aboutsummaryrefslogtreecommitdiff
path: root/noao/nproto/ace/mim.x
blob: 9a621e40e88524483dd05726578ace90f0b07ff4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# MIM (Match IMage) -- Match a 2D image to a 2D reference image.
#
# These routines provide an I/O interface to get data from a 2D image which
# matches a line of a 2D reference image.  The two common uses are to get a
# subraster of the image which matches the reference image and to interpolate
# an image which is blocked to a lower resolution than the reference image.
# The matching is done in physical pixel coordinates.  It is completely
# general in allowing any linear transformation between the physical
# coordinates.  But in most cases the reference image and the input image
# will be related either by an image section or some kind of blocking factor
# without rotation.  Any relative rotation of the two in physical pixels is
# likely to be slow for large images (either the reference image or the mim
# image).  Interpolation (if any is required) is done with the MSI library.
# Extrapolation outside of the input image uses the nearest edge value.
# 
#         mim = mim_open (input, refim)
#         buf = mim_glr (mim, refline)
#               mim_close (mim)
# 
# Parameters may be queried and set by the following routines.
# 
#               mim_geti (mim, param, val)
#               mim_getr (mim, param, val)
#               mim_gets (mim, param, str, maxchar)
#               mim_seti (mim, param, val)
#               mim_setr (mim, param, val)
#               mim_sets (mim, param, str)
# 
# The parameters are specified by strings as given below.  The default values
# are in parentheses.  Currently there are only integer parameters.
# 
#         msitype - interpolation type defined by the MSI library
#                   (II_BISPLINE3)
#         msiedge - number of additional lines at each edge to include
#                   in interpolation (3)
#          msimax - maximum number of pixels to allow in MSIFIT calls (500000)
	

include	<error.h>
include <imhdr.h>
include	<imset.h>
include	<math/iminterp.h>

# Data structure.
define	MIM_LEN		18
define	MIM_INTERP	Memi[$1]	# Use interpolation?
define	MIM_ROTATE	Memi[$1+1]	# Is there any rotation?
define	MIM_IM		Memi[$1+2]	# IMIO mim pointer
define	MIM_MSI		Memi[$1+3]	# MSI interpolation pointer
define	MIM_NCREF	Memi[$1+4]	# Number of columns in ref image
define	MIM_NC		Memi[$1+5]	# Number of columns in input image
define	MIM_NL		Memi[$1+6]	# Number of lines in input image
define	MIM_LINE1	Memi[$1+7]	# First line in msi fit
define	MIM_LINE2	Memi[$1+8]	# Last line in msi fit
define	MIM_X		Memi[$1+9]	# Pointer to line of x values
define	MIM_Y		Memi[$1+10]	# Pointer to line of y values
define	MIM_Z		Memi[$1+11]	# Pointer to line of z values
define	MIM_MW		Memi[$1+12]	# MWCS pointer
define	MIM_CT		Memi[$1+13]	# CT from ref logical to input logical
define	MIM_MSITYPE	Memi[$1+14]	# MSI interpolation type
define	MIM_MSIEDGE	Memi[$1+15]	# Number of edge pixels to reserve
define	MIM_MSIMAX	Memi[$1+16]	# Maximum number of pixels in msi fit
define	MIM_DELETE	Memi[$1+17]	# Delete image after closing?

# Defaults
define	MIM_MSITYPEDEF	II_BISPLINE3
define	MIM_MSIEDGEDEF	3
define	MIM_MSIMAXDEF	500000


# MIM_GL -- Get a line of data matching a line of the reference image.
# A pointer to the data is returned.  The data buffer is assumed to be
# read-only and not to be modified by the calling routine.

pointer procedure mim_glr (mim, line)

pointer	mim		#I Map pointer
int	line		#I Reference image line

int	i, j, nc, nl, ncref, line1, line2, nlines
pointer	msi, ct, x, y, z, imname, ptr
real	rnl, val

real	mw_c1tranr()
pointer	imgl2r(), imgs2r()

errchk	imgl2r, msiinit, msifit, imdelete

begin
	if (mim == NULL)
	    call error (1, "Map is undefined")

