aboutsummaryrefslogtreecommitdiff
path: root/noao/onedspec/t_fitprofs.x
blob: 9aa389bc3c6d71995cb52e04b26a497be13f23e4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
include	<error.h>
include	<imhdr.h>
include	<smw.h>
include	<gset.h>
include	<ctotok.h>


# Profile types.
define	PTYPES	"|gaussian|lorentzian|voigt|"
define  GAUSS           1       # Gaussian profile
define  LORENTZ         2       # Lorentzian profile
define  VOIGT           3       # Voigt profile

# Type of constraints.
define	FITTYPES "|fixed|single|all|"
define  FIXED           1       # Fixed parameter
define  SINGLE          2       # Fit a single value for all lines
define  INDEP           3       # Fit independent values for all lines

# Elements of fit array.
define  BKG             1       # Background
define  POS             2       # Position
define  INT             3       # Intensity
define  GAU             4       # Gaussian FWHM
define  LOR             5       # Lorentzian FWHM

# Output image options.
define	OPTIONS	"|difference|fit|"
define	DIFF		1
define	FIT		2

# Monte-Carlo errors
define  MC_N    50      # Monte-Carlo samples (overridden by users)
define  MC_P    10      # Percent done interval (percent)
define  MC_SIG  68      # Sigma sample point (percent)

define  NSUB    3       # Number of pixel subsamples

 
# T_FITPROFS -- Fit image profiles.
 
procedure t_fitprofs()
 
int	inlist			# List of input spectra
pointer	aps			# Aperture list
pointer	bands			# Band list

int	ptype			# Profile type
pointer	pg, xg, yg, sg, lg	# Fitting region and initial components
real	gfwhm			# Default gfwhm
real	lfwhm			# Default lfwhm
int	fit[5]			# Fit flags: background, position, gfwhm, lfwhm

int	nerrsample		# Number of error samples to use
real	sigma0			# Constant noise
real	invgain			# Inverse gain

pointer	components		# List of components
bool	verbose			# Verbose?
int	log			# Log file
int	plot			# Plot file
int	outlist			# List of output spectra
int	option			# Output image option
bool	clobber			# Clobber existing images?
bool	merge			# Merge with existing images?
 
real	x, y, g, l
bool	complement
int	i, p, ng, nalloc
pointer	sp, input, output, ptr
 
real	clgetr()
bool	clgetb()
int	clgeti(), clgwrd(), clscan()
int	imtopenp(), imtgetim(), imtlen()
int	open(), fscan(), nscan(), strdic(), nowhite()
pointer	rng_open()
errchk	open
 
begin
	call smark (sp)
	call salloc (input, SZ_FNAME, TY_CHAR)
	call salloc (output, SZ_FNAME, TY_CHAR)
 
	# Get parameters.
	inlist = imtopenp ("input")
	outlist = imtopenp ("output")
	if (imtlen (outlist) > 1 && imtlen (outlist) != imtlen (inlist))
	    call error (1, "Input and output image lists do not make sense")

	verbose = clgetb ("verbose")
	call clgstr ("logfile", Memc[output], SZ_FNAME)
	if (nowhite (Memc[output], Memc[output], SZ_FNAME) == 0)
	    log = NULL
	else
	    log = open (Memc[output], APPEND, TEXT_FILE)
	call clgstr ("plotfile", Memc[output], SZ_FNAME)
	if (nowhite (Memc[output], Memc[output], SZ_FNAME) == 0)
	    plot = NULL
	else
	    plot = open (Memc[output], APPEND, BINARY_FILE)

	ptype = clgwrd ("profile", Memc[output], SZ_FNAME, PTYPES)
	gfwhm = clgetr ("gfwhm")
	lfwhm = clgetr ("lfwhm")

	if (clgetb ("fitbackground"))
	    fit[BKG] = SINGLE
	else
	    fit[BKG] = FIXED
	fit[POS] = clgwrd ("fitpositions", Memc[output], SZ_FNAME, FITTYPES)
	fit[INT] = INDEP
	fit[GAU] = clgwrd ("fitgfwhm", Memc[output], SZ_FNAME, FITTYPES)
	fit[LOR] = clgwrd ("fitlfwhm", Memc[output], SZ_FNAME, FITTYPES)
	option = clgwrd ("option", Memc[output], SZ_FNAME, OPTIONS)
	clobber = clgetb ("clobber")
	merge = clgetb ("merge")
	nerrsample = clgeti ("nerrsample")
	sigma0 = clgetr ("sigma0")
	invgain = clgetr ("invgain")
	if (IS_INDEF(sigma0) || IS_INDEF(invgain) || sigma0<0. || invgain<0.) {
	    sigma0 = INDEF
	    invgain = INDEF
	}

	# Get the initial positions/peak/ptype/gfwhm/lfwhm.
	call clgstr ("positions", Memc[input], SZ_FNAME)
	if (nowhite (Memc[input], Memc[input], SZ_FNAME) == 0) {
	    call sfree (sp)
	    call error (1, "A 'positions' file must be specified")
	}
	i = open (Memc[input], READ_ONLY, TEXT_FILE)
	ng = 0
	while (fscan (i) != EOF) {
	    call gargr (x)
	    call gargr (y)
	    call gargwrd (Memc[output], SZ_FNAME)
	    call gargr (g)
	    call gargr (l)
	    p = strdic (Memc[output], Memc[output], SZ_FNAME, PTYPES)
	    if (p == 0)
		p = ptype
	    switch (nscan()) {
	    case 0:
		next
	    case 1:
		y = INDEF
		p = ptype
		g = gfwhm
		l = lfwhm
	    case 2:
		p = ptype
		g = gfwhm
		l = lfwhm
	    case 3:
		g = gfwhm
		l = lfwhm
	    case 4:
		switch (p) {
		case GAUSS:
		    l = lfwhm
		case LORENTZ:
		    l = g
		    g = gfwhm
		case VOIGT:
		    l = lfwhm
		}
	    }

