1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
|
include <error.h>
include <math.h>
define GR_LEN 24
define GR_W Memr[P2R($1)] # Wavelength
define GR_O Memi[$1+1] # Order
define GR_P Memr[P2R($1+2)] # Blaze peak scale factor
define GR_WB Memr[P2R($1+3)] # First order wavelength at blaze (A)
define GR_DB Memr[P2R($1+4)] # First order dispersion at blaze (A/mm)
define GR_OREF Memi[$1+5] # Reference order
define GR_F Memr[P2R($1+6)] # Focal length (mm)
define GR_G Memr[P2R($1+7)] # Ruling (groves/A)
define GR_BLAZE Memr[P2R($1+8)] # Blaze angle (rad)
define GR_N Memr[P2R($1+9)] # Index of refraction
define GR_PHI Memr[P2R($1+10)] # Alpha - beta (rad)
define GR_ALPHA Memr[P2R($1+11)] # Incident angle (rad)
define GR_BETA Memr[P2R($1+12)] # Diffraction angle (rad)
define GR_TYPE Memr[P2R($1+13)] # 1=Reflection, -1=Transmission
define GR_FULL Memi[$1+14] # Full solution?
define GR_PIS Memr[P2R($1+15)] # PI/G*S
define GR_CA Memr[P2R($1+16)] # cos (ALPHA)
define GR_SA Memr[P2R($1+17)] # sin (ALPHA)
define GR_CB Memr[P2R($1+18)] # cos (BETA)
define GR_TB Memr[P2R($1+19)] # tan (BETA)
define GR_SE Memr[P2R($1+20)] # sin (ALPHA - BLAZE)
define GR_CE Memr[P2R($1+21)] # cos (ALPHA - BLAZE)
define GR_CBLZ Memr[P2R($1+22)] # cos (BLAZE)
define GR_T2BLZ Memr[P2R($1+23)] # tan (2 * BLAZE)
# Definitions of INDEF parameter flags.
define F 1B # Focal length
define G 2B # Groves
define T 4B # Blaze angle
define A 10B # Incident angle
define B 20B # Diffracted angle
define P 40B # Incident - diffracted
define W 100B # Wavelength
define D 200B # Dispersions
define N 400B # Index of refraction
# Combinations
define FG 3B
define FT 5B
define FA 11B
define FW 101B
define GT 6B
define GA 12B
define GW 102B
define GD 202B
define TA 14B
define TAW 114B
define TAD 214B
define TB 24B
define TP 44B
define TW 104B
define TD 204B
define AB 30B
define AP 50B
define AW 110B
define AD 210B
define BP 140B
define WD 300B
define ABP 70B
define GTA 16B
# GRATING_OPEN -- Open grating structure.
# Check and derive grating parameters.
#
# This procedure hasn't yet been fixed up for grisms (index of refraction
# is not accounted for) so all input parameters should be defined with
# alpha=beta=blaze=prism angle.
pointer procedure gr_open (w, o, p, wb, db, oref, f, gmm, blaze, n, phi,
alpha, beta, mode, full)
real w #I Wavelength (A)
int o #I Order
real p #I Blaze peak scale factor
real f #I Focal length (mm)
real wb #I Blaze wavelength (A)
real db #I Blaze dispersion (A/mm)
int oref #I Reference order
real gmm #I Groves (groves/mm)
real blaze #I Blaze angle (deg)
real n #I Index of refraction for grism
real phi #I Incident - diffracted (deg)
real alpha #I Incident angle (deg)
real beta #I Diffracted angle (deg)
int mode #I 1 = incident > diffracted
int full #I Do full solution?
pointer gr #O Grating pointer
int flags
real x
define err_ 10
begin
call malloc (gr, GR_LEN, TY_STRUCT)
GR_W(gr) = w
GR_O(gr) = o
GR_P(gr) = p
GR_F(gr) = f
GR_G(gr) = gmm
GR_BLAZE(gr) = blaze
GR_N(gr) = n
GR_PHI(gr) = phi
GR_ALPHA(gr) = alpha
GR_BETA(gr) = beta
GR_OREF(gr) = oref
GR_WB(gr) = wb
GR_DB(gr) = db
# The grating is reflection unless the index of refraction is not
# 1, the blaze dispersion is negative, beta is greater than
# 180 degrees, or the incident and diffraction angles are the same.
if (GR_N(gr) == 1.)
GR_TYPE(gr) = 1
else if (!IS_INDEF(GR_N(gr)))
GR_TYPE(gr) = -1
else {
if (!IS_INDEF(GR_BETA(gr))
&& (GR_BETA(gr) > 180. || GR_BETA(gr) < -180))
GR_TYPE(gr) = -1
else if (!IS_INDEF(GR_DB(gr)) && GR_DB(gr) < 0.)
