitutions on the given macro string
#
# $I --> $1
# $S --> $2
# $A --> $3
# $? --> $?
procedure qsmkmacro (instr, outstr, maxchars)
char instr[ARB] #I Input macro string.
char outstr[maxchars] #O Output macro string.
int maxchars #I Maximum length of outstr
char ch
int ip, op
begin
op = 1
for (ip=1; instr[ip] != EOS; ip=ip+1) {
ch = instr[ip]
outstr[op] = ch
op = op + 1
if (op > maxchars)
call error (0, "qsmkmacro: Output buffer overflow")
if (ch == '$') {
ip = ip + 1
ch = instr[ip]
if (ch == 'I') {
outstr (op) = '1'
op = op + 1
} else if (ch == 'S') {
outstr (op) = '2'
op = op + 1
} else if (ch == 'A') {
outstr (op) = '3'
op = op + 1
} else {
outstr (op) = ch
op = op + 1
}
if (op > maxchars)
call error (0, "qsmkmacro: Output buffer overflow")
}
}
end
# QUADSECT -- ??
bool procedure quadsect (qg, section, option, amp, x1, x2, y1, y2)
pointer qg #I Pointer to initialised quadgeom structure.
char section[SZ_LINE] #I Default section specification.
int option #I Type of section required.
int amp #I Amplifier for which section is required.
int x1, x2, y1, y2 #O Corners of specified section.
bool overlap #O true if part of section read through amp.
int xskip, xsize, yskip, ysize
int sx1, sx2, sy1, sy2, sxs, sys
int dx1, dx2, dy1, dy2
int tx1, tx2, ty1, ty2
int bx1, bx2, by1, by2
begin
# Decode input section
x1 = 1
x2 = QG_NX(qg, 0)
sxs = 1
y1 = 1
y2 = QG_NY(qg, 0)
sys = 1
call ccd_section (section, x1, x2, sxs, y1, y2, sys)
sx1 = min (x1, x2)
sx2 = max (x1, x2)
sy1 = min (y1, y2)
sy2 = max (y1, y2)
# Set up null return (overlap) values in case no part of section was
# read with this amplifier.
overlap = false
x1 = 0
x2 = 0
y1 = 0
y2 = 0
# Calculate suplimentary quantitiies as required.
switch (option) {
case OPT_REFLECT, OPT_DUPLICATE:
xskip = sx1 - QG_DX1(qg, 0)
xsize = sx2 - sx1 + 1
yskip = sy1 - QG_DY1(qg, 0)
ysize = sy2 - sy1 + 1
}
# Determine the intersection of the specified section with the portion
# of the image read through the specified readout.
switch (option) {
case OPT_BIASSEC:
bx1 = QG_AX1(qg, amp) + QG_BX1(qg, amp) - 1
bx2 = QG_AX1(qg, amp) + QG_BX2(qg, amp) - 1
by1 = QG_AY1(qg, amp) + QG_BY1(qg, amp) - 1
by2 = QG_AY1(qg, amp) + QG_BY2(qg, amp) - 1
if (sx1 > bx2)
return (overlap)
if (sx2 < bx1)
return (overlap)
if (sy1 > by2)
return (overlap)
if (sy2 < by1)
return (overlap)
x1 = max (sx1, bx1)
x2 = min (sx2, bx2)
y1 = max (sy1, by1)
y2 = min (sy2, by2)
case OPT_DATASEC:
dx1 = QG_AX1(qg, amp) + QG_DX1(qg, amp) - 1
dx2 = QG_AX1(qg, amp) + QG_DX2(qg, amp) - 1
dy1 = QG_AY1(qg, amp) + QG_DY1(qg, amp) - 1
dy2 = QG_AY1(qg, amp) + QG_DY2(qg, amp) - 1
if (sx1 > dx2)
return (overlap)
if (sx2 < dx1)
return (overlap)
if (sy1 > dy2)
return (overlap)
if (sy2 < dy1)
return (overlap)
x1 = max (sx1, dx1)
x2 = min (sx2, dx2)
y1 = max (sy1, dy1)
y2 = min (sy2, dy2)
case OPT_TRIMSEC:
tx1 = QG_AX1(qg, amp) + QG_TX1(qg, amp) - 1
tx2 = QG_AX1(qg, amp) + QG_TX2(qg, amp) - 1
ty1 = QG_AY1(qg, amp) + QG_TY1(qg, amp) - 1
ty2 = QG_AY1(qg, amp) + QG_TY2(qg, amp) - 1
if (sx1 > tx2)
return (overlap)
if (sx2 < tx1)
return (overlap)
if (sy1 > ty2)
return (overlap)
if (sy2 < ty1)
return (overlap)
x1 = max (sx1, tx1)
x2 = min (sx2, tx2)
y1 = max (sy1, ty1)
y2 = min (sy2, ty2)
case OPT_REFLECT:
dx1 = QG_AX1(qg, amp) + QG_DX1(qg, amp) - 1
dx2 = QG_AX1(qg, amp) + QG_DX2(qg, amp) - 1
dy1 = QG_AY1(qg, amp) + QG_DY1(qg, amp) - 1
dy2 = QG_AY1(qg, amp) + QG_DY2(qg, amp) - 1
switch (QG_AMPTYPE(qg, amp)) {
case AMP11:
x1 = dx1 + xskip
x2 = x1 + xsize - 1
y1 = dy1 + yskip
y2 = y1 + ysize - 1
case AMP12:
x2 = dx2 - xskip
x1 = x2 - xsize + 1
y1 = dy1 + yskip
y2 = y1 + ysize - 1
case AMP21:
x1 = dx1 + xskip
x2 = x1 + xsize - 1
y2 = dy2 - yskip
y1 = y2 - ysize + 1
case AMP22:
x2 = dx2 - xskip
x1 = x2 - xsize + 1
y2 = dy2 - yskip
y1 = y2 - ysize + 1
}
if (x1 > dx2)
return (overlap)
if (x2 < dx1)
return (overlap)
if (y1 > dy2)
return (overlap)
if (y2 < dy1)
return (overlap)
x1 = max (x1, dx1)
x2 = min (x2, dx2)
y1 = max (y1, dy1)
y2 = min (y2, dy2)
case OPT_DUPLICATE:
dx1 = QG_AX1(qg, amp) + QG_DX1(qg, amp) - 1
dx2 = QG_AX1(qg, amp) + QG_DX2(qg, amp) - 1
dy1 = QG_AY1(qg, amp) + QG_DY1(qg, amp) - 1
dy2 = QG_AY1(qg, amp) + QG_DY2(qg, amp) - 1
x1 = dx1 + xskip
x2 = x1 + xsize - 1
y1 = dy1 + yskip
y2 = y1 + ysize - 1
if (x1 > dx2)
return (overlap)
if (x2 < dx1)
return (overlap)
if (y1 > dy2)
return (overlap)
if (y2 < dy1)
return (overlap)
x1 = max (x1, dx1)
x2 = min (x2, dx2)
y1 = max (y1, dy1)
y2 = min (y2, dy2)
}
overlap = true
return (overlap)
end
|