1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
|
include <error.h>
include <imhdr.h>
include <mach.h>
include <math.h>
include <math/curfit.h>
include <math/iminterp.h>
include "specfocus.h"
# T_SPECFOCUS -- Spectral focusing task
procedure t_specfocus ()
int list # List of images
pointer fvals # List of focus values
int dispaxis # Default dispersion axis
int amin # Lower edge of data along slit
int amax # Upper edge of data along slit
int nspec # Number of spectra to subdivide width
int ndisp # Number of dispersion samples
int lag # Maximum lag
real level # Level for width
bool shifts # Measure shifts?
int log # Log file descriptor
int i, j, k, l, nimages, npix, nprep
int aaxis, a1, da, na
int baxis, b1, db, nb
int c1, dc, nc
int l1, dl, nl
pointer sp, image, sys
pointer rg, sfs, sf, sfd, sfavg, sfbest, im, mw, data, buf1, buf2
pointer rng_open(), immap(), imgl2r(), mw_openim()
int clgeti(), imgeti(), imtopenp(), imtlen(), imtgetim(), nowhite()
int rng_index(), open()
real rval, clgetr(), imgetr(), asumr()
bool ms, clgetb(), streq()
errchk immap, spf_width
int spf_compare()
extern spf_compare
begin
call smark (sp)
call salloc (fvals, SZ_LINE, TY_CHAR)
call salloc (image, SZ_FNAME, TY_CHAR)
call salloc (sys, SZ_FNAME, TY_CHAR)
# Get task parameters (except log file)
list = imtopenp ("images")
call clgstr ("focus", Memc[fvals], SZ_LINE)
dispaxis = clgeti ("dispaxis")
amin = clgeti ("slit1")
amax = clgeti ("slit2")
nspec = clgeti ("nspectra")
ndisp = clgeti ("ndisp")
lag = (clgeti ("corwidth") + 1) / 2
level = clgetr ("level")
shifts = clgetb ("shifts")
if (level > 1.)
level = level / 100.
level = max (0.05, min (0.95, level))
# Initialize focus values
if (nowhite (Memc[fvals], Memc[fvals], SZ_LINE) == 0)
call strcpy ("1x1", Memc[fvals], SZ_LINE)
iferr (rg = rng_open (Memc[fvals], -MAX_REAL, MAX_REAL, 1.))
rg = NULL
# Allocate array for the image focus data structure pointers
nimages = imtlen (list)
call malloc (sfs, nimages, TY_POINTER)
# Accumulate the focus data
nimages = 0
while (imtgetim (list, Memc[image], SZ_FNAME) != EOF) {
im = immap (Memc[image], READ_ONLY, 0)
mw = mw_openim (im)
call mw_gsystem (mw, Memc[sys], SZ_FNAME)
ms = streq (Memc[sys], "multispec")
call mw_close (mw)
# Set the focus value
if (rg != NULL) {
if (rng_index (rg, nimages+1, rval) == EOF)
call error (1, "Focus list ended prematurely")
} else
rval = imgetr (im, Memc[fvals])
# Set dispersion and cross dispersion axes
if (ms) {
baxis = 1
aaxis = 2
# Set sampling across the dispersion axis
if (IS_INDEFI (amin))
i = 1
else
i = amin
if (IS_INDEFI (amax))
j = IM_LEN(im,aaxis)
else
j = amax
a1 = max (1, min (i, j))
da = min (IM_LEN(im,aaxis), max (i, j)) - a1 + 1
if (da < 1)
call error (1, "Error in slit limits")
na = da
da = da / na
# Set sampling along the dispersion axis
npix = IM_LEN(im,baxis)