GR_TYPE(gr) = -1
else if (!IS_INDEF(GR_ALPHA(gr)) && !IS_INDEF(GR_BETA(gr)) &&
GR_ALPHA(gr) == GR_BETA(gr))
GR_TYPE(gr) = -1
else if (GR_PHI(gr) == 0.)
GR_TYPE(gr) = -1
else
GR_TYPE(gr) = 1
}
# Set INDEF values to reasonable defaults. Convert degrees to radians.
if (IS_INDEF(GR_P(gr)))
GR_P(gr) = 1
if (!IS_INDEF(GR_WB(gr))) {
if (GR_WB(gr) <= 0.)
GR_WB(gr) = INDEF
else
GR_WB(gr) = GR_WB(gr) * GR_OREF(gr)
}
if (!IS_INDEF(GR_DB(gr)))
GR_DB(gr) = GR_TYPE(gr) * GR_OREF(gr) * abs (GR_DB(gr))
if (!IS_INDEF(GR_F(gr))) {
if (GR_F(gr) <= 0.)
GR_F(gr) = INDEF
}
if (!IS_INDEF(GR_G(gr))) {
if (GR_G(gr) <= 0.)
GR_G(gr) = INDEF
else
GR_G(gr) = GR_G(gr) / 1e7
}
if (!IS_INDEF(GR_PHI(gr)))
GR_PHI(gr) = DEGTORAD (GR_PHI(gr))
if (!IS_INDEF(GR_ALPHA(gr)))
GR_ALPHA(gr) = DEGTORAD (GR_ALPHA(gr))
if (!IS_INDEF(GR_BETA(gr))) {
GR_BETA(gr) = DEGTORAD (GR_BETA(gr))
if (GR_BETA(gr) > HALFPI)
GR_BETA(gr) = GR_BETA(gr) - PI
else if (GR_BETA(gr) < -HALFPI)
GR_BETA(gr) = GR_BETA(gr) + PI
}
if (!IS_INDEF(GR_BLAZE(gr)))
GR_BLAZE(gr) = DEGTORAD (GR_BLAZE(gr))
# Compute missing angles, if possible, based on the other angles.
# This assumes the given values are for the blaze peak.
flags = 0
if (IS_INDEF(GR_BLAZE(gr)))
flags = flags + T
if (IS_INDEF(GR_ALPHA(gr)))
flags = flags + A
if (IS_INDEF(GR_BETA(gr)))
flags = flags + B
if (IS_INDEF(GR_PHI(gr)))
flags = flags + P
switch (flags) {
case T, P, TP:
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
GR_BLAZE(gr) = (GR_ALPHA(gr) + GR_BETA(gr)) / 2.
case A, TA:
GR_ALPHA(gr) = GR_BETA(gr) + GR_PHI(gr)
GR_BLAZE(gr) = (GR_ALPHA(gr) + GR_BETA(gr)) / 2.
case AB:
if (mode == 1) {
GR_ALPHA(gr) = GR_BLAZE(gr) + GR_PHI(gr)/2.
GR_BETA(gr) = GR_BLAZE(gr) - GR_PHI(gr)/2.
} else {
GR_ALPHA(gr) = GR_BLAZE(gr) - GR_PHI(gr)/2.
GR_BETA(gr) = GR_BLAZE(gr) + GR_PHI(gr)/2.
}
case AP:
GR_ALPHA(gr) = 2 * GR_BLAZE(gr) - GR_BETA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
case B, TB:
GR_BETA(gr) = GR_ALPHA(gr) - GR_PHI(gr)
GR_BLAZE(gr) = (GR_ALPHA(gr) + GR_BETA(gr)) / 2.
case BP:
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
case ABP:
GR_ALPHA(gr) = GR_BLAZE(gr)
GR_BETA(gr) = GR_BLAZE(gr)
GR_PHI(gr) = 0.
}
# Compute index of refraction if possible.
if (IS_INDEF(GR_N(gr))) {
if (GR_TYPE(gr) == 1)
GR_N(gr) = 1
else if (!IS_INDEF(GR_WB(gr)) && !IS_INDEF(GR_G(gr)) &&
!IS_INDEF(GR_BLAZE(gr)))
GR_N(gr) = (GR_G(gr) * GR_WB(gr)) / sin (GR_BLAZE(gr)) + 1
}
# Compute other parameters if possible.
flags = 0
if (IS_INDEF(GR_F(gr)))
flags = flags + F
if (IS_INDEF(GR_G(gr)))
flags = flags + G
if (IS_INDEF(GR_BLAZE(gr)))
flags = flags + T
if (IS_INDEF(GR_ALPHA(gr)))
flags = flags + A
if (IS_INDEF(GR_WB(gr)))
flags = flags + W
if (IS_INDEF(GR_DB(gr)))
flags = flags + D
if (IS_INDEF(GR_N(gr)))
flags = flags + N
switch (flags) {
case 0, F, G, T, A, N, W, D:
switch (flags) {
case F:
GR_F(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) /
(GR_G(gr) * GR_DB(gr))
case G:
GR_G(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_WB(gr)
if (GR_G(gr) == 0.)
