1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
SUBROUTINE NLCFIT(IM,INN,IN,INTA,XEPSI,XV,XYD)
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C NONLINEAR LEAST SQUARES FITTING USING SIMPLEX
C METHOD AND QUADRATIC APPROXIMATION.
C WITH LINEAR PARAMETER ELIMINATION.
C-------------------------------------------------------------
INTEGER IM,INN,IN,INTA
REAL XEPSI,XV(IM),XYD(IM)
COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
COMMON /NLC/ GA(120,5),NN
COMMON /NLCOUT/ FF(120),PARS(10),BPARS(10)
DIMENSION SUMC(11),XC(11),XE(11),XCO(11),XR(11)
REAL LERROR
C-----
C RESET ERROR HANDLER
c...UNIX has general handler only!
c call trpfpe (0, 0d0)
C-----
C FLOAT OVERFLOW
c CALL ERRSET(72,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
C FLOAT UNDERFLOW
c CALL ERRSET(74,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
C EXP TOO SMALL
c CALL ERRSET(89,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
C EXP TOO LRGE
c CALL ERRSET(88,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
C-----
LERROR=1.E30
IFLAG=0
C COEFFICIENTS
C-----
C ASSIGN EXTERNAL PARAMETERS
M=IM
NN=INN
N=IN
NT=INTA
EPSI=XEPSI
DO 8100 I=1,M
V(I)=XV(I)
YD(I,1)=XYD(I)
8100 CONTINUE
C-----
T=1.0
A=1.0
B=0.5
G=2.0
ICOUNT=0
INDEX=1
IQ=3*N
DO 140 J=1,N
140 X(1,J)=1.0
160 DO 172 J=1,N
172 XF(J)=X(1,J)
CALL FVAL
Y(1)=YVAL
SOLD=YVAL
C---- CONSTRUCT SIMPLEX
EN=N
PN=(SQRT(EN+1.0)-1.0+EN)/(EN*SQRT(2.0))*T
QN=(SQRT(EN+1.0)-1.0)/(EN*SQRT(2.0))*T
NP1=N+1
DO 305 I=2,NP1
INDEX=I
DO 300 J=1,N
EJ=0.0
EI=0.0
IF(I-1.NE.J) EJ=1.0
IF(I-1.EQ.J) EI=1.0
X(I,J)=X(1,J)+EI*PN+EJ*QN
300 XF(J)=X(I,J)
CALL FVAL
305 Y(I)=YVAL
C---- DETERMINE MAX XH
310 IH=1
DO 350 J=1,NP1
IF(Y(IH).GE.Y(J)) GOTO 350
IH=J
350 CONTINUE
C---- DETERMINE SECOND MAX XS
IS=1
IF(IH.NE.1) GOTO 470
IS=2
470 CONTINUE
DO 420 J=1,NP1
IF(J.EQ.IH) GOTO 420
IF(Y(IS).GE.Y(J)) GOTO 420
IS=J
420 CONTINUE
C---- DETERMINE MIN XL
IL=1
DO 480 J=1,NP1
IF(Y(IL).LE.Y(J)) GOTO 480
IL=J
480 CONTINUE
C---- COMPUTE CENTROID
DO 510 J=1,N
510 SUMC(J)=0.0
EN=N
DO 570 J=1,N
DO 560 I=1,NP1
IF(I.EQ.IH) GOTO 560
SUMC(J)=SUMC(J)+X(I,J)
560 CONTINUE
570 XC(J)=1.0/EN*SUMC(J)
DO 573 J=1,N
573 XF(J)=XC(J)
CALL FVAL
YBAR=YVAL
SUM=0.0
DO 577 I=1,NP1
577 SUM = SUM + ((Y(I)-YBAR)/YBAR)**2
ICOUNT=ICOUNT+1
ERROR=SQRT(SUM/EN)
IQ=IQ-1
IF(IQ.EQ.-1) CALL QADFIT
IF(IFLAG.EQ.1) GOTO 1990
IF(ERROR.LE.EPSI) GOTO 1990
IF(ABS(LERROR-ERROR).LT.EPSI) GO TO 1990
LERROR=ERROR
C---- DO A REFLECTION
DO 600 J=1,N