	    if (ng == 0) {
		nalloc = 10
		call malloc (pg, nalloc, TY_INT)
		call malloc (xg, nalloc, TY_REAL)
		call malloc (yg, nalloc, TY_REAL)
		call malloc (sg, nalloc, TY_REAL)
		call malloc (lg, nalloc, TY_REAL)
	    } else if (ng == nalloc) {
		nalloc = nalloc + 10
		call realloc (pg, nalloc, TY_INT)
		call realloc (xg, nalloc, TY_REAL)
		call realloc (yg, nalloc, TY_REAL)
		call realloc (sg, nalloc, TY_REAL)
		call realloc (lg, nalloc, TY_REAL)
	    }
	    switch (p) {
	    case GAUSS:
		Memi[pg+ng] = p
		Memr[xg+ng] = x
		Memr[yg+ng] = y
		Memr[sg+ng] = g
		Memr[lg+ng] = 0.
	    case LORENTZ:
		Memi[pg+ng] = p
		Memr[xg+ng] = x
		Memr[yg+ng] = y
		Memr[sg+ng] = 0.
		Memr[lg+ng] = g
	    case VOIGT:
		Memi[pg+ng] = p
		Memr[xg+ng] = x
		Memr[yg+ng] = y
		Memr[sg+ng] = g
		Memr[lg+ng] = l
	    }
	    ng = ng + 1
	}
	call close (i)
	if (ng == 0)
	    call error (1, "No profiles defined")

	call realloc (xg, ng+2, TY_REAL)
	call realloc (yg, ng+2, TY_REAL)
	call realloc (sg, ng+2, TY_REAL)
	call realloc (lg, ng+2, TY_REAL)

	# Get fitting region and add to end of xg array.
	i = clscan ("region")
	    call gargr (Memr[xg+ng])
	    call gargr (Memr[xg+ng+1])
	    if (i == EOF || nscan() < 1)
 
	# Decode range strings and set complement if needed.
	complement = false
	call clgstr ("lines", Memc[input], SZ_FNAME)
	ptr = input
	if (Memc[ptr] == '!') {
	    complement = true
	    ptr = ptr + 1
	}
	iferr (aps = rng_open (Memc[ptr], INDEF, INDEF, INDEF))
	    call error (1, "Bad lines/column/aperture list")

	call clgstr ("bands", Memc[input], SZ_FNAME)
	ptr = input
	if (Memc[ptr] == '!') {
	    complement = true
	    ptr = ptr + 1
	}
	iferr (bands = rng_open (Memc[ptr], INDEF, INDEF, INDEF))
	    call error (1, "Bad band list")

	# Decode components.
	call clgstr ("components", Memc[input], SZ_FNAME)
	iferr (components = rng_open (Memc[input], INDEF, INDEF, INDEF))
	    call error (1, "Bad component list")

	while (imtgetim (inlist, Memc[input], SZ_FNAME) != EOF) {
	    if (imtgetim (outlist, Memc[output], SZ_FNAME) == EOF)
		Memc[output] = EOS

	    call fp_ms (Memc[input], aps, bands, complement, Memi[pg], Memr[xg],
		Memr[yg], Memr[sg], Memr[lg], ng, fit, nerrsample,
		sigma0, invgain, components, verbose, log, plot, Memc[output],
		option, clobber, merge)
	}

	if (log != NULL)
	    call close (log)
	if (plot != NULL)
	    call close (plot)
	call rng_close (aps)
	call rng_close (bands)
	call rng_close (components)
	call imtclose (inlist)
	call imtclose (outlist)
	call mfree (pg, TY_INT)
	call mfree (xg, TY_REAL)
	call mfree (yg, TY_REAL)
	call mfree (sg, TY_REAL)
	call mfree (lg, TY_REAL)
	call sfree (sp)
end

 
# FP_MS -- Handle I/O and call fitting procedure.

procedure fp_ms (input, aps, bands, complement, pg, xg, yg, sg, lg, ng, fit,
	nerrsample, sigma0, invgain, components, verbose, log, plot, output,
	option, clobber, merge)

char	input[ARB]		# Input image
pointer	aps			# Apertures
pointer	bands			# Bands
bool	complement		# Complement aperture selection

int	pg[ng]			# Profile type
real	xg[ng]			# Positions
real	yg[ng]			# Peaks
real	sg[ng]			# Gaussian FWHM
real	lg[ng]			# Lorentzian FWHM
int	ng			# Number of profiles
int	fit[5]			# Fit flags

int	nerrsample		# Number of error samples
real	sigma0			# Constant noise
real	invgain			# Inverse gain

pointer	components		# Output Component list
bool	verbose			# Verbose output?
int	log			# Log file descriptor
int	plot			# Plot file descriptor
char	output[ARB]		# Output image
int	option			# Output image option
bool	clobber			# Clobber existing image?
bool	merge			# Merge with existing image?

