1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
|
include <ctype.h>
include <imhdr.h>
# ODCNV -- Get a line of data possibly convolved. Also get the unconvolved
# data, the sky data, and the sky sigma data.
#
# This routine must be called sequentially starting with the first line.
# It is initialized when the first line. Memory is freed by using a final
# call with a line of zero.
procedure convolve (in, bpm, sky, sig, exp, offset, scale, line, cnv,
indata, bp, cnvdata, skydata, sigdata, expdata, cnvwt, logfd)
pointer in[2] #I Image pointers
pointer bpm[2] #I BPM pointer
pointer sky[2] #I Sky map
pointer sig[2] #I Sigma map
pointer exp[2] #I Exposure map
int offset[2] #I Offsets
real scale[2] #I Image scales
int line #I Line
char cnv[ARB] #I Convolution string
pointer indata[2] #O Pointers to unconvolved image data
pointer bp #O Bad pixel data
pointer cnvdata #O Pointer to convolved image data
pointer skydata[2] #O Pointer to sky data
pointer sigdata[2] #O Pointer to sigma data corrected by exposure map
pointer expdata[2] #O Pointer to exposure map data
real cnvwt #O Weight for convolved sigma
int logfd #I Logfile
int i, j, k, nx, ny, nx2, ny2, nc, nl, mode, off
real wts, wts1
pointer bpm2, kptr, ptr, symptr, symwptr
bool dobpm, overlap, fp_equalr()
pointer kernel, sym, symbuf, symwts, buf, buf2, buf3, bpbuf, bpwts, wtsl, scales
data kernel/NULL/, sym/NULL/, symbuf/NULL/, symwts/NULL/
data buf/NULL/, buf2/NULL/, buf3/NULL/, bpbuf/NULL/, bpwts/NULL/
data wtsl/NULL/, scales/NULL/
errchk cnvparse, cnvgline2
begin
# If no convolution.
if (cnv[1] == EOS) {
if (line == 0)
return
call cnvgline1 (line, offset, in, bpm, indata, bp)
call cnvgline2 (line, offset, in, sky, sig, exp, skydata,
sigdata, expdata)
cnvwt = 1
if (in[2] == NULL)
cnvdata = indata[1]
else
call asubr_scale (Memr[indata[1]], scale[1],
Memr[indata[2]], scale[2], Memr[cnvdata], IM_LEN(in[1],1))
return
}
# Free memory.
if (line == 0) {
if (symbuf != NULL) {
do i = 0, ARB {
ptr = Memi[symbuf+i]
if (ptr == -1)
break
call mfree (ptr, TY_REAL)
}
}
if (symwts != NULL) {
do i = 0, ARB {
ptr = Memi[symwts+i]
if (ptr == -1)
break
call mfree (ptr, TY_REAL)
}
}
call mfree (scales, TY_REAL)
call mfree (wtsl, TY_REAL)
call mfree (kernel, TY_REAL)
call mfree (scales, TY_REAL)
call mfree (sym, TY_INT)
call mfree (symbuf, TY_POINTER)
call mfree (symwts, TY_POINTER)
call mfree (buf, TY_REAL)
call mfree (buf2, TY_REAL)
call mfree (buf3, TY_REAL)
call mfree (bpbuf, TY_INT)
call mfree (bpwts, TY_REAL)
return
}
# Initialize by getting the kernel coefficients, setting the
# image I/O buffers using a scrolling array, and allocate memory.
if (line == 1 || buf == NULL) {
if (buf != NULL) {
if (symbuf != NULL) {
do i = 0, ARB {
ptr = Memi[symbuf+i]
if (ptr == -1)
break
call mfree (ptr, TY_REAL)
}
}
if (symwts != NULL) {
do i = 0, ARB {
ptr = Memi[symwts+i]
if (ptr == -1)
break
call mfree (ptr, TY_REAL)
}
}
call mfree (scales, TY_REAL)
call mfree (wtsl, TY_REAL)
call mfree (kernel, TY_REAL)
call mfree (scales, TY_REAL)
call mfree (sym, TY_INT)
call mfree (symbuf, TY_POINTER)
call mfree (symwts, TY_POINTER)
call mfree (buf, TY_REAL)
call mfree (buf2, TY_REAL)
call mfree (buf3, TY_REAL)
call mfree (bpbuf, TY_INT)
call mfree (bpwts, TY_REAL)
}
nc = IM_LEN(in[1],1)
nl = IM_LEN(in[1],2)
call cnvparse (cnv, kernel, nx, ny, logfd)
nx2 = nx / 2
ny2 = ny / 2
call malloc (scales, ny, TY_REAL)
call calloc (wtsl, ny, TY_REAL)
call amovkr (1., Memr[scales], ny)
# Check for lines which are simple scalings of the first line.
do i = 2, ny {
kptr = kernel + (i - 1) * nx
wts = 0.