	# If interpolation is not needed return the IMIO buffer.
	if (MIM_INTERP(mim) == NO) {
	    ptr = imgl2r (MIM_IM(mim), line)
	    return (ptr)
	}

	nc = MIM_NC(mim)
	nl = MIM_NL(mim)
	ncref = MIM_NCREF(mim)
	rnl = nl
	msi = MIM_MSI(mim)
	ct = MIM_CT(mim)
	x = MIM_X(mim)
	y = MIM_Y(mim)
	z = MIM_Z(mim)

	# Set the interpolation coordinates in the input image logical pixels.
	# This is limited to be within the input image.  Therefore, requests
	# outside the input image will use the nearest edge value.
	# Also set the minimum range of input lines required.

	if (MIM_ROTATE(mim) == NO) {
	    val = mw_c1tranr (ct, real(line))
	    val = max (1., min (rnl, val))
	    call amovkr (val, Memr[y], ncref)
	    line1 = max (1., val - 1)
	    line2 = min (rnl, val + 1)
	} else {
	    call amovkr (real(line), Memr[y], ncref)
	    call mw_v2tranr (ct, Memr[x], Memr[y], Memr[z], Memr[y], ncref)
	    x = z

	    # Limit the x range to within the input image.
	    ptr = x
	    val = nc
	    do i = 1, ncref {
		Memr[ptr] = max (1., min (val, Memr[ptr]))
		ptr = ptr + 1
	    }

	    # Limit the y range to within the input image and find the range
	    # of lines required.
	    j = nint (Memr[y])
	    line1 = max (1, min (nl, j))
	    line2 = line1
	    ptr = y
	    rnl = nl
	    do i = 1, ncref {
		val = max (1., min (rnl, Memr[ptr]))
		j = nint (val)
		line1 = min (j, line1)
		line2 = max (j, line2)
		Memr[ptr] = val
		ptr = ptr + 1
	    }
	    line1 = max (1, line1 - 1)
	    line2 = min (nl, line2 + 1)
	}

	# Set or reset image interpolator.  For small input interpolation
	# images read the entire image, fit the interpolator, and free the
	# image.  For larger input images determine the range of lines
	# required including edge space and fit the interpolator to those
	# lines.  Providing the reference lines are requested sequentially
	# this is about as efficient as we can make it.

	if (line1 < MIM_LINE1(mim) || line2 > MIM_LINE2(mim)) {
	    if (msi != NULL)
		call msifree (MIM_MSI(mim))
	    if (min (nc, nl) > 3)
		call msiinit (MIM_MSI(mim), MIM_MSITYPE(mim))
	    else if (min (nc, nl) > 1)
		call msiinit (MIM_MSI(mim), II_BILINEAR)
	    else
		call msiinit (MIM_MSI(mim), II_BINEAREST)
	    msi = MIM_MSI(mim)
	    if (nc * nl <= MIM_MSIMAX(mim)) {
		nlines = nl
		line1 = 1
		line2 = nlines
		ptr = imgs2r (MIM_IM(mim), 1, nc, line1, line2)
		call msifit (msi, Memr[ptr], nc, nlines, nc)
		if (MIM_DELETE(mim) == YES) {
		    call malloc (imname, SZ_FNAME, TY_CHAR)
		    call imstats (MIM_IM(mim), IM_IMAGENAME, Memc[imname],
			SZ_FNAME)
		    call imgimage (Memc[imname], Memc[imname], SZ_FNAME)
		    call imunmap (MIM_IM(mim))
		    call imdelete (Memc[imname])
		    call mfree (imname, TY_CHAR)
		} else
		    call imunmap (MIM_IM(mim))
	    } else {
		nlines = max (2*MIM_MSIEDGE(mim)+(line2-line1+1),
		    MIM_MSIMAX(mim) / nc)
		line1 = max (1, min (nl, line1 - MIM_MSIEDGE(mim)))
		line2 = max (1, min (nl, line1 + nlines - 1))
		line1 = max (1, min (nl, line2 - nlines + 1))
		nlines = line2 - line1 + 1
		ptr = imgs2r (MIM_IM(mim), 1, nc, line1, line2)
		call msifit (msi, Memr[ptr], nc, nlines, nc)
	    }
	    MIM_LINE1(mim) = line1
	    MIM_LINE2(mim) = line2
	}