nb = min (ndisp, npix / 100)
db = npix / nb
b1 = 1 + (npix - nb * db) / 2
# Set sampling along the columns and lines
c1 = b1; dc = db; nc = nb
l1 = a1; dl = da; nl = na
} else {
iferr (baxis = imgeti (im, "dispaxis"))
baxis = dispaxis
aaxis = 3 - baxis
# Set sampling across the dispersion axis
if (IS_INDEFI (amin))
i = 1
else
i = amin
if (IS_INDEFI (amax))
j = IM_LEN(im,aaxis)
else
j = amax
a1 = max (1, min (i, j))
da = min (IM_LEN(im,aaxis), max (i, j)) - a1 + 1
if (da < 1)
call error (1, "Error in slit limits")
na = min (nspec, da)
da = da / na
# Set sampling along the dispersion axis
npix = IM_LEN(im,baxis)
nb = min (ndisp, npix / 100)
db = npix / nb
b1 = 1 + (npix - nb * db) / 2
# Set sampling along the columns and lines
if (baxis == 1) {
c1 = b1; dc = db; nc = nb
l1 = a1; dl = da; nl = na
} else {
c1 = a1; dc = da; nc = na
l1 = b1; dl = db; nl = nb
}
}
# Check for consistency
if (nimages > 0) {
if (baxis!=SF_AXIS(sf) ||
c1!=SF_X1(sf) || dc!=SF_DX(sf) || nc!=SF_NX(sf) ||
l1!=SF_Y1(sf) || dl!=SF_DY(sf) || nl!=SF_NY(sf))
call error (1, "Input images have different formats")
}
# Allocate the focus data structure for the image
call spf_alloc (sf, Memc[image], rval, level, baxis, npix, na,
c1, dc, nc, l1, dl, nl)
# Get the spectrum samples
if (baxis == 1) {
do i = 1, na {
k = a1 + (i - 1) * da
l = k + da - 1
data = SF_DATA(sf) + (i - 1) * npix
do j = k, l
call aaddr (Memr[imgl2r(im,j)], Memr[data], Memr[data],
npix)
}
} else {
do j = 1, npix {
buf1 = imgl2r (im, j)
data = SF_DATA(sf) + j - 1
do i = 1, na {
k = a1 + (i - 1) * da
Memr[data] = asumr (Memr[buf1+k-1], da)
data = data + npix
}
}
}
Memi[sfs+nimages] = sf
nimages = nimages + 1
call imunmap (im)
}
if (nimages == 0)
call error (1, "No input data")
# Sort the structures
call qsort (Memi[sfs], nimages, spf_compare)
# Allocate structure for the best focus
call spf_alloc (sfavg, "Best", INDEF, level, baxis, 0, 0, c1, dc, nc,
l1, dl, nl)
# Compute the correlations and profile width and position
nprep = db + 2 * lag
call malloc (buf1, nprep, TY_REAL)
call malloc (buf2, nprep, TY_REAL)
l = (na + 1) / 2
do k = 1, nimages {
sf = Memi[sfs+k-1]
do i = 1, nb {
if (baxis == 1)
sfd = SFD(sf,i,l)
else
sfd = SFD(sf,l,i)
call spf_prep (Memr[SF_SPEC(sfd)], db, Memr[buf1], nprep)
call spf_corr (Memr[buf1], Memr[buf1], nprep, lag,
SF_ASI(sfd), SF_POS(sfd), SF_WID(sfd), SF_LEVEL(sf))
do j = 1, na {
if (j != l) {
if (baxis == 1)
sfd = SFD(sf,i,j)
else
sfd = SFD(sf,j,i)
call spf_prep (Memr[SF_SPEC(sfd)], db, Memr[buf2],
nprep)
call spf_corr (Memr[buf2], Memr[buf2], nprep, lag,
SF_ASI(sfd), SF_POS(sfd), SF_WID(sfd), SF_LEVEL(sf))
if (shifts)
call spf_corr (Memr[buf2], Memr[buf1], nprep,
lag, SF_ASI(sfd), SF_POS(sfd), rval,
SF_LEVEL(sf))
}
}
}
}
call mfree (buf1, TY_REAL)
call mfree (buf2, TY_REAL)
# Set the averages
call spf_fitfocus (Memi[sfs], nimages, sfavg, sfbest)