do k = 0, nx-1 {
if (Memr[kptr+k] == 0. || Memr[kernel+k] == 0.) {
wts = 0.
break
}
if (wts == 0.)
wts = Memr[kptr+k] / Memr[kernel+k]
else {
wts1 = Memr[kptr+k] / Memr[kernel+k]
if (!fp_equalr (wts, wts1))
break
}
}
if (wts != 0. && fp_equalr (wts, wts1)) {
Memr[scales+i-1] = wts
call amovr (Memr[kernel], Memr[kptr], nx)
}
}
wts = 0
do i = 1, ny {
kptr = kernel + (i - 1) * nx
wts1 = 0.
do j = 1, nx {
wts1 = wts1 + Memr[kptr]
kptr = kptr + 1
}
Memr[wtsl+i-1] = wts1
wts = wts + wts1
}
if (wts != 0.) {
call adivkr (Memr[wtsl], wts, Memr[wtsl], ny)
call adivkr (Memr[kernel], wts, Memr[kernel], nx*ny)
}
cnvwt = sqrt (wts)
if (in[2] == NULL)
bpm2 = NULL
else
bpm2 = bpm[2]
if (bpm[1] == NULL && bpm2 == NULL)
dobpm = false
else
dobpm = true
if (dobpm) {
call malloc (bpbuf, nc*ny, TY_INT)
call malloc (bpwts, nc, TY_REAL)
call calloc (symwts, ny*ny+1, TY_POINTER)
Memi[symwts+ny*ny] = -1
}
# Check for any line symmetries in the kernel.
call malloc (sym, ny, TY_INT)
call calloc (symbuf, ny*ny+1, TY_POINTER)
Memi[symbuf+ny*ny] = -1
do i = ny, 1, -1 {
kptr = kernel + (i - 1) * nx
do j = ny, 1, -1 {
ptr = kernel + (j - 1) * nx
do k = 0, nx-1 {
if (Memr[kptr+k] != Memr[ptr+k])
break
}
if (k == nx) {
Memi[sym+i-1] = j
break
}
}
}
do i = ny, 1, -1 {
k = 0
do j = ny, 1, -1
if (Memi[sym+j-1] == i)
k = k + 1
if (k == 1)
Memi[sym+i-1] = 0
}
call malloc (buf, nc*ny, TY_REAL)
if (in[2] != NULL) {
call malloc (buf2, nc*ny, TY_REAL)
call malloc (buf3, nc*ny, TY_REAL)
}
if (in[2] != NULL) {
overlap = true
if (1-offset[1] < 1 || nc-offset[1] > IM_LEN(in[2],1))
overlap = false
if (1-offset[2] < 1 || nl-offset[2] > IM_LEN(in[2],2))
overlap = false
}
do i = 1, ny {
call cnvgline1 (i, offset, in, bpm, indata, bp)
off = mod (i, ny) * nc
call amovr (Memr[indata[1]], Memr[buf+off], nc)
if (in[2] != NULL) {
call amovr (Memr[indata[2]], Memr[buf2+off], nc)
call asubr_scale (Memr[buf+off], scale[1],
Memr[buf2+off], scale[2], Memr[buf3+off], nc)
}
if (dobpm)
call amovi (Memi[bp], Memi[bpbuf+off], nc)
}
}
# Get new line.
j = line + ny2
if (j > ny && j <= nl) {
call cnvgline1 (j, offset, in, bpm, indata, bp)
off = mod (j, ny) * nc
call amovr (Memr[indata[1]], Memr[buf+off], nc)
if (in[2] != NULL) {
call amovr (Memr[indata[2]], Memr[buf2+off], nc)
call asubr_scale (Memr[buf+off], scale[1],
Memr[buf2+off], scale[2], Memr[buf3+off], nc)
}
if (dobpm) {
ptr = bpbuf + off
call amovi (Memi[bp], Memi[ptr], nc)