real	aplow[2], aphigh[2]
double	a, b, w1, wb, dw, z, p1, p2, p3
bool	select
int	i, j, k, l, ap, beam, dtype, nw, ninaps, noutaps, nbands, naps, last
int	mwoutdim, axis[3]
pointer	ptr, in, out, tmp, mwin, mwout, sh, shout
pointer	sp, str, key, temp, ltm1, ltv1, ltm2, ltv2, coeff, outaps
pointer	model

double	shdr_lw()
int	imaccess(), imgnfn()
bool	streq(), strne(), rng_elementi(), fp_equald()
pointer	smw_openim(), mw_open()
pointer	immap(), imgl3r(), impl3r(), imofnlu()
errchk	immap, smw_openim, mw_open, shdr_open, imunmap, imgstr, imgl3r, impl3r
errchk	imdelete
data	axis/1,2,3/

begin
	call smark (sp)
	call salloc (str, SZ_LINE, TY_CHAR)
	call salloc (key, SZ_LINE, TY_CHAR)
	call salloc (temp, SZ_FNAME, TY_CHAR)
	call salloc (ltm1, 3*3, TY_DOUBLE)
	call salloc (ltv1, 3, TY_DOUBLE)
	call salloc (ltm2, 3*3, TY_DOUBLE)
	call salloc (ltv2, 3, TY_DOUBLE)
	coeff = NULL

	# Initialize.
	in = NULL; out = NULL; tmp = NULL
	mwin = NULL; mwout = NULL
	sh = NULL; shout = NULL
	ninaps = 0; noutaps = 0; nbands = 0

	iferr {
	# Check for existing output image and abort if clobber is not set.
	if (output[1] != EOS && imaccess (output, READ_ONLY) == YES) {
	    if (!clobber) {
		call sprintf (Memc[str], SZ_LINE,
		    "Output spectrum %s already exists")
		    call pargstr (output)
		call error (1, Memc[str])
	    } else if (merge) {
		# Merging when the input and output are the same is a nop.
		if (streq (input, output)) {
		    call sfree (sp)
		    return
		}

		# Open the output and check the type.
		ptr = immap (output, READ_ONLY, 0); out = ptr
		ptr = smw_openim (out); mwout = ptr
                if (SMW_FORMAT(mwout) == SMW_ND) {
                    call sprintf (Memc[str], SZ_LINE, "%s - Wrong format")
                        call pargstr (output)
                    call error (1, Memc[str])
                }

		# Determine existing apertures.
		noutaps = SMW_NSPEC(mwout)
		nbands = SMW_NBANDS(mwout)
		call salloc (outaps, noutaps, TY_INT)
		do i = 1, noutaps {
		    call shdr_open (out, mwout, i, 1, INDEFI, SHHDR, sh)
		    Memi[outaps+i-1] = AP(sh)
		}
	    }
	    call mktemp ("temp", Memc[temp], SZ_FNAME)
	} else
	    call strcpy (output, Memc[temp], SZ_FNAME)

	# Open the input and determine the number of final output
	# apertures in order to set the output dimensions.

	ptr = immap (input, READ_ONLY, 0); in = ptr
	ptr = smw_openim (in); mwin = ptr

	naps = noutaps

	j = 1
	if (SMW_FORMAT(mwin) != SMW_ND) {
	    j = 0
	    do i = 1, SMW_NBANDS(mwin) {
		select = rng_elementi (bands, i)
		if (!select)
		    next
		j = j + 1
	    }
	    if (j == 0)
		call error (1, "No bands selected in image")
	}
	nbands = max (j, nbands)

	do i = 1, SMW_NSPEC(mwin) {
	    call shdr_open (in, mwin, i, 1, INDEFI, SHHDR, sh)
	    ap = AP(sh)
	    if (SMW_FORMAT(mwin) == SMW_ND) {
		call smw_mw (mwin, i, 1, ptr, j, k)
		select = rng_elementi (aps, j) && rng_elementi (bands, k)
	    } else
		select = rng_elementi (aps, ap)

	    if ((complement && select) || (!complement && !select))
		next
	    for (j=0; j<noutaps && Memi[outaps+j]!=ap; j=j+1)
		;
	    if (j == noutaps)
		naps = naps + 1
	    ninaps = ninaps + 1
	}
	if (ninaps == 0) {
	    call sprintf (Memc[str], SZ_LINE, "No apertures selected in %s")
		call pargstr (input)
	    call error (1, Memc[str])
	}

	# Set the output spectrum.  For merging with an existing output
	# copy to a temporary spectrum with size set appropriately.
	# For a new output setup copy the input header, reset the
	# physical line mapping, and clear all dispersion parameters.
	
	if (out != NULL) {
	    ptr = immap (Memc[temp], NEW_COPY, out); tmp = ptr
	    if (IM_PIXTYPE(tmp) != TY_DOUBLE)
		IM_PIXTYPE(tmp) = TY_REAL

	    IM_LEN(tmp,1) = max (SMW_LLEN(mwin,1), IM_LEN(out,1))
	    IM_LEN(tmp,2) = naps
	    IM_LEN(tmp,3) = max (nbands, IM_LEN(out,3))
	    if (nbands > 1)
		IM_NDIM(tmp) = 3
	    else if (naps > 1)
		IM_NDIM(tmp) = 2
	    else
		IM_NDIM(tmp) = 1

	    do j = 1, IM_LEN(out,3)
		do i = 1, IM_LEN(out,2) {
		    ptr = impl3r (tmp, i, j)
		    call aclrr (Memr[ptr], IM_LEN(tmp,1))
		    call amovr (Memr[imgl3r(out,i,j)], Memr[ptr], IM_LEN(out,1))
		}
	    do j = 1, IM_LEN(out,3)
		do i = IM_LEN(out,2)+1, IM_LEN(tmp,2) {
		    ptr = impl3r (tmp, i, j)
		    call aclrr (Memr[ptr], IM_LEN(tmp,1))
		}
	    do j = IM_LEN(out,3)+1, nbands
		do i = 1, IM_LEN(tmp,2) {
		    ptr = impl3r (tmp, i, j)
		    call aclrr (Memr[ptr], IM_LEN(tmp,1))
		}
	    call imunmap (out)
	    out = tmp
	    tmp = NULL
	} else if (Memc[temp] != EOS) {
	    ptr = immap (Memc[temp], NEW_COPY, in); out = ptr
	    if (IM_PIXTYPE(out) != TY_DOUBLE)
		IM_PIXTYPE(out) = TY_REAL