GR_G(gr) = INDEF
case T:
if (GR_ALPHA(gr) > PI) {
x = GR_G(gr) * GR_WB(gr) / (2 * cos (GR_ALPHA(gr)))
if (abs (x) > 1.)
goto err_
GR_BLAZE(gr) = asin (x)
GR_ALPHA(gr) = GR_ALPHA(gr) - TWOPI + GR_BLAZE(gr)
} else {
x = GR_G(gr) * GR_WB(gr) - GR_N(gr) * sin (GR_ALPHA(gr))
if (abs (x) > 1.)
goto err_
GR_BLAZE(gr) = (GR_ALPHA(gr) + asin (x)) / 2
}
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
case A:
x = GR_TYPE(gr) * GR_G(gr) * GR_WB(gr) / (2 * sin(GR_BLAZE(gr)))
if (abs (x) > 1.)
goto err_
if (mode == 1) {
GR_ALPHA(gr) = GR_BLAZE(gr) + acos (x)
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
} else {
GR_BETA(gr) = GR_BLAZE(gr) + acos (x)
GR_ALPHA(gr) = 2 * GR_BLAZE(gr) - GR_BETA(gr)
}
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
case N:
GR_N(gr) = (GR_G(gr) * GR_WB(gr)) / sin (GR_BLAZE(gr)) + 1
}
GR_WB(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_G(gr)
GR_DB(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_F(gr)*GR_G(gr))
case FG:
x = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_WB(gr)
if (x == 0.)
goto err_
GR_G(gr) = x
GR_F(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_G(gr) * GR_DB(gr))
case FT:
if (GR_ALPHA(gr) > PI) {
x = GR_TYPE(gr) * GR_G(gr) * GR_WB(gr) /
(2 * cos (GR_ALPHA(gr)))
if (abs (x) > 1.)
goto err_
GR_BLAZE(gr) = asin (x)
GR_ALPHA(gr) = GR_ALPHA(gr) - TWOPI + GR_BLAZE(gr)
} else {
x = GR_TYPE(gr) * GR_G(gr) * GR_WB(gr) -
GR_N(gr) * sin (GR_ALPHA(gr))
if (abs (x) > 1.)
goto err_
GR_BLAZE(gr) = (GR_ALPHA(gr) + asin (x)) / 2
}
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
GR_F(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_G(gr) * GR_DB(gr))
case FA:
x = GR_TYPE(gr) * GR_G(gr) * GR_WB(gr) / (2 * sin (GR_BLAZE(gr)))
if (abs (x) > 1.)
goto err_
if (mode == 1) {
GR_ALPHA(gr) = GR_BLAZE(gr) + acos (x)
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
} else {
GR_BETA(gr) = GR_BLAZE(gr) + acos (x)
GR_ALPHA(gr) = 2 * GR_BLAZE(gr) - GR_BETA(gr)
}
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
GR_F(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_G(gr) * GR_DB(gr))
case FW:
GR_WB(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_G(gr)
GR_F(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_G(gr) * GR_DB(gr))
case GT:
x = GR_TYPE(gr) * GR_F(gr) * GR_DB(gr) / GR_WB(gr)
if (GR_ALPHA(gr) > PI) {
GR_BLAZE(gr) = atan (1 / (2 * x - tan (GR_ALPHA(gr))))
GR_ALPHA(gr) = GR_ALPHA(gr) - TWOPI + GR_BLAZE(gr)
} else {
x = (tan (GR_ALPHA(gr)) - x) / (1 + 2 * x * tan (GR_ALPHA(gr)))
GR_BLAZE(gr) = atan (x + sqrt (1 + x * x))
}
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
GR_G(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_WB(gr)
case GA:
GR_ALPHA(gr) = GR_BLAZE(gr) +
atan (2 * GR_TYPE(gr) * GR_F(gr) * GR_DB(gr) /
GR_WB(gr) - 1 / tan (GR_BLAZE(gr)))
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
GR_G(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_WB(gr)
case GW:
GR_G(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_F(gr) * GR_DB(gr))
if (GR_G(gr) == 0.)
