1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
include <mach.h>
# LSTSQ -- Do a least squares fit to the data contained in the zz array.
# Algorithm is from Jack Harvey. (Yes, it's a black box...)
procedure lstsq (zz, mz, fno)
real zz[mz, mz]
int mz
real fno
int n, m, m1, i, j, k, l, l1
real fn, pp
begin
n = mz - 2
m = n + 1
m1 = m + 1
fn = n
do i = 1, m {
l = i + 1
do k = 1, i-1 {
zz[i,l] = zz[i,l] - zz[k,l]**2
}
if (i == m)
break
if (zz[i,l] >= 0.0)
zz[i,l] = zz[i,l]**.5
else {
call eprintf ("square root of negitive number in lstsq\n")
zz[i,l] = 0.0
}
l1 = l + 1
do j = l1, m1 {
do k = 1, i-1 {
zz[i,j] = zz[i,j] - zz[k,l] * zz[k,j]
}
if (zz[i,l] >= EPSILONR)
zz[i,j] = zz[i,j] / zz[i,l]
else
call eprintf ("divide by zero in lstsq\n")
}
if (zz[i,l] >= EPSILONR)
zz[i,i] = 1. / zz[i,l]
else
call eprintf ("divide by zero in lstsq\n")
do j = 1, i-1 {
pp = 0.
l1 = i - 1
do k = j, l1 {
pp = pp + zz[k,l] * zz[k,j]
}
zz[i,j] = -zz[i,i] * pp
}
}
if ((fno - fn) >= EPSILONR)
if ((zz[m,m1] / (fno - fn)) >= 0.0)
zz[m1,m1] = .6745 * (zz[m,m1] / (fno - fn))**.5
else {
call eprintf ("square root of negitive number in lstsq\n")
zz[m1,m1] = 0.0
}
else
call eprintf ("divide by zero in lstsq\n")
do i = 1, n {
zz[m,i] = 0.
pp = 0.
do j = i, n {
zz[m,i] = zz[m,i] + zz[j,i] * zz[j,m1]
pp = pp + zz[j,i] * zz[j,i]
}
if (pp >= 0.0)
zz[m1,i] = zz[m1,m1] * pp**.5
else {
call eprintf ("square root of negitive number in lstsq\n")
zz[m1,i] = 0.0
}
}
end
|