	    # Set header
	    IM_LEN(out,1) = SMW_LLEN(mwin,1)
	    IM_LEN(out,2) = naps
	    IM_LEN(out,3) = nbands
	    if (nbands > 1)
		IM_NDIM(out) = 3
	    else if (naps > 1)
		IM_NDIM(out) = 2
	    else
		IM_NDIM(out) = 1
	    mwoutdim = IM_NDIM(out)

	    j = imofnlu (out, "DISPAXIS,APID*,BANDID*")
	    while (imgnfn (j, Memc[key], SZ_LINE) != EOF)
		call imdelf (out, Memc[key])
	    call imcfnl (j)

	    i = SMW_PDIM(mwin)
	    j = SMW_PAXIS(mwin,1)

	    ptr = mw_open (NULL, mwoutdim); mwout = ptr
	    call mw_newsystem (mwout, "equispec", mwoutdim)
	    call mw_swtype (mwout, axis, mwoutdim, "linear", "")
	    if (LABEL(sh) != EOS)
		call mw_swattrs (mwout, 1, "label", LABEL(sh))
	    if (UNITS(sh) != EOS)
		call mw_swattrs (mwout, 1, "units", UNITS(sh))

	    call mw_gltermd (SMW_MW(mwin,0), Memd[ltm1], Memd[ltv1], i)
            call mw_gltermd (mwout, Memd[ltm2], Memd[ltv2], mwoutdim)
            Memd[ltv2] = Memd[ltv1+(j-1)]
            Memd[ltm2] = Memd[ltm1+(i+1)*(j-1)]
	    call mw_sltermd (mwout, Memd[ltm2], Memd[ltv2], mwoutdim)
	    call smw_open (mwout, NULL, out)
	}

	if (out != NULL) {
	    # Check dispersion function compatibility
	    # Nonlinear functions can be copied to different physical
	    # coordinate system though the linear dispersion can be
	    # modified.

	    call mw_gltermd (SMW_MW(mwout,0), Memd[ltm2], Memd[ltv2], mwoutdim)
	    a = Memd[ltv2]
	    b = Memd[ltm2]
	    if (DC(sh) == DCFUNC) {
		i = SMW_PDIM(mwin)
		j = SMW_PAXIS(mwin,1)

		call mw_gltermd (SMW_MW(mwin,0), Memd[ltm1], Memd[ltv1], i)
		Memd[ltv1] = Memd[ltv1+(j-1)]
		Memd[ltm1] = Memd[ltm1+(i+1)*(j-1)]
	       if (!fp_equald (a,Memd[ltv1]) || !fp_equald (b,Memd[ltm1])) {
		    call error (1,
		"Physical basis for nonlinear dispersion functions don't match")
		}
	    }
	}

	# Now do the actual fitting
	call salloc (model, SMW_LLEN(mwin,1), TY_REAL)
	last = noutaps
	do i = 1, SMW_NSPEC(mwin) {
	    call shdr_open (in, mwin, i, 1, INDEFI, SHHDR, sh)

	    # Check apertures.
	    ap = AP(sh)
	    if (SMW_FORMAT(mwin) == SMW_ND) {
		call smw_mw (mwin, i, 1, ptr, j, k)
		select = rng_elementi (aps, j) && rng_elementi (bands, k)
	    } else
		select = rng_elementi (aps, ap)

	    if ((complement && select) || (!complement && !select))
		next

	    call fp_title (sh, Memc[str], verbose, log)

	    call shdr_open (in, mwin, i, 1, INDEFI, SHDATA, sh)
	    if (SN(sh) < SMW_LLEN(mwin,1))
		call aclrr (Memr[model], SMW_LLEN(mwin,1))
	    iferr (call fp_fit (sh, Memr[SX(sh)], Memr[SY(sh)], SN(sh), pg,
		xg, yg, sg, lg, ng, fit, nerrsample, sigma0, invgain,
		components, verbose, log, plot, Memc[str], Memr[model])) {
		call erract (EA_WARN)
	    }

	    if (out != NULL) {
		for (j=0; j<noutaps && Memi[outaps+j]!=ap; j=j+1)
		    ;

		# Set output logical and physical lines
		if (j < noutaps)
		    l = j + 1
		else {
		    l = last + 1
		    last = l
		}

		# Copy and adjust dispersion info
		call smw_gwattrs (mwin, i, 1, AP(sh), beam,
		    dtype, w1, dw, nw, z, aplow, aphigh, coeff)

		w1 = shdr_lw (sh, 1D0)
		wb = shdr_lw (sh, double (SN(sh)))
		p1 = (NP1(sh) - a) / b
		p2 = (NP2(sh) - a) / b
		p3 = (IM_LEN(out,1) - a) / b
		nw = nint (min (max (p1 ,p3), max (p1 ,p2))) + NP1(sh) - 1
		if (p1 != p2)
		    dw = (wb - w1) / (p2 - p1) * (1 + z)
		w1 = w1 * (1 + z) - (p1 - 1) * dw

		call smw_swattrs (mwout, l, 1, ap, beam, dtype,
		    w1, dw, nw, z, aplow, aphigh, Memc[coeff])

		# Copy titles
		call smw_sapid (mwout, l, 1, TITLE(sh))
		if (Memc[SID(sh,1)] != EOS)
		    call imastr (out, "BANDID1", Memc[SID(sh,1)])