}
}
# Compute the convolution vector with boundary reflection.
# Save and reuse lines with the same kernel weights apart
# from a scale factor.
kptr = kernel
call aclrr (Memr[cnvdata], nc)
if (dobpm)
call aclrr (Memr[bpwts], nc)
do i = 1, ny {
j = line + i - ny2 - 1
if (j < 1)
j = 2 - j
else if (j > nl)
j = 2 * nl - j
off = mod (j, ny) * nc
if (in[2] == NULL)
ptr = buf
else
ptr = buf3
k = Memi[sym+i-1]
if (k == 0) {
mode = 1
symptr = ptr
symwptr = bpwts
} else {
if (k == i)
mode = 2
else
mode = 3
symptr = Memi[symbuf+(k-1)*ny+mod(j,ny)]
if (symptr == NULL) {
call malloc (symptr, nc, TY_REAL)
Memi[symbuf+(k-1)*ny+mod(j,ny)] = symptr
mode = 2
}
if (dobpm) {
symwptr = Memi[symwts+(k-1)*ny+mod(j,ny)]
if (symwptr == NULL) {
call malloc (symwptr, nc, TY_REAL)
Memi[symwts+(k-1)*ny+mod(j,ny)] = symwptr
}
}
}
if (dobpm)
call convolve2 (Memr[ptr+off], Memr[cnvdata], Memr[symptr],
nc, Memr[kptr], Memr[scales+i-1], nx, Memi[bpbuf+off],
Memr[wtsl+i-1], Memr[bpwts], Memr[symwptr], mode)
else
call convolve1 (Memr[ptr+off], Memr[cnvdata], Memr[symptr],
nc, Memr[kptr], Memr[scales+i-1], nx, mode)
kptr = kptr + nx
}
if (dobpm) {
do i = 0, nc-1
if (Memr[bpwts+i] != 0.)
Memr[cnvdata+i] = Memr[cnvdata+i] / Memr[bpwts+i]
}
# Set the output vectors.
off = mod (line, ny) * nc
indata[1] = buf + off
if (dobpm) {
if (bpm2 == NULL)
bp = bpbuf + off
else
call amovi (Memi[bpbuf+off], Memi[bp], nc)
}
if (in[2] != NULL) {
if (overlap)
indata[2] = buf2 + off
else
call amovr (Memr[buf2+off], Memr[indata[2]], nc)
}
call cnvgline2 (line, offset, in, sky, sig, exp, skydata, sigdata,
expdata)
end
# ODCNV1 -- One dimensional convolution with boundary reflection.
#
# The convolution is added to the output so that it might be used
# as part of a 2D convolution.
procedure convolve1 (in, out, save, nc, xkernel, scale, nx, mode)
real in[nc] #I Input data to be convolved
real out[nc] #O Output convolved data
real save[nc] #U Output saved data
int nc #I Number of data points
real xkernel[nx] #I Convolution weights
real scale #I Scale for saved vector
int nx #I Number of convolution points (must be odd)
int mode #I Mode (1=no save, 2=save, 3=use save)
int i, j, k, nx2
real val
bool fp_equalr()
begin
if (mode == 1) {
nx2 = nx / 2
do i = 1, nx2 {
val = 0
do j = 1, nx {
k = i + j - nx2 - 1
if (k < 1)
k = 2 - k
val = val + in[k] * xkernel[j]
}
out[i] = out[i] + val
}
do i = nx2+1, nc-nx2 {
k = i - nx2
val = 0
do j = 1, nx {
val = val + in[k] * xkernel[j]
k = k + 1
}
out[i] = out[i] + val
}
do i = nc-nx2+1, nc {
val = 0
do j = 1, nx {
k = i + j - nx2 - 1
if (k > nc)
k = 2 * nc - k
val = val + in[k] * xkernel[j]
}
out[i] = out[i] + val
}
} else if (mode == 2) {
nx2 = nx / 2
do i = 1, nx2 {
val = 0
do j = 1, nx {
k = i + j - nx2 - 1
if (k < 1)
k = 2 - k
val = val + in[k] * xkernel[j]
}
out[i] = out[i] + val
save[i] = val
}
do i = nx2+1, nc-nx2 {
k = i - nx2
val = 0
do j = 1, nx {
val = val + in[k] * xkernel[j]
k = k + 1
}
out[i] = out[i] + val
save[i] = val
}
do i = nc-nx2+1, nc {
val = 0
do j = 1, nx {
k = i + j - nx2 - 1
if (k > nc)
k = 2 * nc - k
val = val + in[k] * xkernel[j]
}
out[i] = out[i] + val
save[i] = val
}
} else {
if (fp_equalr (1., scale)) {
do i = 1, nc
out[i] = out[i] + save[i]
} else {
do i = 1, nc
out[i] = out[i] + scale * save[i]