600 XR(J)=(1.0+A)*XC(J)-A*X(IH,J)
DO 610 J=1,N
610 XF(J)=XR(J)
INDEX=N+2
CALL FVAL
YXR=YVAL
IF(YXR.GE.Y(IL)) GOTO 750
C---- DO A EXPANSION
DO 660 J=1,N
660 XE(J)=G*XR(J)+(1.0-G)*XC(J)
DO 680 J=1,N
680 XF(J)=XE(J)
INDEX=N+3
CALL FVAL
YXE=YVAL
IF(YXE.GT.Y(IL)) GOTO 760
DO 730 J=1,N
730 X(IH,J)=XE(J)
Y(IH)=YXE
NP3=N+3
DO 735 K=1,M
735 F(IH,K)=F(NP3,K)
GOTO 310
750 IF(YXR.GT.Y(IS)) GOTO 800
760 DO 780 J=1,N
780 X(IH,J)=XR(J)
Y(IH)=YXR
NP2=N+2
DO 785 K=1,M
785 F(IH,K)=F(NP2,K)
GOTO 310
800 IF(YXR.GT.Y(IH)) GOTO 830
DO 820 J=1,N
820 X(IH,J)=XR(J)
C---- DO A CONTRACTION
830 DO 840 J=1,N
840 XCO(J)=B*X(IH,J)+(1.0-B)*XC(J)
DO 860 J=1,N
860 XF(J)=XCO(J)
INDEX=N+2
CALL FVAL
YXCO=YVAL
IF(YXCO.GT.Y(IH)) GOTO 930
DO 910 J=1,N
910 X(IH,J)=XCO(J)
Y(IH)=YXCO
NP2=N+2
DO 915 K=1,M
915 F(IH,K)=F(NP2,K)
GOTO 310
930 DO 960 I=1,NP1
INDEX=I
DO 955 J=1,N
950 X(I,J)=0.5*(X(I,J)+X(IL,J))
955 XF(J)=X(I,J)
CALL FVAL
960 Y(I)=YVAL
C---- HAS A MIN BEEN REACHED?
GOTO 310
1990 DO 1594 J=1,N
PARS(J)=X(IL,J)
1594 XF(J)=X(IL,J)
CALL FVAL
DO 1595 I=1,NT
1595 BPARS(I)=BB(I)
CALL INDEXD
RETURN
END
C---------------------------------------------------------------------
SUBROUTINE MATIN
C---- DETERMINE INVERSE OF MATRIX
COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
COMMON /NLC/ GA(120,5),NN
DIMENSION E(15,120),EN(20),T(20),Z(11,11),YY(20)
EQUIVALENCE (EM(1,1),E(1,1))
DO 20 I=1,N
DO 20 J=1,N
IF(I.EQ.J) GOTO 10
Z(I,J)=0.0
GOTO 20
10 Z(I,J)=1.0
20 CONTINUE
DO 120 J0=1,N
I0=J0
DO 30 I=1,N
30 YY(I)=GG(I,J0)
DO 40 I=1,N
EN(I) = 0.
T(I)=0.0
DO 40 J=1,N
40 T(I)=T(I)+Z(I,J)*YY(J)
IF(T(J0).EQ.0.) GO TO 65
DO 60 J=1,N
IF(J.EQ.J0) GOTO 50
EN(J)=-T(J)/T(J0)
GOTO 60
50 EN(J)=1./T(J0)
60 CONTINUE
65 DO 80 I = 1,N
DO 80 J=1,N
IF (I.EQ.J) GOTO 70
E(I,J)=0.0
GOTO 80
70 E(I,J)=1.0
80 CONTINUE
DO 90 J=1,N
90 E(J,J0)=EN(J)
DO 100 K=1,N
DO 100 I=1,N
GINV(K,I)=0.0
DO 100 J=1,N
100 GINV(K,I)=GINV(K,I)+E(K,J)*Z(J,I)
DO 110 J=1,N
DO 110 I=1,N
110 Z(I,J)=GINV(I,J)
120 CONTINUE
RETURN
END
C-------------------------------------------------------------------------
SUBROUTINE QADFIT
COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
COMMON /NLC/ GA(120,5),NN
DIMENSION A(11,11),DELX(20),E(20),F0(20)
NP1=N+1
C---- QUADRATIC COEFFICIENTS
II=0
DO 30 K=1,M
II=0
DO 30 I=1,NP1
IF(I.EQ.IL) GOTO 30
II=II+1
EM(II,K)=F(I,K)-F(IL,K)
30 CONTINUE
DO 50 I=1,N
F0(I)=0.0
DO 50 K=1,M
50 F0(I)=F0(I)-F(IL,K)*EM(I,K)
C---- ELEMENTS OF THE MATRIX GAMMA,G
DO 70 I=1,N