		# Copy the data
		switch (option) {
		case DIFF:
		    call asubr (Memr[SY(sh)], Memr[model],
			Memr[impl3r(out,l,1)+NP1(sh)-1], SN(sh))
		case FIT:
		    call amovr (Memr[model], Memr[impl3r(out,l,1)+NP1(sh)-1],
			SN(sh))
		}

		# Verify copy
		if (verbose) {
		    call shdr_open (out, mwout, l, 1, INDEFI, SHHDR, shout)
		    call printf ("%s%s(%d)  -->  %s%s(%s)\n")
			call pargstr (IMNAME(sh))
			call pargstr (IMSEC(sh))
			call pargi (AP(sh))
			call pargstr (IMNAME(shout))
			call pargstr (IMSEC(shout))
			call pargi (AP(shout))
		    call flush (STDOUT)
		}
	    }
	}

	call smw_close (MW(sh))
	if (out != NULL) {
	    call smw_saveim (mwout, out)
	    if (shout != NULL)
		call smw_close (MW(shout))
	    call imunmap (out)
	    if (strne (Memc[temp], output)) {
		call imdelete (output)
		call imrename (Memc[temp], output)
	    }
	}
	call imunmap (in)
	} then {
	    if (shout != NULL)
		call smw_close (MW(shout))
	    else if (mwout != NULL)
		call smw_close (mwout)
	    if (sh != NULL)
		call smw_close (MW(sh))
	    else if (mwin != NULL)
		call smw_close (mwin)
	    if (tmp != NULL)
	        call imunmap (tmp)
	    if (out != NULL)
	        call imunmap (out)
	    if (in != NULL)
	        call imunmap (in)
	    call erract (EA_WARN)
	}
    
	call shdr_close (shout)
	call shdr_close (sh)
	call mfree (coeff, TY_CHAR)
	call sfree (sp)
end


define	SQ2PI	2.5066283

# FP_FIT -- Fit profile functions

procedure fp_fit (sh, x, y, n, ptypes, pos, peaks, gfwhms, lfwhms, ng, fit,
	nerrsample, sigma0, invgain, components, verbose, log, plot, title, mod)

pointer	sh			# Spectrum data structure
real	x[n]			# Coordinates
real	y[n]			# Data
int	n			# Number of data points

int	ptypes[ARB]		# Profile types
real	pos[ARB]		# Fitting region and initial positions
real	peaks[ARB]		# Peak values
real	gfwhms[ARB]		# Background levels and initial gfwhm
real	lfwhms[ARB]		# Initial lfwhm
int	ng			# Number of gaussian components

int	fit[5]			# Fit flags

int	nerrsample		# Number of error samples
real	sigma0			# Constant noise
real	invgain			# Inverse gain

pointer	components		# Component list
bool	verbose			# Output to STDOUT?
int	log			# Log file descriptor
int	plot			# Plot file descriptor
char	title[ARB]		# Plot title
real	mod[n]			# Model

int	i, j, k, i1, i2, nfit, nsub, mc_n, mc_p, mc_sig
long	seed
real	xc, x1, x2, dx, y1, dy, z1, dz, w, z, scale, sscale
real	peak, flux, cont, gfwhm, lfwhm, eqw, chisq
real	flux1, cont1, eqw1, wyc1, slope1, v, u
bool	doerr
pointer	sp, str, xd, yd, sd, xg, yg, sg, lg, pg, yd1, xg1, yg1, sg1, lg1
pointer	ym, conte, xge, yge, sge, lge, fluxe, eqwe
pointer	gp, gopen()
bool	rng_elementi()
real	model(), gasdev(), asumr()
double	shdr_lw(), shdr_wl
errchk	fp_background, dofit, dorefit

begin
	# Determine fitting region.
	x1 = pos[ng+1]
	x2 = pos[ng+2]
	i1 = nint (shdr_wl (sh, double(x1)))
	i2 = nint (shdr_wl (sh, double(x2)))
	i = min (n, max (i1, i2))
	i1 = max (1, min (i1, i2))
	i2 = i
	nfit = i2 - i1 + 1
	if (nfit < 3) {
	    call aclrr (mod, n)
	    call error (1, "Too few data points in fitting region")
	}
	x1 = shdr_lw (sh, double(i1))
	x2 = shdr_lw (sh, double(i2))

	# Allocate memory.
	call smark (sp)
	call salloc (str, SZ_LINE, TY_CHAR)
	call salloc (xd, nfit, TY_REAL)
	call salloc (yd, nfit, TY_REAL)
	call salloc (sd, nfit, TY_REAL)
	call salloc (xg, ng, TY_REAL)
	call salloc (yg, ng, TY_REAL)
	call salloc (sg, ng, TY_REAL)
	call salloc (lg, ng, TY_REAL)
	call salloc (pg, ng, TY_INT)

	# Subtract the continuum and scale the data.
	call fp_background (sh, x, y, n, x1, x2, y1, dy)
	scale = 0.
	doerr = !IS_INDEF(sigma0)
	do i = i1, i2 {
	    Memr[xd+i-i1] = x[i]
	    Memr[yd+i-i1] = y[i] - (y1 + dy * (x[i]-x1))
	    if (y[i] <= 0.)
		doerr = false
	    scale = max (scale, abs (Memr[yd+i-i1]))
	}
	if (doerr) {
	    do i = i1, i2
		Memr[sd+i-i1] = sqrt (sigma0 ** 2 + invgain * y[i])
	    sscale = asumr (Memr[sd], nfit) / nfit
	} else {
	    call amovkr (1., Memr[sd], nfit)
	    sscale = 1.
	}
	call adivkr (Memr[yd], scale, Memr[yd], nfit)
	call adivkr (Memr[sd], sscale, Memr[sd], nfit)
	y1 = y1 / scale
	dy = dy / scale