GR_G(gr) = INDEF
else
GR_WB(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_G(gr)
case GD:
x = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_WB(gr)
if (x == 0.)
goto err_
GR_G(gr) = x
GR_DB(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_F(gr) * GR_G(gr))
case TAD:
if (IS_INDEF(GR_PHI(gr)))
GR_PHI(gr) = 0.
x = GR_G(gr) * GR_WB(gr) / (2 * cos (GR_PHI(gr)/2))
if (mode == 1) {
GR_ALPHA(gr) = GR_PHI(gr)/2 + asin (x)
GR_BETA(gr) = GR_ALPHA(gr) - GR_PHI(gr)
} else {
GR_BETA(gr) = GR_PHI(gr)/2 + asin (x)
GR_ALPHA(gr) = GR_BETA(gr) - GR_PHI(gr)
}
GR_BLAZE(gr) = (GR_ALPHA(gr) + GR_BETA(gr)) / 2
GR_DB(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) /
(GR_F(gr) * GR_G(gr))
case TAW:
if (!IS_INDEF(GR_PHI(gr))) {
x = GR_TYPE(gr) * GR_F(gr) * GR_G(gr) * GR_DB(gr)
if (abs (x) > 1.) {
if (abs (x) > 1.1)
goto err_
else {
x = 1.
GR_DB(gr) = x / (GR_F(gr) * GR_G(gr))
}
}
if (mode == 1) {
GR_BETA(gr) = acos (x)
GR_ALPHA(gr) = GR_BETA(gr) + GR_PHI(gr)
} else {
GR_ALPHA(gr) = acos (x)
GR_BETA(gr) = GR_ALPHA(gr) + GR_PHI(gr)
}
GR_BLAZE(gr) = (GR_ALPHA(gr) + GR_BETA(gr)) / 2
GR_WB(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_G(gr)
}
case TA:
if (!IS_INDEF(GR_PHI(gr))) {
x = GR_G(gr) * GR_WB(gr) / (2 * cos (GR_PHI(gr)/2))
if (mode == 1) {
GR_ALPHA(gr) = GR_PHI(gr)/2 + asin (x)
GR_BETA(gr) = GR_ALPHA(gr) - GR_PHI(gr)
} else {
GR_BETA(gr) = GR_PHI(gr)/2 + asin (x)
GR_ALPHA(gr) = GR_BETA(gr) - GR_PHI(gr)
}
GR_BLAZE(gr) = (GR_ALPHA(gr) + GR_BETA(gr)) / 2
GR_DB(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) /
(GR_F(gr) * GR_G(gr))
} else {
x = GR_TYPE(gr) * GR_F(gr) * GR_G(gr) * GR_DB(gr)
if (abs (x) > 1.) {
if (abs (x) > 1.1)
goto err_
else {
x = 1.
GR_DB(gr) = x / (GR_F(gr) * GR_G(gr))
}
}
GR_BETA(gr) = acos (x)
x = GR_G(gr) * GR_WB(gr) - GR_TYPE(gr) * sin (GR_BETA(gr))
if (abs (x) > 1.)
goto err_
GR_ALPHA(gr) = asin (x)
GR_BLAZE(gr) = (acos (GR_TYPE(gr) * GR_F(gr) * GR_G(gr) *
GR_DB(gr)) + GR_ALPHA(gr)) / 2
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
}
case TW:
GR_BLAZE(gr) = (GR_ALPHA(gr) +
acos (GR_TYPE(gr) * GR_F(gr) * GR_G(gr) * GR_DB(gr))) / 2
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
GR_WB(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_G(gr)
case TD:
if (GR_ALPHA(gr) > PI) {
x = GR_G(gr) * GR_WB(gr) / (2 * cos (GR_ALPHA(gr)))
if (abs (x) > 1.)
goto err_
GR_BLAZE(gr) = asin (x)
GR_ALPHA(gr) = GR_ALPHA(gr) - TWOPI + GR_BLAZE(gr)
} else {
x = GR_G(gr) * GR_WB(gr) - GR_N(gr) * sin (GR_ALPHA(gr))
if (abs (x) > 1.)
goto err_
GR_BLAZE(gr) = (GR_ALPHA(gr) + asin (x)) / 2
}
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
GR_DB(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_F(gr) * GR_G(gr))
case AW:
x = GR_TYPE(gr) * GR_F(gr) * GR_G(gr) * GR_DB(gr)
if (abs (x) > 1.)
