1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
include <imhdr.h>
include "iralign.h"
define NYOUT 16
define NMARGIN 4
# IR_SHIFTS -- Compute the input and output image column limits and the
# x and y shifts.
procedure ir_shifts (ir, im, outim, xrshifts, yrshifts, xcshifts,
ycshifts, ic1, ic2, il1, il2, oc1, oc2, ol1, ol2, deltax, deltay)
pointer ir # pointer to the ir structure
pointer im # pointer to the input image
pointer outim # pointer to the output image
real xrshifts[ARB] # x row shifts
real yrshifts[ARB] # y row shifts
real xcshifts[ARB] # x column shifts
real ycshifts[ARB] # y column shifts
int ic1[ARB] # input beginning column limits
int ic2[ARB] # input ending column limits
int il1[ARB] # input beginning line limits
int il2[ARB] # input ending line limits
int oc1[ARB] # output beginning column limits
int oc2[ARB] # output ending column limits
int ol1[ARB] # output beginning line limits
int ol2[ARB] # output ending line limits
real deltax[ARB] # x shifts
real deltay[ARB] # x shifts
int i, j, k, nimages, nxsize, nysize, nimcols, nimlines
int c1ref, c2ref, l1ref, l2ref, ideltax, ideltay
begin
# Find the position in the output image of the reference subraster.
nxsize = IR_NCOLS(ir) - IR_NXOVERLAP(ir)
nysize = IR_NROWS(ir) - IR_NYOVERLAP(ir)
c1ref = (IR_NXRSUB(ir) - 1) * nxsize + 1 + IR_XREF(ir)
c2ref = c1ref + IR_NCOLS(ir) - 1
l1ref = (IR_NYRSUB(ir) - 1) * nysize + 1 + IR_YREF(ir)
l2ref = l1ref + IR_NROWS(ir) - 1
nimages = IR_NXSUB(ir) * IR_NYSUB(ir)
# Extract the subrasters one by one.
do i = 1, nimages {
# Compute the indices of each subraster.
call ir_indices (i, j, k, IR_NXSUB(ir), IR_NYSUB(ir),
IR_CORNER(ir), IR_RASTER(ir), IR_ORDER(ir))
# Compute the indices of the input subraster.
nimcols = IM_LEN(im,1)
nimlines = IM_LEN(im,2)
ic1[i] = max (1, min (1 + (j - 1) * nxsize, nimcols))
ic2[i] = min (nimcols, max (1, ic1[i] + IR_NCOLS(ir) - 1))
il1[i] = max (1, min (1 + (k - 1) * nysize, nimlines))
il2[i] = min (nimlines, max (1, il1[i] + IR_NROWS(ir) - 1))
# Compute the shift relative to the input subraster.
call ir_mkshift (xrshifts, yrshifts, xcshifts, ycshifts,
IR_NXSUB(ir), IR_NYSUB(ir), j, k, IR_NXRSUB(ir),
IR_NYRSUB(ir), IR_ORDER(ir), deltax[i], deltay[i])
ideltax = nint (deltax[i])
ideltay = nint (deltay[i])
# Get the output buffer.
oc1[i] = c1ref + (j - IR_NXRSUB(ir)) * IR_NCOLS(ir) +
ideltax
oc2[i] = c2ref + (j - IR_NXRSUB(ir)) * IR_NCOLS(ir) +
ideltax
ol1[i] = l1ref + (k - IR_NYRSUB(ir)) * IR_NROWS(ir) +
ideltay
ol2[i] = l2ref + (k - IR_NYRSUB(ir)) * IR_NROWS(ir) +
ideltay
}
end
# IR_FSHIFTS -- Compute the input and output column limits.
procedure ir_fshifts (ir, im, outim, deltax, deltay, ic1, ic2, il1, il2,
oc1, oc2, ol1, ol2)