	# Setup initial estimates.
	do i = 1, ng {
	    Memr[xg+i-1] = pos[i]
	    Memr[sg+i-1] = gfwhms[i]
	    Memr[lg+i-1] = lfwhms[i]
	    Memi[pg+i-1] = ptypes[i]
	    if (IS_INDEF(peaks[i])) {
		j = max (1, min (nfit, nint (shdr_wl(sh,double(pos[i])))-i1+1))
		Memr[yg+i-1] = Memr[yd+j-1]
	    } else
		Memr[yg+i-1] = peaks[i] / scale
	}
	z1 = 0.
	dz = 0.
	dx = (x[n] - x[1]) / (n - 1)
	nsub = NSUB
	call dofit (fit, Memr[xd], Memr[yd], Memr[sd],
	    nfit, dx, nsub, z1, dz, Memr[xg], Memr[yg], Memr[sg],
	    Memr[lg], Memi[pg], ng, chisq)

	# Compute Monte-Carlo errors.
	mc_n = nerrsample
	mc_p = nint (mc_n * MC_P / 100.)
	mc_sig = nint (mc_n * MC_SIG / 100.)
	if (doerr && mc_sig > 9) {
	    call salloc (yd1, nfit, TY_REAL)
	    call salloc (ym, nfit, TY_REAL)
	    call salloc (xg1, ng, TY_REAL)
	    call salloc (yg1, ng, TY_REAL)
	    call salloc (sg1, ng, TY_REAL)
	    call salloc (lg1, ng, TY_REAL)
	    call salloc (conte, mc_n*ng, TY_REAL)
	    call salloc (xge, mc_n*ng, TY_REAL)
	    call salloc (yge, mc_n*ng, TY_REAL)
	    call salloc (sge, mc_n*ng, TY_REAL)
	    call salloc (lge, mc_n*ng, TY_REAL)
	    call salloc (fluxe, mc_n*ng, TY_REAL)
	    call salloc (eqwe, mc_n*ng, TY_REAL)
	    do i = 1, nfit {
		w = Memr[xd+i-1]
		Memr[ym+i-1] = model (w, dx, nsub, Memr[xg], Memr[yg],
		    Memr[sg], Memr[lg], Memi[pg], ng)
	    }
	    seed = 1
	    do i = 0, mc_n-1 {
		do j = 1, nfit
		    Memr[yd1+j-1] = Memr[ym+j-1] +
			sscale / scale * Memr[sd+j-1] * gasdev (seed)
		wyc1 = z1
		slope1 = dz
		call amovr (Memr[xg], Memr[xg1], ng)
		call amovr (Memr[yg], Memr[yg1], ng)
		call amovr (Memr[sg], Memr[sg1], ng)
		call amovr (Memr[lg], Memr[lg1], ng)
		call dorefit (fit, Memr[xd], Memr[yd1], Memr[sd],
		    nfit, dx, nsub, wyc1, slope1,
		    Memr[xg1], Memr[yg1], Memr[sg1],
		    Memr[lg1], Memi[pg], ng, chisq)

		do j = 0, ng-1 {
		    cont = y1 + z1 + (dy + dz) * Memr[xg+j] - dy * x1
		    cont1 = y1 + wyc1 + (dy + slope1) * Memr[xg+j] - dy * x1
		    switch (Memi[pg+j]) {
		    case GAUSS:
			flux = 1.064467 * Memr[yg+j] * Memr[sg+j]
			flux1 = 1.064467 * Memr[yg1+j] * Memr[sg1+j]
		    case LORENTZ:
			flux = 1.570795 * Memr[yg+j] * Memr[lg+j]
			flux1 = 1.570795 * Memr[yg1+j] * Memr[lg1+j]
		    case VOIGT:
			call voigt (0., 0.832555*Memr[lg+j]/Memr[sg+j], v, u)
			flux = 1.064467 * Memr[yg+j] * Memr[sg+j] / v
			call voigt (0., 0.832555*Memr[lg1+j]/Memr[sg1+j], v, u)
			flux1 = 1.064467 * Memr[yg1+j] * Memr[sg1+j] / v
		    }
		    if (cont > 0. && cont1 > 0.) {
			eqw = -flux / cont
			eqw1 = -flux1 / cont1
		    } else {
			eqw = 0.
			eqw1 = 0.
		    }
		    Memr[conte+j*mc_n+i] = abs (cont1 - cont)
		    Memr[xge+j*mc_n+i] = abs (Memr[xg1+j] - Memr[xg+j])
		    Memr[yge+j*mc_n+i] = abs (Memr[yg1+j] - Memr[yg+j])
		    Memr[sge+j*mc_n+i] = abs (Memr[sg1+j] - Memr[sg+j])
		    Memr[lge+j*mc_n+i] = abs (Memr[lg1+j] - Memr[lg+j])
		    Memr[fluxe+j*mc_n+i] = abs (flux1 - flux)
		    Memr[eqwe+j*mc_n+i] = abs (eqw1 - eqw)
		}
	    }
	    do j = 0, ng-1 {
		call asrtr (Memr[conte+j*mc_n], Memr[conte+j*mc_n], mc_n)
		call asrtr (Memr[xge+j*mc_n], Memr[xge+j*mc_n], mc_n)
		call asrtr (Memr[yge+j*mc_n], Memr[yge+j*mc_n], mc_n)
		call asrtr (Memr[sge+j*mc_n], Memr[sge+j*mc_n], mc_n)
		call asrtr (Memr[lge+j*mc_n], Memr[lge+j*mc_n], mc_n)
		call asrtr (Memr[fluxe+j*mc_n], Memr[fluxe+j*mc_n], mc_n)
		call asrtr (Memr[eqwe+j*mc_n], Memr[eqwe+j*mc_n], mc_n)
	    }
	    call amulkr (Memr[conte], scale, Memr[conte], mc_n*ng)
	    call amulkr (Memr[yge], scale, Memr[yge], mc_n*ng)
	    call amulkr (Memr[fluxe], scale, Memr[fluxe], mc_n*ng)
	}

	call amulkr (Memr[yg], scale, Memr[yg], ng)
	y1 = (y1 + z1 + dz * x1) * scale
	dy = (dy + dz) * scale