goto err_
GR_ALPHA(gr) = 2 * GR_BLAZE(gr) - acos (x)
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
GR_WB(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) + sin (GR_BETA(gr))) /
GR_G(gr)
case AD:
x = GR_G(gr) * GR_WB(gr) / (2 * sin (GR_BLAZE(gr)))
if (abs (x) > 1.)
goto err_
if (mode == 1) {
GR_ALPHA(gr) = GR_BLAZE(gr) + acos (x)
GR_BETA(gr) = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
} else {
GR_BETA(gr) = GR_BLAZE(gr) + acos (x)
GR_ALPHA(gr) = 2 * GR_BLAZE(gr) - GR_BETA(gr)
}
GR_PHI(gr) = GR_ALPHA(gr) - GR_BETA(gr)
GR_DB(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_F(gr) * GR_G(gr))
case WD:
GR_WB(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_G(gr)
GR_DB(gr) = GR_TYPE(gr) * cos (GR_BETA(gr)) / (GR_F(gr) * GR_G(gr))
case GTA:
# Assume beta=alpha=blaze.
x = (GR_TYPE(gr) * GR_WB(gr)) /
((GR_N(gr) + GR_TYPE(gr)) * GR_F(gr) * GR_DB(gr))
GR_BETA(gr) = atan (x)
GR_ALPHA(gr) = GR_BETA(gr)
GR_BLAZE(gr) = GR_BETA(gr)
GR_PHI(gr) = 0
GR_G(gr) = (GR_N(gr) * sin (GR_ALPHA(gr)) +
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_WB(gr)
}
# The result should give the blaze wavelength and dispersion.
# If this cannot be computed then it is an error.
if (IS_INDEF(GR_WB(gr)) || IS_INDEF(GR_DB(gr))) {
call gr_close (gr)
call mfree (gr, TY_STRUCT)
call error (1,
"Insufficient information to to resolve grating parameters")
}
# If all the other parameters cannot be computed then use linear.
if (full==NO || IS_INDEF(GR_F(gr)) || IS_INDEF(GR_G(gr)) ||
IS_INDEF(GR_BETA(gr)) || IS_INDEF(GR_PHI(gr)) ||
IS_INDEF(GR_N(gr))) {
GR_FULL(gr) = NO
if (IS_INDEF(GR_F(gr)))
GR_F(gr) = 1
GR_W(gr) = GR_WB(gr)
GR_O(gr) = GR_OREF(gr)
GR_CE(gr) = PI * GR_DB(gr)
GR_CA(gr) = 1.
GR_CB(gr) = 1.
# A full grating solution is possible.
} else {
GR_FULL(gr) = YES
# Set the order and wavelength to the blaze values if not given.
if (IS_INDEF(GR_W(gr))) {
if (!IS_INDEFI(GR_O(gr)))
GR_W(gr) = GR_WB(gr) / GR_O(gr)
else
GR_W(gr) = GR_WB(gr) / GR_OREF(gr)
}
if (IS_INDEFI(GR_O(gr)))
GR_O(gr) = max (1, nint (GR_WB(gr) / GR_W(gr)))
# Convert to incident angle at desired wavelength.
if (GR_PHI(gr) != 0.) {
x = GR_G(gr) * GR_O(gr) * GR_W(gr) /
(2 * cos (GR_PHI(gr)/2))
if (abs (x) > 1.)
goto err_
if (mode == 1) {
GR_ALPHA(gr) = asin (x) + GR_PHI(gr) / 2
GR_BETA(gr) = asin (x) - GR_PHI(gr) / 2
} else {
GR_ALPHA(gr) = asin (x) - GR_PHI(gr) / 2
GR_BETA(gr) = asin (x) + GR_PHI(gr) / 2
}
} else {
x = (GR_G(gr) * GR_O(gr) * GR_W(gr) -
GR_TYPE(gr) * sin (GR_BETA(gr))) / GR_N(gr)
if (abs (x) > 1.)
goto err_
GR_ALPHA(gr) = asin (x)
}
# The following parameters are for efficiency. Beta terms are
# for the blaze peak diffraction.
x = 2 * GR_BLAZE(gr) - GR_ALPHA(gr)
GR_CA(gr) = cos (GR_ALPHA(gr))
GR_SA(gr) = sin (GR_ALPHA(gr))
GR_CB(gr) = GR_TYPE(gr) * cos (x)
GR_TB(gr) = tan (x)
GR_SE(gr) = sin (GR_ALPHA(gr) - GR_BLAZE(gr))
GR_CE(gr) = cos (GR_ALPHA(gr) - GR_BLAZE(gr))
GR_CBLZ(gr) = cos (GR_BLAZE(gr))
GR_T2BLZ(gr) = tan (2 * GR_BLAZE(gr))
if (GR_ALPHA(gr) > x)
GR_PIS(gr) = PI / GR_G(gr) * GR_CA(gr)
else
GR_PIS(gr) = PI / GR_G(gr) * GR_CBLZ(gr)
}
return (gr)
err_ call error (2, "Impossible combination of grating parameters")
