1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
# MRQMIN -- Levenberg-Marquard nonlinear chi square minimization.
# From NUMERICAL RECIPES by Press, Flannery, Teukolsky, and Vetterling, p526.
#
# Levenberg-Marquardt method, attempting to reduce the value of chi
# square of a fit between a set of NDATA points X,Y with individual
# standard deviations SIG, and a nonlinear function dependent on MA
# coefficients A. The array LISTA numbers the parameters A such that the
# first MFIT elements correspond to values actually being adjusted; the
# remaining MA-MFIT parameters are held fixed at their input value. The
# program returns the current best-fit values for the MA fit parameters
# A, and chi square, CHISQ. The arrays COVAR and ALPHA with physical
# dimension NCA (>= MFIT) are used as working space during most
# iterations. Supply a subroutine FUNCS(X,A,YFIT,DYDA,MA) that evaluates
# the fitting function YFIT, and its derivatives DYDA with respect to the
# fitting parameters A at X. On the first call provide an initial guess
# for the parameters A, and set ALAMDA<0 for initialization (which then
# sets ALAMDA=0.001). If a step succeeds CHISQ becomes smaller and
# ALAMDA decreases by a factor of 10. If a step fails ALAMDA grows by a
# factor of 10. You must call this routine repeatedly until convergence
# is achieved. Then make one final call with ALAMDA = 0, so that COVAR
# returns the covariance matrix, and ALPHA the curvature matrix.
#
# This routine is cast in the IRAF SPP language but the variable names have
# been maintained for reference to the original source. Also the working
# arrays ATRY, BETA, and DA are allocated dynamically to eliminate
# limitations on the number of parameters fit.
procedure mrqmin (x, y, sig, ndata, a, ma, lista, mfit, covar, alpha, nca,
chisq, funcs, alamda)
real x[ndata] # X data array
real y[ndata] # Y data array
real sig[ndata] # Sigma array
int ndata # Number of data points
real a[ma] # Parameter array
int ma # Number of parameters
int lista[ma] # List array indexing parameters to fit
int mfit # Number of parameters to fit
real covar[nca,nca] # Covariance matrix
real alpha[nca,nca] # Curvature matrix
int nca # Matrix dimension (>= mfit)
real chisq # Chi square of fit
extern funcs # Function to compute derivatives
real alamda # Initialization and convergence parameter
int j, k, kk, ihit
real ochisq
pointer atry, beta, da
errchk gaussj
begin
# Initialize and check that LISTA contains a proper permutation.
if (alamda < 0.) {
call mfree (atry, TY_REAL)
call mfree (beta, TY_REAL)
call mfree (da, TY_REAL)
call malloc (atry, ma, TY_REAL)
call malloc (beta, mfit, TY_REAL)
call malloc (da, mfit, TY_REAL)
kk = mfit + 1
do j = 1, ma {
ihit = 0
do k = 1, mfit
if (lista(k) == j)
ihit = ihit + 1
if (ihit == 0) {
lista (kk) = j
kk = kk + 1
} else if (ihit > 1)
call error (0, "Improper permutation in LISTA")
}
if (kk != (ma + 1))
call error (0, "Improper permutation in LISTA")
alamda = 0.001
call mrqcof (x, y, sig, ndata, a, ma, lista, mfit, alpha,
Memr[beta], nca, chisq, funcs)
ochisq = chisq
do j = 1, ma
Memr[atry+j-1] = a[j]
}
# Alter linearized fitting matrix by augmenting diagonal elements.
do j = 1, mfit {
do k = 1, mfit
covar[j,k] = alpha[j,k]
covar[j,j] = alpha[j,j] * (1. + alamda)
Memr[da+j-1] = Memr[beta+j-1]
}
# Matrix solution.
call gaussj (covar, mfit, nca, Memr[da], 1, 1)