# Graph the results
call spf_graph (sfavg, sfbest, Memi[sfs], nimages, lag)
# Log the results
call spf_log (sfavg, sfbest, Memi[sfs], nimages, shifts, STDOUT)
call clgstr ("logfile", Memc[image], SZ_FNAME)
ifnoerr (log = open (Memc[image], APPEND, TEXT_FILE)) {
call spf_log (sfavg, sfbest, Memi[sfs], nimages, shifts, log)
call close (log)
}
# Finish up
do i = 1, nimages
call spf_free (Memi[sfs+i-1])
call spf_free (sfavg)
call mfree (sfs, TY_POINTER)
call rng_close (rg)
call imtclose (list)
call sfree (sp)
end
# SPF_ALLOC -- Allocate a focus data structure for an image
procedure spf_alloc (sf, image, focus, level, axis, ndisp, nspec,
x1, dx, nx, y1, dy, ny)
pointer sf # Image focus data structure
char image[ARB] # Image name
real focus # Focus value
real level # Level for width
int axis # Dispersion axis
int ndisp # Number of pixels (along dispersion)
int nspec # Number of spectra (across dispersion)
int x1, dx, nx # X sampling
int y1, dy, ny # Y sampling
int i, j
pointer data, sfd
begin
call calloc (sf, LEN_SF, TY_STRUCT)
call strcpy (image, SF_IMAGE(sf), SZ_SFFNAME)
SF_FOCUS(sf) = focus
SF_WIDTH(sf) = INDEF
SF_LEVEL(sf) = level
SF_AXIS(sf) = axis
SF_X1(sf) = x1
SF_DX(sf) = dx
SF_NX(sf) = nx
SF_Y1(sf) = y1
SF_DY(sf) = dy
SF_NY(sf) = ny
call malloc (SF_SFD(sf), nx*ny, TY_POINTER)
SF_NSFD(sf) = nx*ny
SF_NPIX(sf) = ndisp
if (ndisp > 0)
call calloc (SF_DATA(sf), ndisp * nspec, TY_REAL)
data = SF_DATA(sf)
do j = 1, ny {
do i = 1, nx {
call calloc (sfd, LEN_SFD, TY_STRUCT)
SFD(sf,i,j) = sfd
SF_X(sfd) = x1 + (i - 0.5) * dx
SF_Y(sfd) = y1 + (j - 0.5) * dy
if (ndisp > 0) {
if (axis == 1)
SF_SPEC(sfd) = data + (j-1)*ndisp + (i-1)*dx + x1-1
else
SF_SPEC(sfd) = data + (i-1)*ndisp + (j-1)*dy + y1-1
}
call asiinit (SF_ASI(sfd), II_SPLINE3)
SF_FOC(sfd) = focus
SF_WID(sfd) = INDEF
SF_POS(sfd) = INDEF
SF_DEL(sfd) = NO
}
}
end
# SPF_FREE -- Free a focus image data structure
procedure spf_free (sf)
pointer sf # Image focus data structure
int i
pointer sfd
begin
do i = 1, SF_NSFD(sf) {
sfd = SFD(sf,i,1)
call asifree (SF_ASI(sfd))
call mfree (sfd, TY_STRUCT)
}
call mfree (SF_DATA(sf), TY_REAL)
call mfree (SF_SFD(sf), TY_POINTER)
call mfree (sf, TY_STRUCT)
end
# SPF_PREP -- Prepare spectra for correlation: fit continuum, subtract, taper
procedure spf_prep (in, nin, out, nout)
real in[nin] # Input spectrum
int nin # Number of pixels in input spectrum
real out[nout] # Output spectrum
int nout # Number of pixels output spectrum (nin+2*lag)
int i, lag
real cveval()
pointer sp, x, w, ic, cv
begin
call smark (sp)
call salloc (x, nin, TY_REAL)
call salloc (w, nin, TY_REAL)
call ic_open (ic)
call ic_pstr (ic, "function", "chebyshev")
call ic_puti (ic, "order", 3)
call ic_putr (ic, "low", 3.)
call ic_putr (ic, "high", 1.)
call ic_puti (ic, "niterate", 5)
call ic_putr (ic, "grow", 1.)
call ic_putr (ic, "xmin", 1.)