end
# GR_CLOSE -- Free grating structure.
procedure gr_close (gr)
pointer gr #I Grating pointer
begin
call mfree (gr, TY_STRUCT)
end
# GR_GETR -- Get grating parameter.
real procedure gr_getr (gr, param)
pointer gr #I Grating pointer
char param[ARB] #I Parameter name
bool streq()
begin
if (gr == NULL)
return (INDEF)
switch (param[1]) {
case 'a':
if (streq (param, "alpha")) {
if (IS_INDEFR(GR_ALPHA(gr)))
return (GR_ALPHA(gr))
else
return (RADTODEG(GR_ALPHA(gr)))
}
case 'b':
if (streq (param, "blaze")) {
if (IS_INDEFR(GR_BLAZE(gr)))
return (GR_BLAZE(gr))
else
return (RADTODEG(GR_BLAZE(gr)))
} else if (streq (param, "beta")) {
if (IS_INDEFR(GR_BETA(gr)))
return (GR_BETA(gr))
else
return (RADTODEG(GR_BETA(gr)))
}
case 'd':
if (streq (param, "dblaze"))
return (GR_DB(gr) / GR_OREF(gr))
if (streq (param, "dispersion")) {
if (GR_FULL(gr) == NO)
return (GR_DB(gr) / GR_O(gr))
else
return (GR_CB(gr) / (GR_G(gr) * GR_O(gr) *GR_F(gr)))
}
case 'f':
if (streq (param, "full"))
return (real (GR_FULL(gr)))
else if (streq (param, "f"))
return (GR_F(gr))
case 'g':
if (streq (param, "g")) {
if (IS_INDEFR(GR_G(gr)))
return (GR_G(gr))
else
return (GR_G(gr) * 1E7)
}
case 'm':
if (streq (param, "mag"))
return (GR_CA(gr) / GR_CB(gr))
case 'n':
if (streq (param, "n"))
return (GR_N(gr))
case 'o':
if (streq (param, "order"))
return (real (GR_O(gr)))
if (streq (param, "oref"))
return (real (GR_OREF(gr)))
case 'p':
if (streq (param, "phi")) {
if (IS_INDEFR(GR_PHI(gr)))
return (GR_PHI(gr))
else
return (RADTODEG(GR_PHI(gr)))
}
case 't':
if (streq (param, "tilt")) {
if (GR_FULL(gr) == NO)
return (INDEFR)
else
return (RADTODEG((GR_ALPHA(gr)+GR_TYPE(gr)*GR_BETA(gr))/2))
}
case 'w':
if (streq (param, "wavelength"))
return (GR_W(gr))
if (streq (param, "wblaze"))
return (GR_WB(gr) / GR_OREF(gr))
}
call error (1, "gr_getr: unknown parameter")
end
# GR_LIST -- List grating parameters.
procedure gr_list (gr, order, col)
pointer gr #I Grating pointer
int order #I Order
int col #I Column to indent
begin
if (gr == NULL)
return
if (GR_FULL(gr) == NO) {
call printf ("%*tReference order = %d\n")
call pargi (col)
call pargi (order)
call printf (
"%*tBlaze wavelength of reference order = %.6g Angstroms\n")
call pargi (col)
call pargr (GR_WB(gr) / order)
call printf (
"%*tBlaze dispersion of reference order = %.4g Angstroms/mm\n")
call pargi (col)
call pargr (GR_DB(gr) / order)
} else {
call printf ("%*tFocal length = %d mm\n")
call pargi (col)
call pargr (GR_F(gr))
call printf ("%*tGrating = %.1f grooves/mm\n")
call pargi (col)
call pargr (GR_G(gr) * 1e7)
call printf ("%*tBlaze angle = %.1f degrees\n")
call pargi (col)
call pargr (RADTODEG(GR_BLAZE(gr)))
call printf ("%*tIncident to diffracted angle = %.1f degrees\n")
call pargi (col)
call pargr (RADTODEG(GR_PHI(gr)))
call printf ("%*tReference order = %d\n")
call pargi (col)
call pargi (order)
call printf (
"%*tBlaze wavelength = %.6g Angstroms\n")
call pargi (col)
call pargr (GR_WB(gr) / order)
call printf (
"%*tBlaze dispersion = %.4g Angstroms/mm\n")
call pargi (col)
call pargr (GR_DB(gr) / order)
call printf ("\n%*tCentral wavelength = %.6g Angstroms\n")
call pargi (col)
call pargr (GR_W(gr))
call printf ("%*tCentral dispersion = %.4g Angstroms/mm\n")
call pargi (col)
call pargr (GR_TYPE(gr) * cos (GR_BETA(gr)) /
(GR_G(gr) * order *GR_F(gr)))
call printf ("%*tOrder = %d\n")
call pargi (col)
call pargi (GR_O(gr))
call printf ("%*tTilt = %.1f degrees\n")
call pargi (col)
call pargr (RADTODEG(GR_ALPHA(gr) - GR_PHI(gr) / 2))
call printf ("%*tGrating magnification = %.2f\n")
call pargi (col)
call pargr (GR_CA(gr)/GR_CB(gr))
call printf ("%*tIncidence angle = %.1f degrees\n")
call pargi (col)
call pargr (RADTODEG(GR_ALPHA(gr)))
call printf ("%*tDiffracted angle = %.1f degrees\n")
call pargi (col)
call pargr (RADTODEG(GR_BETA(gr)))