}
}
end
# ODCNV2 -- One dimensional convolution with boundary reflection and masking.
#
# The convolution is added to the output so that it might be used
# as part of a 2D convolution.
procedure convolve2 (in, out, save, nc, xkernel, scale, nx, bp,
wtssum, wts, wtsave, mode)
real in[nc] #I Input data to be convolved
real out[nc] #O Output convolved data
real save[nc] #U Output saved data
int nc #I Number of data points
real xkernel[nx] #I Convolution weights
real scale #I Scale for saved vector
int nx #I Number of convolution points (must be odd)
int bp[nc] #I Bad pixel data
real wtssum #I Sum of weights
real wts[nc] #I Weights
real wtsave[nc] #U Output saved weight data
int mode #I Mode (1=no save, 2=save, 3=use save)
int i, j, k, nx2
real val, wt
bool fp_equalr()
begin
if (mode == 1) {
nx2 = nx / 2
do i = 1, nx2 {
val = 0
wt = wtssum
do j = 1, nx {
k = i + j - nx2 - 1
if (k < 1)
k = 2 - k
if (bp[k] == 0)
val = val + in[k] * xkernel[j]
else
wt = wt - xkernel[j]
}
out[i] = out[i] + val
wts[i] = wts[i] + wt
}
do i = nx2+1, nc-nx2 {
k = i - nx2
val = 0
wt = wtssum
do j = 1, nx {
if (bp[k] == 0)
val = val + in[k] * xkernel[j]
else
wt = wt - xkernel[j]
k = k + 1
}
out[i] = out[i] + val
wts[i] = wts[i] + wt
}
do i = nc-nx2+1, nc {
val = 0
wt = wtssum
do j = 1, nx {
k = i + j - nx2 - 1
if (k > nc)
k = 2 * nc - k
if (bp[k] == 0)
val = val + in[k] * xkernel[j]
else
wt = wt - xkernel[j]
}
out[i] = out[i] + val
wts[i] = wts[i] + wt
}
} else if (mode == 2) {
nx2 = nx / 2
do i = 1, nx2 {
val = 0
wt = wtssum
do j = 1, nx {
k = i + j - nx2 - 1
if (k < 1)
k = 2 - k
if (bp[k] == 0)
val = val + in[k] * xkernel[j]
else
wt = wt - xkernel[j]
}
out[i] = out[i] + val
wts[i] = wts[i] + wt
save[i] = val
wtsave[i] = wt
}
do i = nx2+1, nc-nx2 {
k = i - nx2
val = 0
wt = wtssum
do j = 1, nx {
if (bp[k] == 0)
val = val + in[k] * xkernel[j]
else
wt = wt - xkernel[j]
k = k + 1
}
out[i] = out[i] + val
wts[i] = wts[i] + wt
save[i] = val
wtsave[i] = wt
}
do i = nc-nx2+1, nc {
val = 0
wt = wtssum
do j = 1, nx {
k = i + j - nx2 - 1
if (k > nc)
k = 2 * nc - k
if (bp[k] == 0)
val = val + in[k] * xkernel[j]
else
wt = wt - xkernel[j]
}
out[i] = out[i] + val
wts[i] = wts[i] + wt
save[i] = val
wtsave[i] = wt
}
} else {
if (fp_equalr (1., scale)) {
do i = 1, nc {
out[i] = out[i] + save[i]
wts[i] = wts[i] + wtsave[i]
}
} else {
do i = 1, nc {
out[i] = out[i] + scale * save[i]
wts[i] = wts[i] + scale * wtsave[i]
}
}
}
end
# ASUBR_SCALE -- out = in1 * scale1 - in2 * scale2
procedure asubr_scale (in1, scale1, in2, scale2, out, n)
real in1[n] #I Input vector
real scale1 #I Scale
real in2[n] #I Input vector
real scale2 #I Scale
real out[n] #O Output vector
int n #I Number of points
int i
begin
if (scale1 == 1. && scale2 == 1.)