call ic_putr (ic, "xmax", real(nin))
do i = 1, nin {
Memr[x+i-1] = i
Memr[w+i-1] = 1
}
call ic_fit (ic, cv, Memr[x], in, Memr[w], nin, YES, YES, YES, YES)
lag = (nout - nin) / 2
do i = 1-lag, 0
out[i+lag] = 0.
do i = 1, lag-1
out[i+lag] = (1-cos (PI*i/lag))/2 * (in[i] - cveval (cv, real(i)))
do i = lag, nin-lag+1
out[i+lag] = (in[i] - cveval (cv, real(i)))
do i = nin-lag+2, nin
out[i+lag] = (1-cos (PI*(nin+1-i)/lag))/2 *
(in[i] - cveval (cv, real(i)))
do i = nin+1, nin+lag
out[i+lag] = 0.
call cvfree (cv)
call ic_closer (ic)
call sfree (sp)
end
# SPF_CORR -- Correlate spectra, fit profile, and measure center/width
procedure spf_corr (spec1, spec2, npix, lag, asi, center, width, level)
real spec1[npix] # First spectrum
real spec2[npix] # Second spectrum
int npix # Number of pixels in spectra
int lag # Maximum correlation lag
pointer asi # Pointer to correlation profile interpolator
real center # Center of profile
real width # Width of profile
real level # Level at which width is determined
int i, j, nprof
real x, p, pmin, pmax, asieval()
pointer sp, prof
begin
nprof = 2 * lag + 1
call smark (sp)
call salloc (prof, nprof, TY_REAL)
do j = -lag, lag {
p = 0.
do i = 1+lag, npix-lag
p = p + spec1[i] * spec2[i-j]
Memr[prof+j+lag] = p
}
# Fit interpolator
call asifit (asi, Memr[prof], nprof)
# Find the minimum and maximum
center = 1.
pmin = asieval (asi, 1.)
pmax = pmin
for (x=1; x<=nprof; x=x+.01) {
p = asieval (asi, x)
if (p < pmin)
pmin = p
if (p > pmax) {
pmax = p
center = x
}
}
# Normalize
pmax = pmax - pmin
do i = 0, nprof-1
Memr[prof+i] = (Memr[prof+i] - pmin) / pmax
call asifit (asi, Memr[prof], nprof)
# Find the equal flux points
for (x=center; x>=1 && asieval (asi,x)>level; x=x-0.01)
;
width = x
for (x=center; x<=nprof && asieval (asi,x)>level; x=x+0.01)
;
width = (x - width - 0.01) / sqrt (2.)
center = center - lag - 1
call sfree (sp)
end
# SPF_FITFOCUS -- Find the best focus at each sample and the average over all
# samples.
procedure spf_fitfocus (sfs, nimages, sfavg, sfbest)
pointer sfs[nimages] #I Images
int nimages #I Number of images
pointer sfavg #U Average image
pointer sfbest #U Best focus image
int i, j, n, jmin, nims
pointer sp, x, y, z, sfd
real focus, fwhm, pos, foc
bool fp_equalr()
define avg_ 10
begin
call smark (sp)
call salloc (x, nimages, TY_REAL)
call salloc (y, nimages, TY_REAL)
call salloc (z, nimages, TY_REAL)
do i = 1, SF_NSFD(sfavg) {
# Collect the focus values
nims = 0
do j = 1, nimages {
sfd = SFD(sfs[j],i,1)
if (SF_DEL(sfd) == NO) {
Memr[x+nims] = SF_FOC(sfd)
Memr[y+nims] = SF_WID(sfd)
Memr[z+nims] = SF_POS(sfd)
nims = nims + 1
}
}
sfd = SFD(sfavg,i,1)