DO 70 J=1,N
GG(I,J)=0.0
DO 70 K=1,M
70 GG(I,J)=GG(I,J)+EM(I,K)*EM(J,K)
CALL MATIN
DO 80 I=1,N
E(I)=0.0
DO 80 J=1,N
80 E(I)=E(I)+GINV(I,J)*F0(J)
C---- DEFINE THE SCALING MATRIX A
II=0
DO 101 I=1,NP1
IF(I.EQ.IL) GOTO 101
II=II+1
DO 100 J=1,N
A(II,J)=X(I,J)-X(IL,J)
100 CONTINUE
101 CONTINUE
C---- DETERMINE DEL X
DO 110 I=1,N
DELX(I)=0.0
DO 110 J=1,N
110 DELX(I)=DELX(I)+A(J,I)*E(J)
DO 120 J=1,N
120 XF(J)=X(IL,J)+DELX(J)
INDEX=N+2
CALL FVAL
IF(Y(IL).LT.YVAL) GOTO 140
TEMP=ABS(1-SOLD/YVAL)
IF(TEMP.EQ.1) GOTO 150
IF(TEMP.LE.EPSI) GOTO 150
SOLD=YVAL
DO 130 J=1,N
130 X(IL,J)=XF(J)
NP2=N+2
DO 135 K=1,M
135 F(IL,K)=F(NP2,K)
IFLAG=2
IQ=(3*N)/2
GOTO 160
140 IFLAG=2
IQ=3*N
GOTO 160
150 IFLAG=1
DO 155 J=1,N
155 X(IL,J)=XF(J)
Y(IL)=YVAL
160 RETURN
END
C----------------------------------------------------------------------
SUBROUTINE INDEXD
COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
COMMON /NLC/ GA(120,5),NN
COMMON /NLCOUT/ FF(120),PARS(10),BPARS(10)
SUM=0.0
DO 200 I=1,M
200 SUM=SUM+V(I)
XM=M
YBAR=SUM/XM
SST=0.0
DO 240 I=1,M
240 SST=SST+(V(I)-YBAR)**2
SSR=0.0
DO 280 I=1,M
FF(I)=0.0
DO 260 J=1,NT
260 FF(I)=BB(J)*GA(I,J)+FF(I)
280 SSR=SSR+(FF(I)-V(I))**2
XINDX=1-SSR/SST
SIGMAR=SQRT(SSR/XM)
DO 300 I=1,M
DIFF=FF(I)-V(I)
IF(V(I).EQ.0.) GO TO 295
DIFF = DIFF*100./V(I)
GO TO 300
295 DIFF=0.
300 CONTINUE
C
C---- WRITE(1) (FF(I),I=1,M)
C---- WRITE(1) (V(I),I=1,M)
RETURN
END
C---------------------------------------------------------------------------
SUBROUTINE FVAL
COMMON /NLC/ EPSI,IFLAG,IL,IQ,INDEX,F(15,120),M,N
COMMON /NLC/ SOLD,Y(20),YVAL,XF(11),X(11,11),V(120),YD(120,10)
COMMON /NLC/ GG(11,11),GINV(11,11),EM(15,120),BB(5),NT
COMMON /NLC/ GA(120,5),NN
DIMENSION GTGA(11,11),GT(5,120),GGG(5,120),B(5)
DIMENSION G(120,5),A(11),TR(5),XP(11)
EQUIVALENCE (GG(1,1),GTGA(1,1)),(BB(1),B(1)),(XF(1),A(1)),
*(G(1,1),GA(1,1))
DO 200 I=1,M
DO 100 J=1,NN
100 XP(J)=YD(I,J)
C
C---- LOCATION OF TRANSFORMS
CALL TRANS(TR,A,XP)
C
DO 110 J=1,NT
110 GA(I,J)=TR(J)
200 CONTINUE
DO 230 J=1,NT
DO 230 I=1,M
230 GT(J,I)=GA(I,J)
DO 280 K=1,NT
DO 280 I=1,NT
GTGA(K,I)=0.0
DO 280 J=1,M
280 GTGA(K,I)=GTGA(K,I)+GT(K,J)*GA(J,I)
HOLD=N
N=NT
CALL MATIN
N=HOLD
DO 350 K=1,NT
DO 350 I=1,M
GGG(K,I)=0.0
DO 350 J=1,NT
350 GGG(K,I)=GGG(K,I)+GINV(K,J)*GT(J,I)
DO 400 K=1,NT
B(K)=0.0
DO 400 J=1,M
400 B(K)=B(K)+GGG(K,J)*V(J)
YVAL=0.0
DO 460 I=1,M
FF=0.0
DO 240 J=1,NT
240 FF=B(J)*GA(I,J)+FF
F(INDEX,I)=V(I)-FF
460 YVAL=(V(I)-FF)**2+YVAL
RETURN
END
|