pointer ir # pointer to the ir structure
pointer im # pointer to the input image
pointer outim # pointer to the output image
real deltax[ARB] # x shifts
real deltay[ARB] # x shifts
int ic1[ARB] # input beginning column limits
int ic2[ARB] # input ending column limits
int il1[ARB] # input beginning line limits
int il2[ARB] # input ending line limits
int oc1[ARB] # output beginning column limits
int oc2[ARB] # output ending column limits
int ol1[ARB] # output beginning line limits
int ol2[ARB] # output ending line limits
int i, j, k, nimages, nxsize, nysize, nimcols, nimlines
int c1ref, c2ref, l1ref, l2ref, ideltax, ideltay
begin
# Find the position in the output image of the reference subraster.
nxsize = IR_NCOLS(ir) - IR_NXOVERLAP(ir)
nysize = IR_NROWS(ir) - IR_NYOVERLAP(ir)
c1ref = (IR_NXRSUB(ir) - 1) * nxsize + 1 + IR_XREF(ir)
c2ref = c1ref + IR_NCOLS(ir) - 1
l1ref = (IR_NYRSUB(ir) - 1) * nysize + 1 + IR_YREF(ir)
l2ref = l1ref + IR_NROWS(ir) - 1
nimages = IR_NXSUB(ir) * IR_NYSUB(ir)
# Extract the subrasters one by one.
do i = 1, nimages {
# Compute the indices of each subraster.
call ir_indices (i, j, k, IR_NXSUB(ir), IR_NYSUB(ir),
IR_CORNER(ir), IR_RASTER(ir), IR_ORDER(ir))
# Compute the indices of the input subraster.
nimcols = IM_LEN(im,1)
nimlines = IM_LEN(im,2)
ic1[i] = max (1, min (1 + (j - 1) * nxsize, nimcols))
ic2[i] = min (nimcols, max (1, ic1[i] + IR_NCOLS(ir) - 1))
il1[i] = max (1, min (1 + (k - 1) * nysize, nimlines))
il2[i] = min (nimlines, max (1, il1[i] + IR_NROWS(ir) - 1))
# Compute the shift relative to the input subraster.
ideltax = nint (deltax[i])
ideltay = nint (deltay[i])
# Get the output buffer.
oc1[i] = c1ref + (j - IR_NXRSUB(ir)) * IR_NCOLS(ir) +
ideltax
oc2[i] = c2ref + (j - IR_NXRSUB(ir)) * IR_NCOLS(ir) +
ideltax
ol1[i] = l1ref + (k - IR_NYRSUB(ir)) * IR_NROWS(ir) +
ideltay
ol2[i] = l2ref + (k - IR_NYRSUB(ir)) * IR_NROWS(ir) +
ideltay
}
end
# IR_SUBALIGN -- Align all the subrasters.
procedure ir_subalign (ir, im, outim, trimlimits, ic1, ic2, il1, il2,
oc1, oc2, ol1, ol2, deltax, deltay, deltai, match, interp, verbose)
pointer ir # pointer to the ir structure
pointer im # pointer to the input image
pointer outim # pointer to the output image
char trimlimits[ARB] # compute the trim section
int ic1[ARB] # input image beginning columns
int ic2[ARB] # input image ending columns
int il1[ARB] # input image beginning rows
int il2[ARB] # input image ending rows
int oc1[ARB] # output image beginning columns
int oc2[ARB] # output image ending columns
int ol1[ARB] # output image beginning rows
int ol2[ARB] # output image ending rows
real deltax[ARB] # array of x shifts
real deltay[ARB] # array of y shifts
real deltai[ARB] # array of intensity shifts
int match # match intensities ?
int interp # type of interpolant
int verbose # print messages
int i, k, tl1, tl2, tc1, tc2, nimcols, nimlines, nimages
int ideltax, ideltay, lxoffset, hxoffset, lyoffset, hyoffset
int ixoffset, iyoffset, nocols, norows, cin1, cin2, nicols
int tlin1, lin1, lin2, nilines, lout1, lout2, nyout, fstline, lstline
pointer sp, x, y, msi, inbuf, outbuf, ptr
real dx, dy, ytemp
int ir_decode_section()
pointer imps2r()
begin
# Allocate temporary space.
call smark (sp)
call salloc (x, IR_NCOLS(ir), TY_REAL)
call salloc (y, IR_NCOLS(ir), TY_REAL)
# Decode the trimsection.
if (ir_decode_section (trimlimits, IR_NCOLS(ir), IR_NROWS(ir),
tc1, tc2, tl1, tl2) == ERR) {
tc1 = 0
tc2 = 0
tl1 = 0
tl2 = 0
} else {
tc1 = max (0, min (tc1, IR_NCOLS(ir)))
tc2 = max (0, min (tc2, IR_NCOLS(ir)))
tl1 = max (0, min (tl1, IR_NROWS(ir)))
tl2 = max (0, min (tl2, IR_NROWS(ir)))
}
# Initialize the interpolant.
call msiinit (msi, interp)
nimcols = IM_LEN(outim,1)
nimlines = IM_LEN(outim,2)
# Extract the subrasters one by one.
nimages = IR_NXSUB(ir) * IR_NYSUB(ir)
do i = 1, nimages {
inbuf = NULL
# Reject and subraster which is off the image.
if (oc1[i] > nimcols || oc2[i] < 1 || ol1[i] > nimlines ||
ol2[i] < 1)
next
# Compute the integer and fractional part of the shift.
ideltax = nint (deltax[i])
ideltay = nint (deltay[i])