}
end
# GR_W2PSI -- Given wavelength return tan(psi).
real procedure gr_w2psi (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real x #O Pixel position
real gr_sinbeta()
begin
if (GR_FULL(gr) == NO)
return ((m*w - GR_WB(gr)) / GR_DB(gr) * GR_F(gr))
x = gr_sinbeta (gr, w, m)
if (!IS_INDEF(x)) {
x = x / sqrt (1 - x * x)
x = (x - GR_TB(gr)) / (1 + x * GR_TB(gr))
}
return (x)
end
# GR_W2PSIR -- Given wavelength return tan(psi) of reflected component.
real procedure gr_w2psir (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real x #O Pixel position
real gr_sinbeta()
begin
x = gr_sinbeta (gr, w, m)
if (!IS_INDEF(x)) {
#x = x / sqrt (1 - x * x)
#x = (x - GR_TB(gr)) / (1 + x * GR_TB(gr))
#x = (x + GR_T2BLZ(gr)) / (1 - x * GR_T2BLZ(gr))
x = PI - asin(x)
x = 2 * GR_BLAZE(gr) - x - GR_BETA(gr)
x = tan (x)
}
return (x)
end
# GR_DELTA -- Given pixel position and wavelength return blaze function
# phase angle.
real procedure gr_delta (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real d #O Delta
real tanpsi, cospsi, sinpsi, gr_w2psi()
begin
tanpsi = gr_w2psi (gr, w, m)
if (IS_INDEF(tanpsi))
return (INDEF)
if (GR_FULL(gr) == NO)
d = PI * GR_DB(gr) / w * tanpsi
else {
cospsi = 1 / sqrt (1 + tanpsi * tanpsi)
sinpsi = tanpsi * cospsi
d = GR_PIS(gr) / w * (GR_CE(gr) * sinpsi + GR_SE(gr) * (1 - cospsi))
}
if (abs(d) < 0.01) {
if (d < 0)
d = -0.01
else
d = 0.01
}
return (d)
end
# GR_DELTAR -- Blaze function phase angle for reflected component.
real procedure gr_deltar (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real d #O Delta
real tanpsi, cospsi, sinpsi, gr_w2psir()
begin
tanpsi = gr_w2psir (gr, w, m)
if (IS_INDEF(tanpsi))
return (INDEF)
if (GR_FULL(gr) == NO)
d = PI * GR_DB(gr) / w * tanpsi
else {
cospsi = 1 / sqrt (1 + tanpsi * tanpsi)
sinpsi = tanpsi * cospsi
d = GR_PIS(gr) / w * (GR_CE(gr) * sinpsi + GR_SE(gr) * (1 - cospsi))
}
if (abs(d) < 0.01) {
if (d < 0)
d = -0.01
else
d = 0.01
}
return (d)
end
# GR_BLAZE -- Blaze pattern at given wavelength.
real procedure gr_blaze (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real val #O Blaze pattern
real d, gr_delta()
begin
d = gr_delta (gr, w, m)
if (IS_INDEF(d))
val = 0.
else
val = (sin (d) / d) ** 2
return (val)
end
# GR_PEAK -- Blaze peak corrected for light defracted into other orders.
real procedure gr_peak (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength (A)
int m #I Order
real val #O Blaze peak
int i, j
real frac, p
real gr_delta(), gr_deltar()
begin
# Find the absolute response of the gratings at the reference
# blaze peak.
p = gr_delta (gr, w, m)
if (IS_INDEF(p))
return (INDEF)
val = (sin (p) / p) ** 2
frac = 0.