	# Interpolate input image to a line in the reference image.
	call msivector (msi, Memr[x], Memr[y], Memr[z], ncref)

	return (z)
end


# MIM_OPEN -- Open an image matched to a reference image.
#
# Fitting of any interpolator is later.  This allows calls to reset
# the interpolation type, edge buffer, and maximum size to fit. 

pointer procedure mim_open (input, refim)

char	input[ARB]	#I Input image name
pointer	refim		#I Reference image
pointer	mim		#O Map pointer returned

bool	interp, rotate
int	i, nc, nl, ncref, nlref, ilt[6]
double	lt[6], ltref[6], ltin[6]
pointer	sp, section, im, mw, ct, x, ptr

int	strlen(), btoi()
pointer	immap(), mw_openim(), mw_sctran()
errchk	calloc, malloc
errchk	immap
errchk	mw_openim, mw_invertd, mw_sctran

begin
	call smark (sp)
	call salloc (section, SZ_FNAME, TY_CHAR)

	iferr {
	    mim = NULL; im = NULL; mw = NULL

	    call calloc (mim, MIM_LEN, TY_STRUCT)
	    MIM_DELETE(mim) = NO

	    call imgimage (input, Memc[section], SZ_FNAME)
	    ptr = immap (Memc[section], READ_ONLY, 0); im = ptr
	    nc = IM_LEN(im,1)
	    nl = IM_LEN(im,2)
	    ncref = IM_LEN(refim,1)
	    nlref = IM_LEN(refim,2)

	    # Check relationship between reference and input images in physical
	    # coordinates.

	    ptr = mw_openim (refim); mw = ptr 
	    call mw_gltermd (mw, lt, lt[5], 2)
	    call mw_close (mw)

	    mw = mw_openim (im)
	    call mw_gltermd (mw, ltin, ltin[5], 2)

	    # Combine lterms.
	    call mw_invertd (lt, ltref, 2)
	    call mw_mmuld (ltref, ltin, lt, 2)
	    call mw_vmuld (lt, lt[5], lt[5], 2)
	    lt[5] = ltin[5] - lt[5]
	    lt[6] = ltin[6] - lt[6]
	    do i = 1, 6
		lt[i] = nint (1D6 * lt[i]) / 1D6

	    # Check if interpolation is required.
	    interp = false
	    do i = 1, 6 {
		ilt[i] = nint (lt[i])
		if (lt[i] - ilt[i] > 1D-3) {
		    interp = true
		    break
		}
	    }
	    if (lt[2] != 0. || lt[3] != 0.)
		rotate = true
	    else
		rotate = false
	    if (!interp && rotate)
		interp = true

	    if (interp) {
		# Use IMIO to extract a smaller section if possible to
		# minimize the requirements for the interpolation.
		# This could be more general if we deal with a section
		# of a rotated image.

		if (!rotate) {
		    ilt[1] = lt[1] + lt[5]
		    ilt[2] = lt[1] * ncref + lt[5] + 0.999
		    ilt[3] = lt[3] + lt[4] + lt[6]
		    ilt[4] = lt[4] * nlref + lt[6] + 0.999
		    ilt[1] = max (1, min (nc, ilt[1]))
		    ilt[2] = max (1, min (nc, ilt[2]))
		    ilt[3] = max (1, min (nl, ilt[3]))
		    ilt[4] = max (1, min (nl, ilt[4]))
		    if (ilt[1]!=1 || ilt[2]!=nc ||ilt[1]!=1 || ilt[2]!=nl) {
			i = strlen(Memc[section]) + 1
			call sprintf (Memc[section+i-1], SZ_FNAME-i,
			    "[%d:%d,%d:%d]")
			    call pargi (ilt[1])
			    call pargi (ilt[2])
			    call pargi (ilt[3])
			    call pargi (ilt[4])
			call imunmap (im)
			im = immap (Memc[section], READ_ONLY, 0)
			nc = IM_LEN(im,1)
			nl = IM_LEN(im,2)
			lt[5] = lt[5] - ilt[1] + 1
			lt[6] = lt[6] - ilt[3] + 1
		    }
		}