	# Log computed values
	call sprintf (Memc[str], SZ_LINE,
	    "# Nfit=%d, background=%b, positions=%s, gfwhm=%s, lfwhm=%s\n")
	    call pargi (ng)
	    call pargb (fit[BKG] == SINGLE)
	    if (fit[POS] == FIXED)
		call pargstr ("fixed")
	    else if (fit[POS] == SINGLE)
		call pargstr ("single")
	    else
		call pargstr ("all")
	    if (fit[GAU] == FIXED)
		call pargstr ("fixed")
	    else if (fit[GAU] == SINGLE)
		call pargstr ("single")
	    else
		call pargstr ("all")
	    if (fit[LOR] == FIXED)
		call pargstr ("fixed")
	    else if (fit[LOR] == SINGLE)
		call pargstr ("single")
	    else
		call pargstr ("all")
	if (log != NULL)
	    call fprintf (log, Memc[str])
	if (verbose)
	    call printf (Memc[str])
	call sprintf (Memc[str], SZ_LINE, "# %8s%10s%10s%10s%10s%10s%10s\n")
	    call pargstr ("center")
	    call pargstr ("cont")
	    call pargstr ("flux")
	    call pargstr ("eqw")
	    call pargstr ("core")
	    call pargstr ("gfwhm")
	    call pargstr ("lfwhm")
	if (log != NULL)
	    call fprintf (log, Memc[str])
	if (verbose)
	    call printf (Memc[str])
	do i = 1, ng {
	    if (!rng_elementi (components, i))
		next
	    xc = Memr[xg+i-1]
	    cont = y1 + dy * (xc - x1)
	    peak = Memr[yg+i-1]
	    gfwhm = Memr[sg+i-1]
	    lfwhm = Memr[lg+i-1]
	    switch (Memi[pg+i-1]) {
	    case 1:
		flux = 1.064467 * peak * gfwhm
	    case 2:
		flux = 1.570795 * peak * lfwhm
	    case 3:
		call voigt (0., 0.832555*lfwhm/gfwhm, v, u)
		flux = 1.064467 * peak * gfwhm / v
	    }

	    if (cont > 0.)
		eqw = -flux / cont
	    else
		eqw = INDEF

	    call sprintf (Memc[str], SZ_LINE,
		" %9.7g %9.7g %9.6g %9.4g %9.6g %9.4g %9.4g\n")
		call pargr (xc)
		call pargr (cont)
		call pargr (flux)
		call pargr (eqw)
		call pargr (peak)
		call pargr (gfwhm)
		call pargr (lfwhm)
	    if (log != NULL)
		call fprintf (log, Memc[str])
	    if (verbose)
		call printf (Memc[str])
	    if (doerr && mc_sig > 9) {
		call sprintf (Memc[str], SZ_LINE,
		" (%7.7g) (%7.7g) (%7.6g) (%7.4g) (%7.6g) (%7.4g) (%7.4g)\n")
		    call pargr (Memr[xge+(i-1)*mc_n+mc_sig])
		    call pargr (Memr[conte+(i-1)*mc_n+mc_sig])
		    call pargr (Memr[fluxe+(i-1)*mc_n+mc_sig])
		    call pargr (Memr[eqwe+(i-1)*mc_n+mc_sig])
		    call pargr (Memr[yge+(i-1)*mc_n+mc_sig])
		    call pargr (Memr[sge+(i-1)*mc_n+mc_sig])
		    call pargr (Memr[lge+(i-1)*mc_n+mc_sig])
		if (log != NULL)
		    call fprintf (log, Memc[str])
		if (verbose)
		    call printf (Memc[str])
	    }
	}

	# Compute model.
	call aclrr (mod, n)
	do i = 0, ng-1 {
	    if (!rng_elementi (components, i+1))
		next
	    do j = 1, n
		#mod[j] = model (x[j], dx, nsub, Memr[xg+i], Memr[yg+i],
		#    Memr[sg+i], Memr[lg+i], Memi[pg+i], ng)
		mod[j] = mod[j] + model (x[j], dx, nsub, Memr[xg+i], Memr[yg+i],
		    Memr[sg+i], Memr[lg+i], Memi[pg+i], 1)
	}