# Take the smallest width at each unique focus.
if (nims > 0) {
call xt_sort3 (Memr[x], Memr[y], Memr[z], nims)
n = 0
do j = 1, nims-1 {
if (fp_equalr (Memr[x+n], Memr[x+j])) {
if (Memr[y+n] > Memr[y+j]) {
Memr[y+n] = Memr[y+j]
Memr[z+n] = Memr[z+j]
}
} else {
n = n + 1
Memr[x+n] = Memr[x+j]
Memr[y+n] = Memr[y+j]
Memr[z+n] = Memr[z+j]
}
}
# Find the minimum width
jmin = 0
do j = 1, n
if (Memr[y+j] < Memr[y+jmin])
jmin = j
# Use parabolic interpolation to find the best focus
if (jmin == 0 || jmin == n) {
focus = Memr[x+jmin]
fwhm = Memr[y+jmin]
pos = Memr[z+jmin]
} else
call spf_parab (Memr[x+jmin-1], Memr[y+jmin-1],
Memr[z+jmin-1], focus, fwhm, pos)
SF_FOC(sfd) = focus
SF_WID(sfd) = fwhm
SF_POS(sfd) = pos
SF_DEL(sfd) = NO
} else {
SF_FOC(sfd) = INDEF
SF_WID(sfd) = INDEF
SF_POS(sfd) = INDEF
SF_DEL(sfd) = YES
}
}
call sfree (sp)
avg_
# Set the averages over all samples
n = 0
focus = 0.
fwhm = 0.
do i = 1, SF_NSFD(sfavg) {
sfd = SFD(sfavg,i,1)
if (SF_DEL(sfd) == NO) {
focus = focus + SF_FOC(sfd)
fwhm = fwhm + SF_WID(sfd)
n = n + 1
}
}
if (n > 0) {
SF_FOCUS(sfavg) = focus / n
SF_WIDTH(sfavg) = fwhm / n
} else {
SF_FOCUS(sfavg) = INDEF
SF_WIDTH(sfavg) = INDEF
}
do j = 1, nimages {
n = 0
focus = 0.
fwhm = 0.
do i = 1, SF_NSFD(sfs[j]) {
sfd = SFD(sfs[j],i,1)
if (SF_DEL(sfd) == NO) {
fwhm = fwhm + SF_WID(sfd)
n = n + 1
}
}
if (n > 0)
SF_WIDTH(sfs[j]) = fwhm / n
else
SF_WIDTH(sfs[j]) = INDEF
}
# Set the best focus image
sfbest = NULL
focus = SF_FOCUS(sfavg)
if (!IS_INDEF(focus)) {
pos = MAX_REAL
do j = 1, nimages {
foc = SF_FOCUS(sfs[j])
if (!IS_INDEF(foc)) {
fwhm = abs (focus - foc)
if (fwhm < pos) {
pos = fwhm
sfbest = sfs[j]
}
}
}
}
end
# SPF_PARAB -- Find the minimum of a parabolic fit to three points.
procedure spf_parab (x, y, z, xmin, ymin, zmin)
real x[3]
real y[3]
real z[3]
real xmin
real ymin
real zmin
real x12, x13, x23, x212, x213, x223, y12, y13, y23, a, b, c
begin
x12 = x[1] - x[2]
x13 = x[1] - x[3]
x23 = x[2] - x[3]
x212 = x[1] * x[1] - x[2] * x[2]
x213 = x[1] * x[1] - x[3] * x[3]
x223 = x[2] * x[2] - x[3] * x[3]
y12 = y[1] - y[2]
y13 = y[1] - y[3]
y23 = y[2] - y[3]
c = (y13 - y23 * x13 / x23) / (x213 - x223 * x13 / x23)
b = (y23 - c * x223) / x23
a = y[3] - b * x[3] - c * x[3] * x[3]
xmin = -b / (2 * c)
ymin = a + b * xmin + c * xmin * xmin
if (xmin < x[2])
zmin = z[2] + (z[1] - z[2]) / (x[1] - x[2]) * (xmin - x[2])
else
zmin = z[2] + (z[3] - z[2]) / (x[3] - x[2]) * (xmin - x[2])
end
# SPF_COMPARE -- Compare two structures by focus values
int procedure spf_compare (sf1, sf2)
pointer sf1, sf2 # Structures to be compared.