		# Set reference logical to input logical transformation.
		# The reference logical coordinates are the physical
		# coordinates of the transformation.

		call mw_sltermd (mw, lt, lt[5], 2)

		# If there are cross terms set the x array to the reference
		# logical coordinates (physical transformation coordinates).
		# Otherwise we only need to evalute x array once in the
		# input logical coordinates to be interpolated.

		call malloc (x, ncref, TY_REAL)
		do i = 1, ncref
		    Memr[x+i-1] = i
		if (rotate)
		    ct = mw_sctran (mw, "physical", "logical", 3B)
		else {
		    ct = mw_sctran (mw, "physical", "logical", 1B)
		    call mw_v1tranr (ct, Memr[x], Memr[x], ncref)
		    ptr = x
		    do i = 1, ncref {
			Memr[ptr] = max (1., min (real(nc), Memr[ptr]))
			ptr = ptr + 1
		    }
		    call mw_ctfree (ct)
		    ct = mw_sctran (mw, "physical", "logical", 2B)
		}

		MIM_X(mim) = x
		call malloc (MIM_Y(mim), ncref, TY_REAL)
		call malloc (MIM_Z(mim), ncref, TY_REAL)
		MIM_MW(mim) = mw
		MIM_CT(mim) = ct
		MIM_MSITYPE(mim) = MIM_MSITYPEDEF
		MIM_MSIEDGE(mim) = MIM_MSIEDGEDEF
		MIM_MSIMAX(mim) = MIM_MSIMAXDEF

	    } else {
		# If ref is a subraster of the input use IMIO section to match.
		if (ilt[1]!=1 || ilt[4]!=1 || ilt[5]!=0 || ilt[6]!=0) {
		    i = strlen(Memc[section]) + 1
		    call sprintf (Memc[section+i-1], SZ_FNAME-i,
			"[%d:%d:%d,%d:%d:%d]")
			call pargi (ilt[1]+ilt[5])
			call pargi (ilt[1]*ncref+ilt[5])
			call pargi (ilt[1])
			call pargi (ilt[4]+ilt[6])
			call pargi (ilt[4]*nlref+ilt[6])
			call pargi (ilt[4])
		    call imunmap (im)
		    im = immap (Memc[section], READ_ONLY, 0)
		    nc = IM_LEN(im,1)
		    nl = IM_LEN(im,2)
		}
		call mw_close (mw)
	    }

	    MIM_IM(mim) = im
	    MIM_INTERP(mim) = btoi (interp)
	    MIM_ROTATE(mim) = btoi (rotate)
	    MIM_NC(mim) = nc
	    MIM_NL(mim) = nl
	    MIM_NCREF(mim) = ncref
	} then {
	    if (mw != NULL)
		call mw_close (mw)
	    if (im != NULL)
		call imunmap (im)
	    call mim_close (mim)
	    call sfree (sp)
	    call erract (EA_ERROR)
	}

	call sfree (sp)
	return (mim)
end


# MIM_CLOSE -- Close mim structure.

procedure mim_close (mim)

