1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
include <smw.h>
include "icombine.h"
# IC_GDATAR - Apply threshold, scaling, and masking
procedure ic_gdatar (sh, d, id, n, m, lflag, scales, zeros, nimages, npts)
pointer sh[nimages] # Input spectra structures
pointer d[nimages] # Data pointers
pointer id[nimages] # ID pointers
int n[npts] # Number of good pixels
pointer m[nimages] # Mask pointers
int lflag[nimages] # Empty mask flags
real scales[nimages] # Scale factors
real zeros[nimages] # Zero offset factors
int nimages # Number of spectra
int npts # NUmber of output points
int i, j, k, l, nused
real a, b
pointer dp, ip, mp
include "icombine.com"
begin
# Set data vectors
do i = 1, nimages {
d[i] = SY(sh[i])
m[i] = SX(sh[i])
}
# Apply threshold if needed
if (dothresh) {
do i = 1, nimages {
dp = d[i]
if (lflag[i] == D_ALL) {
do j = 1, npts {
a = Memr[dp]
if (a < lthresh || a > hthresh) {
Memr[m[i]+j-1] = 1
lflag[i] = D_MIX
dflag = D_MIX
}
dp = dp + 1
}
} else if (lflag[i] == D_MIX) {
mp = m[i]
do j = 1, npts {
if (Memr[mp] == 0) {
a = Memr[dp]
if (a < lthresh || a > hthresh) {
Memr[m[i]+j-1] = 1
dflag = D_MIX
}
}
dp = dp + 1
mp = mp + 1
}
}
# Check for completely empty lines
if (lflag[i] == D_MIX) {
lflag[i] = D_NONE
mp = m[i]
do j = 1, npts {
if (Memr[mp] == 0) {
lflag[i] = D_MIX
break
}
mp = mp + 1
}
}
}
}
# Apply scaling (avoiding masked pixels which might overflow?)
if (doscale) {
if (dflag == D_ALL) {
do i = 1, nimages {
dp = d[i]
a = scales[i]
b = -zeros[i]
do j = 1, npts {
Memr[dp] = Memr[dp] / a + b
dp = dp + 1
}
}
} else if (dflag == D_MIX) {
do i = 1, nimages {
dp = d[i]
a = scales[i]
b = -zeros[i]
if (lflag[i] == D_ALL) {
do j = 1, npts {
Memr[dp] = Memr[dp] / a + b
dp = dp + 1
}
} else if (lflag[i] == D_MIX) {
mp = m[i]
do j = 1, npts {
if (Memr[mp] == 0)
Memr[dp] = Memr[dp] / a + b
dp = dp + 1
mp = mp + 1
}
}
}
}
}
# Sort pointers to exclude unused images.
# Use the lflag array to keep track of the image index.
if (dflag == D_ALL)
nused = nimages
else {
nused = 0
do i = 1, nimages
if (lflag[i] != D_NONE) {
nused = nused + 1
d[nused] = d[i]
m[nused] = m[i]
lflag[nused] = i
}
if (nused == 0)
dflag = D_NONE
}
# Compact data to remove bad pixels
# Keep track of the image indices if needed
# If growing mark the end of the included image indices with zero
if (dflag == D_ALL) {
call amovki (nused, n, npts)
if (keepids)
do i = 1, nimages
call amovki (i, Memi[id[i]], npts)
} else if (dflag == D_NONE)
call aclri (n, npts)
else {
call aclri (n, npts)
if (keepids) {
do i = 1, nused {
l = lflag[i]
dp = d[i]
ip = id[i]
mp = m[i]
do j = 1, npts {
if (Memr[mp] == 0) {
n[j] = n[j] + 1
k = n[j]
if (k < i) {
Memr[d[k]+j-1] = Memr[dp]
Memi[id[k]+j-1] = l
} else
Memi[ip] = l
}
dp = dp + 1
ip = ip + 1
mp = mp + 1
}
}
if (grow > 0) {
do j = 0, npts-1 {
do i = n[i]+1, nimages
Memi[id[i]+j] = 0
}
}
} else {
do i = 1, nused {
dp = d[i]
mp = m[i]
do j = 1, npts {
if (Memr[mp] == 0) {
n[j] = n[j] + 1
k = n[j]
if (k < i)
Memr[d[k]+j-1] = Memr[dp]
}
dp = dp + 1
mp = mp + 1
}
}
}
}
# Sort the pixels and IDs if needed
if (mclip) {
call malloc (dp, nimages, TY_REAL)
if (keepids) {
call malloc (ip, nimages, TY_INT)
call ic_2sortr (d, Memr[dp], id, Memi[ip], n, npts)
call mfree (ip, TY_INT)
} else
call ic_sortr (d, Memr[dp], n, npts)
call mfree (dp, TY_REAL)
}
end
|