call asubr (in1, in2, out, n)
else if (scale1 == 1.) {
do i = 1, n
out[i] = in1[i] - in2[i] * scale2
} else if (scale2 == 1.) {
do i = 1, n
out[i] = in1[i] * scale1 - in2[i]
} else {
do i = 1, n
out[i] = in1[i] * scale1 - in2[i] * scale2
}
end
procedure cnvgline1 (line, offset, im, bpm, imdata, bp)
int line #I Line to be read
int offset[2] #I Offsets
pointer im[2] #I Image pointers
pointer bpm[2] #I Bad pixel mask pointers
pointer imdata[2] #U Image data
pointer bp #U Bad pixel data
bool overlap
int nl1, nl2, loff, l2
int nc1, nc2, nc3, off1, off2, off3, c1, c2
pointer imgl2r(), imgl2i()
begin
# Get data for first image. Use IMIO buffers except the
# bad pixel buffer is not used if there is a second image.
imdata[1] = imgl2r (im[1], line)
if (bpm[1] != NULL) {
if (im[2] == NULL)
bp = imgl2i (bpm[1], line)
else
call amovi (Memi[imgl2i(bpm[1],line)], Memi[bp],
IM_LEN(bpm[1],1))
}
if (im[2] == NULL)
return
# Initialize.
if (line == 1) {
nc1 = IM_LEN(im[1],1)
nc2 = IM_LEN(im[2],1)
nl1 = IM_LEN(im[1],2)
nl2 = IM_LEN(im[2],2)
overlap = true
if (1-offset[1] < 1 || nc1-offset[1] > nc2)
overlap = false
if (1-offset[2] < 1 || nl1-offset[2] > nl2)
overlap = false
off2 = -offset[1]
c1 = max (1, 1+off2)
c2 = min (nc2, nc1+off2)
nc2 = c2 - c1 + 1
off1 = c1 - off2 - 1
off3 = c2 - off2
off2 = max (0, off2)
nc3 = nc1 - off3
if (off1 > 0) {
call aclrr (Memr[imdata[2]], off1)
if (bpm[1] == NULL)
call amovki (1, Memi[bp], off1)
}
if (nc3 > 0) {
call aclrr (Memr[imdata[2]+off3], nc3)
if (bpm[1] == NULL)
call amovki (1, Memi[bp+off3], nc3)
}
loff = -offset[2]
if (loff < 0)
call aclrr (Memr[imdata[2]], nc1)
}
l2 = line + loff
if (l2 < 1 || l2 > nl2) {
call amovki (1, Memi[bp], nc1)
return
}
if (overlap) {
imdata[2] = imgl2r (im[2], l2) + off2
if (bpm[1] != NULL && bpm[2] != NULL)
call amaxi (Memi[imgl2i(bpm[2],l2)+off2], Memi[bp], Memi[bp],
nc1)
else if (bpm[2] != NULL)
call amovi (Memi[imgl2i(bpm[2],l2)+off2], Memi[bp], nc1)