do i = m - 1, 1, -1 {
p = gr_delta (gr, w, i)
if (IS_INDEF(p))
break
frac = frac + (sin (p) / p) ** 2
if (abs (p) > 1000.)
break
}
do i = m + 1, ARB {
p = gr_delta (gr, w, i)
if (IS_INDEF(p))
break
frac = frac + (sin (p) / p) ** 2
if (abs (p) > 1000.)
break
}
if (GR_FULL(gr) == YES && GR_TYPE(gr) > 0) {
j = (GR_N(gr) * GR_SA(gr) + GR_TYPE(gr)) / GR_G(gr) / w
do i = j+1, ARB, 1 {
p = gr_deltar (gr, w, i)
if (IS_INDEF(p))
break
frac = frac + (sin (p) / p) ** 2
if (abs (p) > 1000.)
break
}
}
val = val / (val + frac)
# Shadowing
if (GR_ALPHA(gr) < GR_BETA(gr) && GR_TYPE(gr) > 0)
val = val * abs (GR_CA(gr) / GR_CB(gr))
return (val)
end
# GR_EFF -- Efficiency at specified wavelength and order.
real procedure gr_eff (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real eff #O Efficiency
real gr_blaze(), gr_peak()
begin
if (gr == NULL)
return (INDEF)
if (GR_FULL(gr) == NO)
return (GR_P(gr))
eff = gr_blaze (gr, w, m)
if (eff > 0.)
eff = eff * GR_P(gr) * gr_peak (gr, GR_WB(gr)/m, m)
return (eff)
end
# GR_W2DW -- Grating dispersion = cos (beta(w,m)) / (g * m * f)
# This is corrected to a detector plane.
real procedure gr_w2dw (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real disp #O Dispersion (A/mm)
real gr_sinbeta(), gr_w2x()
begin
if (GR_FULL(gr) == NO)
return (GR_DB(gr) / m)
disp = gr_sinbeta (gr, w, m)
if (!IS_INDEF(disp)) {
disp = sqrt (1 - disp * disp) / (GR_G(gr) * m * GR_F(gr))
disp = disp / (1 + (gr_w2x (gr, w, m) / GR_F(gr))**2)
}
return (disp)
end
# GR_X2W -- Wavelength at given position relative to center.
real procedure gr_x2w (gr, x, m)
pointer gr #I Grating pointer
real x #I Pixel position (mm from center)
int m #I Order
real w #O Wavelength (Angstroms)
begin
if (GR_FULL(gr) == NO) {
w = GR_WB(gr) + GR_DB(gr) / m * x
return (w)
}
w = x / GR_F(gr)
w = atan (w) + GR_BETA(gr)
w = (GR_N(gr) * GR_SA(gr) + GR_TYPE(gr) * sin (w)) /
(GR_G(gr) * m)
return (w)
end
# GR_W2X -- Position at given wavelength.
real procedure gr_w2x (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength (Angstroms)
int m #I Order
real x #I Pixel position (mm from center)
begin
if (GR_FULL(gr) == NO) {
x = (w - GR_WB(gr)) * m / GR_DB(gr)
return (x)
}
x = (w * m * GR_G(gr) - GR_N(gr) * GR_SA(gr)) / GR_TYPE(gr)
x = asin (x) - GR_BETA(gr)
x = x * GR_F(gr)
return (x)
end
# GR_MAG -- Grating magnification = cos (alpha) / cos (beta(w,m))
real procedure gr_mag (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real mag #O mag
real gr_sinbeta()
begin
mag = gr_sinbeta (gr, w, m)
if (!IS_INDEF(mag))
mag = GR_CA(gr) / sqrt (1 - mag * mag)
return (mag)
end
# GR_TILT -- Grating tilt = (alpha + beta) / 2
real procedure gr_tilt (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real tilt #O tilt
real gr_sinbeta()
begin
tilt = gr_sinbeta (gr, w, m)
if (!IS_INDEF(tilt))
tilt = (GR_ALPHA(gr) + GR_TYPE(gr)*asin(tilt)) / 2
return (tilt)
end
# GR_SINBETA -- sin(beta(w,m)) = g * m * w - n * sin(alpha)
# n is index of refraction which is different from 1 for a grism.
real procedure gr_sinbeta (gr, w, m)
pointer gr #I Grating pointer
real w #I Wavelength
int m #I Order
real sb #O sin(beta)
begin
if (gr == NULL)
return (INDEF)
if (GR_FULL(gr) == NO)
return (INDEF)
sb = (GR_G(gr) * m * w - GR_N(gr) * GR_SA(gr)) / GR_TYPE(gr)
if (abs(sb) >= 1.)
sb = INDEF
return (sb)
end
|