	# Draw graphs
	if (plot != NULL) {
	    gp = gopen ("stdvdm", NEW_FILE, plot)
	    call gascale (gp, y[i1], nfit, 2)
	    call asubr (y[i1], mod[i1], Memr[yd], nfit)
	    call grscale (gp, Memr[yd], nfit, 2)
	    do i = i1, i2
		Memr[yd+i-i1] = mod[i] + y1 + dy * (x[i] - x1)
	    call grscale (gp, Memr[yd], nfit, 2)
	    call gswind (gp, x1, x2, INDEF, INDEF)
	    call glabax (gp, title, "", "")
	    call gseti (gp, G_PLTYPE, 1)
	    call gpline (gp, Memr[xd], y[i1], nfit)
	    call gseti (gp, G_PLTYPE, 2)
	    call gpline (gp, Memr[xd], Memr[yd], nfit)
	    call gline (gp, x1, y1, x2, y1+dy*(x2-x1))
	    call gseti (gp, G_PLTYPE, 3)
	    call asubr (y[i1], mod[i1], Memr[yd], nfit)
	    call gpline (gp, Memr[xd], Memr[yd], nfit)
	    call gseti (gp, G_PLTYPE, 4)
	    do i = 0, ng-1 {
		if (!rng_elementi (components, i+1))
		    next
		k = 0
		do j = i1, i2 {
		    w = x[j]
		    z = model (w, dx, nsub, Memr[xg+i], Memr[yg+i],
			Memr[sg+i], Memr[lg+i], Memi[pg+i], 1)
		    z = z + y1 + dy * (w - x1)
		    if (k == 0) {
			call gamove (gp, w, z)
			k = 1
		    } else
			call gadraw (gp, w, z)
		}
	    }
	    call gclose (gp)
	}

	call sfree (sp)
end


# FP_BACKGROUND -- Iniital background.

procedure fp_background (sh, x, y, n, x1, x2, y1, dy)

pointer	sh			#I Spectrum pointer
real	x[n]			#I Coordinate values
real	y[n]			#I Data
int	n			#I Number of data points
real	x1, x2			#I Fit endpoints
real	y1, dy			#O Background

int	i, j, k, m, func
real	xval[2], yval[2]
double	z1, z2, z3
pointer	sp, bkg, str

int	ctotok(), ctor(), ctod(), strdic(), nscan()
real	asumr(), amedr()
double	shdr_wl(), shdr_lw()

define	err_	10

begin
	call smark (sp)
	call salloc (bkg, SZ_LINE, TY_CHAR)
	call salloc (str, SZ_LINE, TY_CHAR)

	xval[1] = x1
	xval[2] = x2

	call clgstr ("background", Memc[bkg], SZ_LINE)
	call sscan (Memc[bkg])
	do j = 1, 2 {
	    call gargwrd (Memc[bkg], SZ_LINE)
	    if (nscan() != j) {
		i = max (1, min (n, nint (shdr_wl (sh, double(xval[j])))))
		xval[j] = shdr_lw (sh, double(i))
		yval[j] = y[i]
		next
	    }

	    k = 1
	    if (ctor (Memc[bkg], k, yval[j]) == 0) {
		if (ctotok (Memc[bkg], k, Memc[str], SZ_LINE) != TOK_IDENTIFIER)
		    goto err_
		func = strdic (Memc[str], Memc[str], SZ_LINE, "|avg|med|")
		if (func == 0)
		    goto err_
		k = k + 1
		if (ctod (Memc[bkg], k, z1) == 0)
		    goto err_
		k = k + 1
		if (ctod (Memc[bkg], k, z2) == 0)
		    goto err_
		k = k + 1
		if (ctod (Memc[bkg], k, z3) == 0)
		    z3 = 1

		z1 = shdr_wl (sh, z1)
		z2 = shdr_wl (sh, z2)
		i = max (1, nint(min(z1,z2)))
		m = min (n, nint(max(z1,z2))) - i + 1
		if (m < 1)
		    goto err_

		# This is included to eliminate an optimizer bug on solaris.
		call sprintf (Memc[bkg], SZ_LINE, "%g %g %g %d %d\n")
		    call pargd (z1)
		    call pargd (z2)
		    call pargd (z3)
		    call pargi (i)
		    call pargi (m)

		switch (func) {
		case 1:
		    xval[j] = z3 * asumr (x[i], m) / m
		    yval[j] = z3 * asumr (y[i], m) / m
		case 2:
		    xval[j] = z3 * asumr (x[i], m) / m
		    yval[j] = z3 * amedr (y[i], m)
		}
	    }
	}

	if (xval[1] == xval[2]) {
	   dy = 0.
	   y1 = (yval[1] + yval[2]) / 2.
	} else {
	    dy = (yval[2] - yval[1]) / (xval[2] - xval[1])
	    y1 = yval[1] + dy * (x1 - xval[1])
	}
	return
    
err_
	call sfree (sp)
	call error (1, "Syntax error in background specification")
end


include	<time.h>

# FP_TITLE -- Set title string and print.

procedure fp_title (sh, str, verbose, log)

pointer	sh			# Spectrum header structure
char	str[SZ_LINE]		# Title string
bool	verbose			# Verbose?
int	log			# Log file descriptor

pointer	sp, time, smw
long	clktime()

begin
	# Select title format.
	smw = MW(sh)
	switch (SMW_FORMAT(smw)) {
	case SMW_ND:
	    call sprintf (str, SZ_LINE, "%s%s: %s")
		call pargstr (IMNAME(sh))
		call pargstr (IMSEC(sh))
		call pargstr (TITLE(sh))
	case SMW_ES, SMW_MS:
	    call sprintf (str, SZ_LINE, "%s - Ap %d: %s")
		call pargstr (IMNAME(sh))
		call pargi (AP(sh))
		call pargstr (TITLE(sh))
	}

	# Set time and log header.
	call smark (sp)
	call salloc (time, SZ_DATE, TY_CHAR)
	call cnvdate (clktime(0), Memc[time], SZ_DATE)
       if (log != NULL) {
	    call fprintf (log, "# %s %s\n")
		call pargstr (Memc[time])
		call pargstr (str)
	}
       if (verbose) {
	    call printf ("# %s %s\n")
		call pargstr (Memc[time])
		call pargstr (str)
	}

	call sfree (sp)
end