} else {
# Copy the overlapping parts of the second image to the output
# buffers which must be allocated externally. Use the bad pixel
# mask to flag regions where there is no overlap.
call amovr (Memr[imgl2r(im[2],l2)+off2], Memr[imdata[2]+off1], nc2)
if (bpm[1] != NULL && bpm[2] != NULL) {
call amaxi (Memi[imgl2i(bpm[2],l2)+off2], Memi[bp+off1],
Memi[bp+off1], nc2)
if (off1 > 0)
call amovki (1, Memi[bp], off1)
if (nc3 > 0)
call amovki (1, Memi[bp+off3], nc3)
} else if (bpm[2] != NULL)
call amovi (Memi[imgl2i(bpm[2],l2)+off2], Memi[bp+off1], nc2)
}
end
procedure cnvgline2 (line, offset, im, skymap, sigmap, expmap,
skydata, sigdata, expdata)
int line #I Line to be read
int offset[2] #I Offsets
pointer im[2] #I Image pointers
pointer skymap[2] #I Sky map
pointer sigmap[2] #I Sky sigma map
pointer expmap[2] #I Exposure map
pointer skydata[2] #U Sky data
pointer sigdata[2] #U Sky sigma data
pointer expdata[2] #U Exposure map data
bool overlap
int nl1, nl2, loff, l2
int nc1, nc2, nc3, off1, off2, off3, c1, c2
pointer ptr
pointer map_glr()
errchk map_glr
begin
# Get data for first image.
skydata[1] = map_glr (skymap[1], line, READ_ONLY)
if (expmap[1] == NULL)
sigdata[1] = map_glr (sigmap[1], line, READ_ONLY)
else {
sigdata[1] = map_glr (sigmap[1], line, READ_WRITE)
expdata[1] = map_glr (expmap[1], line, READ_ONLY)
call expsigma (Memr[sigdata[1]], Memr[expdata[1]],
IM_LEN(im[1],1), 0)
}
if (im[2] == NULL)
return
# Initialize.
if (line == 1) {
nc1 = IM_LEN(im[1],1)
nc2 = IM_LEN(im[2],1)
nl1 = IM_LEN(im[1],2)
nl2 = IM_LEN(im[2],2)
overlap = true
if (1-offset[1] < 1 || nc1-offset[1] > nc2)
overlap = false
if (1-offset[2] < 1 || nl1-offset[2] > nl2)
overlap = false
off2 = -offset[1]
c1 = max (1, 1+off2)
c2 = min (nc2, nc1+off2)
nc2 = c2 - c1 + 1
off1 = c1 - off2 - 1
off3 = c2 - off2
nc3 = nc1 - off3
if (off1 > 0) {
call aclrr (Memr[skydata[2]], off1)
call aclrr (Memr[sigdata[2]], off1)
if (expmap[2] != NULL)
call aclrr (Memr[expdata[2]], off1)
}
if (nc3 > 0) {
call aclrr (Memr[skydata[2]+off3], nc3)
call aclrr (Memr[sigdata[2]+off3], nc3)
if (expmap[2] != NULL)
call aclrr (Memr[expdata[2]+off3], nc3)
}
loff = -offset[2]
if (loff < 0) {
call aclrr (Memr[skydata[2]], nc1)
call aclrr (Memr[sigdata[2]], nc1)
if (expmap[2] != NULL)
call aclrr (Memr[expdata[2]], nc1)
}
}
l2 = line + loff
if (l2 < 1 || l2 > nl2)
return
if (overlap) {
skydata[2] = map_glr (skymap[2], l2, READ_ONLY) + off2
if (expmap[2] == NULL)
sigdata[2] = map_glr (sigmap[2], l2, READ_ONLY) + off2
else {
sigdata[2] = map_glr (sigmap[2], l2, READ_WRITE) + off2
expdata[2] = map_glr (expmap[2], l2, READ_ONLY) + off2
call expsigma (Memr[sigdata[2]], Memr[expdata[2]], nc2, 0)
}
} else {
# Copy the overlapping parts of the second image to the output
# buffers which must be allocated externally.
ptr = map_glr(skymap[2],l2,READ_ONLY)
call amovr (Memr[ptr+off2], Memr[skydata[2]+off1], nc2)
ptr = map_glr(sigmap[2],l2,READ_ONLY)
call amovr (Memr[ptr+off2], Memr[sigdata[2]+off1], nc2)
if (expmap[2] != NULL) {
ptr = map_glr(expmap[2],l2,READ_ONLY)
call amovr (Memr[ptr+off2], Memr[expdata[2]+off1], nc2)
call expsigma (Memr[sigdata[2]], Memr[expdata[2]], nc2, 0)