dx = deltax[i] - ideltax
dy = deltay[i] - ideltay
# Compute the output image limits.
lxoffset = max (1 - oc1[i], tc1)
hxoffset = max (oc2[i] - nimcols, tc2)
oc1[i] = max (1, min (nimcols, oc1[i] + lxoffset))
oc2[i] = min (nimcols, max (1, oc2[i] - hxoffset))
nocols = oc2[i] - oc1[i] + 1
lyoffset = max (1 - ol1[i], tl1)
hyoffset = max (ol2[i] - nimlines, tl2)
ol1[i] = max (1, min (nimlines, ol1[i] + lyoffset))
ol2[i] = min (nimlines, max (1, ol2[i] - hyoffset))
norows = ol2[i] - ol1[i] + 1
# Compute some input image parameters.
cin1 = max (ic1[i], min (ic1[i] + lxoffset - NMARGIN, ic2[i]))
cin2 = min (ic2[i], max (ic2[i] - hxoffset + NMARGIN, ic1[i]))
nicols = cin2 - cin1 + 1
# Compute the x offset and x interpolation coordinates.
ixoffset = min (lxoffset, NMARGIN)
do k = 1, nicols
Memr[x+k-1] = max (1.0, min (real (nicols), real (k + ixoffset -
dx)))
# Subdivide the image and do the shifting.
for (lout1 = ol1[i]; lout1 <= ol2[i]; lout1 = lout1 + NYOUT) {
# Compute the output image limits.
lout2 = min (ol2[i], lout1 + NYOUT - 1)
nyout = lout2 - lout1 + 1
# Compute the input image limits.
tlin1 = il1[i] + lyoffset + lout1 - ol1[i]
lin2 = min (il2[i], max (tlin1 + nyout + NMARGIN - 1, il1[i]))
lin1 = max (il1[i], min (tlin1 - NMARGIN, il2[i]))
nilines = lin2 - lin1 + 1
# Get the appropriate input image section and fit the
# interpolant.
if ((inbuf == NULL) || (lin1 < fstline) || (lin2 > lstline)) {
fstline = lin1
lstline = lin2
call ir_buf (im, cin1, cin2, lin1, lin2, inbuf)
call msifit (msi, Memr[inbuf], nicols, nilines, nicols)
}
# Get the y offset and y interpolation coordinates.
#iyoffset = max (0, lout1 - ideltay - lin1)
if (lout1 == ol1[i])
iyoffset = min (lyoffset, NMARGIN)
else
iyoffset = tlin1 - lin1
# Shift the input images.
outbuf = imps2r (outim, oc1[i], oc2[i], lout1, lout2)
ptr = outbuf
do k = 1, nyout {
ytemp = max (1.0, min (real (nilines), real (k + iyoffset -
dy)))
call amovkr (ytemp, Memr[y], nocols)
call msivector (msi, Memr[x], Memr[y], Memr[ptr], nocols)
ptr = ptr + nocols
}
# Shift the intensities.
if (match == YES && ! IS_INDEFR(deltai[i]))
call aaddkr (Memr[outbuf], deltai[i], Memr[outbuf],
nocols * nyout)
}
if (inbuf != NULL)
call mfree (inbuf, TY_REAL)
inbuf = NULL
# Print a message.
if (verbose == YES) {
call printf (" %s[%d:%d,%d:%d] [%d:%d,%d:%d] %g %g")
call pargstr (IM_HDRFILE(im))
call pargi (ic1[i])
call pargi (ic2[i])
call pargi (il1[i])
call pargi (il2[i])
call pargi (lxoffset + 1)
call pargi (lxoffset + nocols)
call pargi (lyoffset + 1)
call pargi (lyoffset + norows)
call pargr (deltax[i])
call pargr (deltay[i])
call printf (" %s[%d:%d,%d:%d] %g\n")
call pargstr (IM_HDRFILE(outim))
call pargi (oc1[i])
call pargi (oc2[i])
call pargi (ol1[i])
call pargi (ol2[i])
call pargr (deltai[i])
}
}
call msifree (msi)
call sfree (sp)
end
# IR_BUF -- Procedure to provide a buffer of image lines with minimum reads.
procedure ir_buf (im, col1, col2, line1, line2, buf)
pointer im # pointer to input image
int col1, col2 # column range of input buffer
int line1, line2 # line range of input buffer
pointer buf # buffer
int i, ncols, nlines, nclast, llast1, llast2, nllast
pointer buf1, buf2
pointer imgs2r()
begin
ncols = col2 - col1 + 1
nlines = line2 - line1 + 1
if (buf == NULL) {
call malloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
} else if ((nlines != nllast) || (ncols != nclast)) {
call realloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
}
if (line1 < llast1) {
do i = line2, line1, -1 {
if (i > llast1)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
} else if (line2 > llast2) {
do i = line1, line2 {
if (i < llast2)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
}
llast1 = line1
llast2 = line2
nclast = ncols
nllast = nlines
end
|