begin
if (SF_FOCUS[sf1] < SF_FOCUS[sf2])
return (-1)
else if (SF_FOCUS[sf1] > SF_FOCUS[sf2])
return (1)
else
return (0)
end
# SPF_LOG -- Print log of results
procedure spf_log (sfavg, sfbest, sfs, nimages, shifts, log)
pointer sfavg # Average image
pointer sfbest # Best focus image
pointer sfs[nimages] # Images
int nimages # Number of images
bool shifts # Measure shifts?
int log # Log file descriptor
int i, j
pointer sp, str, sfd
begin
call smark (sp)
call salloc (str, SZ_LINE, TY_CHAR)
call sysid (Memc[str], SZ_LINE)
call fprintf (log, "SPECFOCUS: %s\n")
call pargstr (Memc[str])
call fprintf (log,
" Best average focus at %g with average width of %.2f at %d%% of peak\n\n")
call pargr (SF_FOCUS(sfavg))
call pargr (SF_WIDTH(sfavg))
call pargr (100 * SF_LEVEL(sfavg))
call fprintf (log, " -- Average Over All Samples\n\n")
call fprintf (log, "\t%25wImage Focus Width\n")
do i = 1, nimages {
call fprintf (log, "\t%30s %5.3g %5.2f\n")
call pargstr (SF_IMAGE(sfs[i]))
call pargr (SF_FOCUS(sfs[i]))
call pargr (SF_WIDTH(sfs[i]))
}
call fprintf (log, "\n")
call fprintf (log, " -- Image %s at Focus %g --\n")
call pargstr (SF_IMAGE(sfbest))
call pargr (SF_FOCUS(sfbest))
if (SF_NSFD(sfbest) > 1) {
call fprintf (log, "\n\n\tWidth at %d%% of Peak:\n")
call pargr (100 * SF_LEVEL(sfavg))
call fprintf (log, "\n\t%9w Columns\n\t%9w ")
do i = 1, SF_NX(sfbest) {
call fprintf (log, " %4d-%-4d")
call pargi (SF_X1(sfbest)+(i-1)*SF_DX(sfbest))
call pargi (SF_X1(sfbest)+i*SF_DX(sfbest)-1)
}
call fprintf (log, "\n\t Lines +")
do i = 1, SF_NX(sfbest)
call fprintf (log, "-----------")
do j = 1, SF_NY(sfbest) {
if (SF_DY(sfbest) > 1.) {
call fprintf (log, "\n\t%4d-%-4d |")
call pargi (SF_Y1(sfbest)+(j-1)*SF_DY(sfbest))
call pargi (SF_Y1(sfbest)+j*SF_DY(sfbest)-1)
} else {
call fprintf (log, "\n\t%9d |")
call pargi (SF_Y1(sfbest)+(j-1)*SF_DY(sfbest))
call pargi (SF_Y1(sfbest)+j*SF_DY(sfbest)-1)
}
do i = 1, SF_NX(sfbest) {
sfd = SFD(sfbest,i,j)
call fprintf (log, " %5.2f ")
call pargr (SF_WID(sfd))
}
}
if (shifts) {
call fprintf (log,
"\n\n\tPosition Shifts Relative To Central Sample:\n")
call fprintf (log, "\n\t%9w Columns\n\t%9w ")
do i = 1, SF_NX(sfbest) {
call fprintf (log, " %4d-%-4d")
call pargi (SF_X1(sfbest)+(i-1)*SF_DX(sfbest))
call pargi (SF_X1(sfbest)+i*SF_DX(sfbest)-1)
}
call fprintf (log, "\n\t Lines +")
do i = 1, SF_NX(sfbest)
call fprintf (log, "-----------")
do j = 1, SF_NY(sfbest) {
call fprintf (log, "\n\t%4d-%-4d |")
call pargi (SF_Y1(sfbest)+(j-1)*SF_DY(sfbest))
call pargi (SF_Y1(sfbest)+j*SF_DY(sfbest)-1)
do i = 1, SF_NX(sfbest) {
sfd = SFD(sfbest,i,j)
call fprintf (log, " %5.2f ")
call pargr (SF_POS(sfd))
}
}
}
}
call fprintf (log, "\n\n")
call sfree (sp)
end
|