}
}
end
# CNVPARSE -- Parse convolution string.
procedure cnvparse (cnvstr, kernel, nx, ny, logfd)
char cnvstr[ARB] #I Convolution string
pointer kernel #O Pointer to convolution kernel elements
int nx, ny #O Convolution size
int logfd #I Log file descriptor
int i, j, nx2, ny2
int ip, fd, open(), fscan(), nscan(), ctor(), ctoi(), strncmp()
real val, sx, sy
pointer ptr
errchk open
define unknown_ 10
begin
kernel = NULL
for (ip=1; IS_WHITE(cnvstr[ip]); ip=ip+1)
;
if (cnvstr[ip] == EOS) {
nx = 1
ny = 1
call malloc (kernel, 1, TY_REAL)
Memr[kernel] = 1
} else if (cnvstr[ip] == '@') {
fd = open (cnvstr[ip+1], READ_ONLY, TEXT_FILE)
call malloc (kernel, 100, TY_REAL)
i = 0
nx = 0
ny = 0
while (fscan (fd) != EOF) {
do j = 1, ARB {
call gargr (val)
if (nscan() < j)
break
Memr[kernel+i] = val
i = i + 1
if (mod (i, 100) == 0)
call realloc (kernel, i+100, TY_REAL)
}
j = j - 1
if (nx == 0)
nx = j
else if (j != nx) {
call close (fd)
call error (1,
"Number of convolution elements inconsistent")
}
ny = ny + 1
}
call close (fd)
} else if (IS_ALPHA(cnvstr[ip])) {
if (strncmp ("block", cnvstr[ip], 5) == 0) {
i = 6
if (ctoi (cnvstr[ip], i, nx) == 0 ||
ctoi (cnvstr[ip], i, ny) == 0)
goto unknown_
call malloc (kernel, nx*ny, TY_REAL)
call amovkr (1., Memr[kernel], nx*ny)
} else if (strncmp ("bilinear", cnvstr[ip], 8) == 0) {
i = 9
if (ctoi (cnvstr[ip], i, nx) == 0 ||
ctoi (cnvstr[ip], i, ny) == 0)
goto unknown_
call malloc (kernel, nx*ny, TY_REAL)
nx2 = nx / 2
ny2 = ny / 2
ptr = kernel
do j = 0, ny-1 {
do i = 0, nx-1 {
Memr[ptr] = (nx2-abs(nx2-i)+1) * (ny2-abs(ny2-j)+1)
ptr = ptr + 1
}
}
} else if (strncmp ("gauss", cnvstr[ip], 5) == 0) {
i = 6
if (ctoi (cnvstr[ip], i, nx) == 0 ||
ctoi (cnvstr[ip], i, ny) == 0)
goto unknown_
if (ctor (cnvstr[ip], i, sx) == 0 ||
ctor (cnvstr[ip], i, sy) == 0)
goto unknown_
call malloc (kernel, nx*ny, TY_REAL)
nx2 = nx / 2
ny2 = ny / 2
val = 2 * sx * sy
ptr = kernel
do j = 0, ny-1 {
do i = 0, nx-1 {
Memr[ptr] = exp (-((i-nx2)**2+(j-ny2)**2) / val)
ptr = ptr + 1
}
}
}
} else {
call malloc (kernel, 100, TY_REAL)
i = 0
nx = 0
ny = 0
while (cnvstr[ip] != EOS) {
do j = 1, ARB {
if (ctor (cnvstr, ip, val) == 0)
break
Memr[kernel+i] = val
i = i + 1
if (mod (i, 100) == 0)
call realloc (kernel, i+100, TY_REAL)
}
j = j - 1
if (nx == 0)
nx = j
else if (j != nx)
call error (1,
"Number of convolution elements inconsistent")
ny = ny + 1
if (cnvstr[ip] != EOS)
ip = ip + 1
for (; IS_WHITE(cnvstr[ip]); ip=ip+1)
;
}
}
if (kernel == NULL)
unknown_ call error (1, "Unrecognized convolution")
if (mod (nx, 2) != 1 || mod (ny, 2) != 1) {
call mfree (kernel, TY_REAL)
call error (1, "Convolution size must be odd")
}
if (logfd != NULL) {
ptr = kernel
call eprintf (" Convolution:\n")
do j = 1, ny {
call eprintf (" ")
do i = 1, nx {
call eprintf (" %7.3g")
call pargr (Memr[ptr])
ptr = ptr + 1
}
call eprintf ("\n")
}
}
end
|