pointer	mim			#I MIM pointer

pointer	imname
errchk	imdelete

begin
	if (mim == NULL)
	    return

	if (MIM_IM(mim) != NULL) {
	    if (MIM_DELETE(mim) == YES) {
		call malloc (imname, SZ_FNAME, TY_CHAR)
		call imstats (MIM_IM(mim), IM_IMAGENAME, Memc[imname], SZ_FNAME)
		call imgimage (Memc[imname], Memc[imname], SZ_FNAME)
		call imunmap (MIM_IM(mim))
		call imdelete (Memc[imname])
		call mfree (imname, TY_CHAR)
	    } else
		call imunmap (MIM_IM(mim))
	}
	if (MIM_MSI(mim) != NULL)
	    call msifree (MIM_MSI(mim))
	if (MIM_MW(mim) != NULL)
	    call mw_close (MIM_MW(mim))
	call mfree (MIM_X(mim), TY_REAL)
	call mfree (MIM_Y(mim), TY_REAL)
	call mfree (MIM_Z(mim), TY_REAL)
	call mfree (mim, TY_STRUCT)
end


# MIM_GETS -- Get string parameter.

procedure mim_gets (mim, param, val, maxchar)

pointer	mim		#I MIM pointer
char	param[ARB]	#I Parameter
char	val[ARB]	#O Parameter string value 
int	maxchar		#I Maximum number of characters to return

begin
	call error (1, "mim_gets: unknown parameter")
end


# MIM_GETI -- Get integer parameter.

procedure mim_geti (mim, param, val)

pointer	mim		#I MIM pointer
char	param[ARB]	#I Parameter
int	val		#O Value

bool	streq()

begin
	if (streq (param, "msitype"))
	    val = MIM_MSITYPE(mim)
	else if (streq (param, "msiedge"))
	    val = MIM_MSIEDGE(mim)
	else if (streq (param, "msimax"))
	    val = MIM_MSIMAX(mim)
	else if (streq (param, "delete"))
	    val = MIM_DELETE(mim)
	else
	    call error (1, "mim_geti: unknown parameter")
end


# MIM_GETR -- Get real parameter.

procedure mim_getr (mim, param, val)

pointer	mim		#I MIM pointer
char	param[ARB]	#I Parameter
real	val		#O Value

begin
	call error (1, "mim_getr: unknown parameter")
end


# MIM_SETS -- Set string parameter.

procedure mim_sets (mim, param, val)

pointer	mim		#I MIM pointer
char	param[ARB]	#I Parameter
char	val[ARB]	#I Value

begin
	call error (1, "mim_sets: unknown parameter")
end


# MIM_SETI -- Set integer parameter.

procedure mim_seti (mim, param, val)

pointer	mim		#I MIM pointer
char	param[ARB]	#I Parameter
int	val		#I Value

bool	streq()

begin
	if (streq (param, "msitype")) {
	    if (val != MIM_MSITYPE(mim)) {
		MIM_MSITYPE(mim) = val
		if (MIM_MSI(mim) != NULL) {
		    call msifree (MIM_MSI(mim))
		    MIM_LINE1(mim) = 0
		    MIM_LINE2(mim) = 0
		}
	    }
	} else if (streq (param, "msiedge")) {
	    if (val != max (3, MIM_MSIEDGE(mim))) {
		MIM_MSIEDGE(mim) = val
		if (MIM_MSI(mim) != NULL) {
		    call msifree (MIM_MSI(mim))
		    MIM_LINE1(mim) = 0
		    MIM_LINE2(mim) = 0
		}
	    }
	} else if (streq (param, "msimax")) {
	    if (val != max (64000, MIM_MSIMAX(mim))) {
		MIM_MSIMAX(mim) = val
		if (MIM_MSI(mim) != NULL) {
		    call msifree (MIM_MSI(mim))
		    MIM_LINE1(mim) = 0
		    MIM_LINE2(mim) = 0
		}
	    }
	} else if (streq (param, "delete"))
	    MIM_DELETE(mim) = val
	else
	    call error (1, "mim_setr: unknown parameter")
end


# MIM_SETR -- Set real parameter.

procedure mim_setr (mim, param, val)

pointer	mim		#I MIM pointer
char	param[ARB]	#I Parameter
real	val		#I Value

begin
	call error (1, "mim_setr: unknown parameter")
end