# Once converged evaluate covariance matrix with ALAMDA = 0.
if (alamda == 0.) {
call covsrt (covar, nca, ma, lista, mfit)
call mfree (atry, TY_REAL)
call mfree (beta, TY_REAL)
call mfree (da, TY_REAL)
return
}
# Did the trial succeed?
do j = 1, mfit
Memr[atry+lista[j]-1] = a[lista[j]] + Memr[da+j-1]
call mrqcof (x, y, sig, ndata, Memr[atry], ma, lista, mfit, covar,
Memr[da], nca, chisq, funcs)
# Success - accept the new solution, Failure - increase ALAMDA
if (chisq < ochisq) {
alamda = 0.1 * alamda
ochisq = chisq
do j = 1, mfit {
do k = 1, mfit
alpha[j,k] = covar[j,k]
Memr[beta+j-1] = Memr[da+j-1]
a[lista[j]] = Memr[atry+lista[j]-1]
}
} else {
alamda = 10. * alamda
chisq = ochisq
}
end
# MRQCOF -- Evaluate linearized matrix coefficients.
# From NUMERICAL RECIPES by Press, Flannery, Teukolsky, and Vetterling, p527.
#
# Used by MRQMIN to evaluate the linearized fitting matrix ALPHA and vector
# BETA.
#
# This procedure has been recast in the IRAF/SPP language but the variable
# names have been maintained. Dynamic memory is used.
procedure mrqcof (x, y, sig, ndata, a, ma, lista, mfit, alpha, beta, nalp,
chisq, funcs)
real x[ndata] # X data array
real y[ndata] # Y data array
real sig[ndata] # Sigma array
int ndata # Number of data points
real a[ma] # Parameter array
int ma # Number of parameters
int lista[ma] # List array indexing parameters to fit
int mfit # Number of parameters to fit
real alpha[nalp,nalp] # Work matrix
real beta[ma] # Work array
int nalp # Matrix dimension (>= mfit)
real chisq # Chi square of fit
extern funcs # Function to compute derivatives
int i, j, k
real sig2i, ymod, dy, wt
pointer sp, dyda
begin
call smark (sp)
call salloc (dyda, ma, TY_REAL)
do j = 1, mfit {
do k = 1, j
alpha[j,k] = 0.
beta[j] = 0.
}
chisq = 0.
do i = 1, ndata {
call funcs (x[i], a, ymod, Memr[dyda], ma)
sig2i = 1. / (sig[i] * sig[i])
dy = y[i] - ymod
do j = 1, mfit {
wt = Memr[dyda+lista[j]-1] * sig2i
do k = 1, j
alpha[j,k] = alpha[j,k] + wt * Memr[dyda+lista[k]-1]
beta[j] = beta[j] + dy * wt
}
chisq = chisq + dy * dy * sig2i
}
do j = 2, mfit
do k = 1, j-1
alpha[k,j] = alpha[j,k]
call sfree (sp)
end
# GAUSSJ -- Linear equation solution by Gauss-Jordan elimination.
# From NUMERICAL RECIPES by Press, Flannery, Teukolsky, and Vetterling, p28.
#
# Linear equation solution by Gauss-Jordan elimination. A is an input matrix
# of N by N elements, stored in an array of physical dimensions NP by
# NP. B is an input matrix of N by M containing the M right-hand side
# vectors, stored in an array of physical dimensions NP by MP. On
# output, A is replaced by its matrix inverse, and B is replaced by the
# corresponding set of solutionn vectors.
#
# This procedure has been recast in the IRAF/SPP language using dynamic
# memory allocation and error return. The variable names have been maintained.
procedure gaussj (a, n, np, b, m, mp)
real a[np,np] # Input matrix and returned inverse
int n # Dimension of input matrix
int np # Storage dimension of input matrix
real b[np,mp] # Input RHS matrix and returned solution
int m # Dimension of input matrix
int mp # Storage dimension of input matrix
int i, j, k, l, ll, irow, icol, indxrl, indxcl
real big, pivinv, dum
pointer sp, ipiv, indxr, indxc
begin
call smark (sp)
call salloc (ipiv, n, TY_INT)
call salloc (indxr, n, TY_INT)
call salloc (indxc, n, TY_INT)
do j = 1, n
Memi[ipiv+j-1] = 0
do i = 1, n {
big = 0.
do j = 1, n {
if (Memi[ipiv+j-1] != 1) {
do k = 1, n {
if (Memi[ipiv+k-1] == 0) {
if (abs (a[j,k]) >= big) {
big = abs (a[j,k])
irow = j
icol = k
}
} else if (Memi[ipiv+k-1] > 1) {
call sfree (sp)
call error (0, "Singular matrix")
}
}
}
}
Memi[ipiv+icol-1] = Memi[ipiv+icol-1] + 1
if (irow != icol) {
do l = 1, n {
dum = a[irow,l]
a[irow,l] = a[icol,l]
a[icol,l] = dum
}
do l = 1, m {
dum = b[irow,l]
b[irow,l] = b[icol,l]
b[icol,l] = dum
}
}
Memi[indxr+i-1] = irow
Memi[indxc+i-1] = icol
if (a[icol,icol] == 0.) {
call sfree (sp)
call error (0, "Singular matrix")
}
pivinv = 1. / a[icol,icol]
a[icol,icol] = 1
do l = 1, n
a[icol,l] = a[icol,l] * pivinv
do l = 1, m
b[icol,l] = b[icol,l] * pivinv
do ll = 1, n {
if (ll != icol) {
dum = a[ll,icol]
do l = 1, n
a[ll,l] = a[ll,l] - a[icol,l] * dum
do l = 1, m
b[ll,l] = b[ll,l] - b[icol,l] * dum
}
}
}
do l = n, 1, -1 {
indxrl = Memi[indxr+l-1]
indxcl = Memi[indxr+l-1]
if (indxrl != indxcl) {
do k = 1, n {
dum = a[k,indxrl]
a[k,indxrl] = a[k,indxcl]
a[k,indxcl] = dum
}
}
}
call sfree (sp)
end
# COVSRT -- Sort covariance matrix.
# From NUMERICAL RECIPES by Press, Flannery, Teukolsky, and Vetterling, p515.
#
# Given the covariance matrix COVAR of a fit for MFIT of MA total parameters,
# and their ordering LISTA, repack the covariance matrix to the true order of
# the parameters. Elements associated with fixed parameters will be zero.
# NCVM is the physical dimension of COVAR.
#
# This procedure has been recast into the IRAF/SPP language but the
# original variable names are used.
procedure covsrt (covar, ncvm, ma, lista, mfit)
real covar[ncvm,ncvm] # Input and output array
int ncvm # Physical dimension of array
int ma # Number of parameters
int lista[mfit] # Index of fitted parameters
int mfit # Number of fitted parameters
int i, j
real swap
begin
# Zero all elements below diagonal.
do j = 1, ma-1
do i = j+1, ma
covar[i,j] = 0.
# Repack off-diag elements of fit into correct locations below diag.
do i = 1, mfit-1
do j = i+1, mfit
if (lista[j] > lista[i])
covar [lista[j],lista[i]] = covar[i,j]
else
covar [lista[i],lista[j]] = covar[i,j]
# Temporarily store original diag elements in top row and zero diag.
swap = covar[1,1]
do j = 1, ma {
covar[1,j] = covar[j,j]
covar[j,j] = 0.
}
covar[lista[1],lista[1]] = swap
# Now sort elements into proper order on diagonal.
do j = 2, mfit
covar[lista[j],lista[j]] = covar[1,j]
# Finally, fill in above diagonal by symmetry.
do j = 2, ma
do i = 1, j-1
covar[i,j] = covar[j,i]
end
|