1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
|
include <error.h>
include <imhdr.h>
include <imset.h>
include <gset.h>
include <mach.h>
include <pkg/gtools.h>
include <smw.h>
define KEY "noao$onedspec/standard.key"
define PROMPT "STANDARD options"
define VLIGHT 2.997925e18 # Velocity of light in Angstroms/sec
define EXT_LOOKUP 1 # Interp entry ID for extinction table
define MAG_LOOKUP 2 # Interp entry ID for magnitude table
define STD_LEN 13 # Length of standard structure
define STD_AP Memi[$1] # Aperture number
define STD_TYPE Memi[$1+1] # Spectrum type
define STD_SH Memi[$1+2] # Pointer to spectrum parameters
define STD_IFLAG Memi[$1+3] # Interactive flag
define STD_NWAVES Memi[$1+4] # Number of calibration points
define STD_WAVES Memi[$1+5] # Pointer to standard star wavelengths
define STD_DWAVES Memi[$1+6] # Pointer to standard star bandpasses
define STD_MAGS Memi[$1+7] # Pointer to standard star magnitudes
define STD_FLUXES Memi[$1+8] # Pointer to standard star fluxes
define CAL_NWAVES Memi[$1+9] # Number of calibration points
define CAL_WAVES Memi[$1+10] # Pointer to calibration wavelengths
define CAL_DWAVES Memi[$1+11] # Pointer to calibration bandpasses
define CAL_MAGS Memi[$1+12] # Pointer to calibration magnitudes
# Object flags
define NONE -1 # No object flag
define SKY 0 # Sky
define OBJ 1 # Object
# Interactive flags
define ANSWERS "|no|yes|N|Y|NO|YES|NO!|YES!|"
define NO1 1 # No for a single spectrum
define YES1 2 # Yes for a single spectrum
define N2 3 # No for all spectra of the same aperture
define Y2 4 # Yes for all spectra of the same aperture
define NO2 5 # No for all spectra of the same aperture
define YES2 6 # Yes for all spectra of the same aperture
define NO3 7 # No for all spectra
define YES3 8 # Yes for all spectra
# T_STANDARD -- Read standard star spectrum and compare with tabulated
# fluxes for given star to ascertain the system sensitivity
# across the spectrum. The user may optionally define
# new and arbitrary bandpasses
#
# The sensitivity function is stored in tabular form in a file
# containing the wavelength, sensitivity factor, and counts per
# bandpass at each required position along the spectrum.
# The file is appended to for each new measurement from either
# same or different standard stars.
procedure t_standard()
int list # List of input spectra
pointer output # Output standard file
pointer observatory # Observatory
pointer aps # Aperture list
real bandwidth # Width of bandpass
real bandsep # Separation of bandpass
bool bswitch # Beam switch?
bool samestar # Same star in all apertures?
int interactive # Interactive bandpass definition
bool newobs, obshead
int i, j, line, enwaves, nstds
real wave, dwave, latitude
pointer sp, units, errstr, str, image, ewaves, emags
pointer im, mw, un, unang, sh, obj, sky, std, stds, obs, gp
int imtgetim(), errget()
real clgetr(), obsgetr()
bool clgetb(), rng_elementi(), streq()
pointer imtopenp(), rng_open(), immap(), smw_openim(), un_open()
errchk immap, smw_openim, shdr_open, std_calib, get_airm, ext_load, obsimopen
errchk un_open, std_gcalib
begin
call smark (sp)
call salloc (image, SZ_FNAME, TY_CHAR)
call salloc (output, SZ_FNAME, TY_CHAR)
call salloc (observatory, SZ_FNAME, TY_CHAR)
call salloc (units, SZ_FNAME, TY_CHAR)
call salloc (errstr, SZ_FNAME, TY_CHAR)
call salloc (str, SZ_LINE, TY_CHAR)
# Get task parameters.
list = imtopenp ("input")
call clgstr ("records", Memc[image], SZ_FNAME)
call odr_openp (list, Memc[image])
call clgstr ("output", Memc[output], SZ_FNAME)
call clgstr ("apertures", Memc[image], SZ_FNAME)
bandwidth = clgetr ("bandwidth")
bandsep = clgetr ("bandsep")
bswitch = clgetb ("beam_switch")
if (bswitch)
samestar = true
else
samestar = clgetb ("samestar")
if (clgetb ("interact"))
interactive = YES1
else
interactive = NO3
# Expand the aperture list.
iferr (aps = rng_open (Memc[image], INDEF, INDEF, INDEF))
call error (0, "Bad aperture list")
call ext_load (ewaves, emags, enwaves)
un = NULL
sh = NULL
obj = NULL
sky = NULL
obs = NULL
gp = NULL
nstds = 0
while (imtgetim (list, Memc[image], SZ_FNAME) != EOF) {
iferr (im = immap (Memc[image], READ_ONLY, 0)) {
call erract (EA_WARN)
next
}
mw = smw_openim (im)
call shdr_open (im, mw, 1, 1, INDEFI, SHHDR, sh)
if (DC(sh) == DCNO) {
call eprintf ("%s: No dispersion function\n")
call pargstr (Memc[image])
call smw_close (MW(sh))
call imunmap (IM(sh))
next
}
# Work in units of first spectrum.
if (un == NULL) {
call strcpy (UNITS(sh), Memc[units], SZ_FNAME)
un = un_open (Memc[units])
unang = un_open ("Angstroms")
call un_ctranr (unang, un, Memr[ewaves], Memr[ewaves], enwaves)
}
if (IS_INDEF (IT(sh))) {
call printf ("%s: ")
call pargstr (Memc[image])
call flush (STDOUT)
IT(sh) = clgetr ("exptime")
call imunmap (IM(sh))
ifnoerr (im = immap (Memc[image], READ_WRITE, 0)) {
IM(sh) = im
call imseti (IM(sh), IM_WHEADER, YES)
call imaddr (IM(sh), "exptime", IT(sh))
} else {
im = immap (Memc[image], READ_ONLY, 0)
IM(sh) = im
}
}
do line = 1, SMW_NSPEC(mw) {
call shdr_open (im, mw, line, 1, INDEFI, SHDATA, sh)
if (!rng_elementi (aps, AP(sh)))
next
call shdr_units (sh, Memc[units])
if (!bswitch || OFLAG(sh) == OBJ) {
call printf ("%s%s(%d): %s\n")
call pargstr (IMNAME(sh))
call pargstr (IMSEC(sh))
call pargi (AP(sh))
call pargstr (TITLE(sh))
call flush (STDOUT)
}
if (IS_INDEF (AM(sh))) {
call clgstr ("observatory", Memc[observatory], SZ_FNAME)
call obsimopen (obs, im, Memc[observatory], NO, newobs,
obshead)
if (newobs)
call obslog (obs, "STANDARD", "latitude", STDOUT)
latitude = obsgetr (obs, "latitude")
iferr (call get_airm (RA(sh), DEC(sh), HA(sh), ST(sh),
latitude, AM(sh))) {
call printf ("%s: ")
call pargstr (Memc[image])
call flush (STDOUT)
AM(sh) = clgetr ("airmass")
call imunmap (IM(sh))
ifnoerr (im = immap (Memc[image], READ_WRITE, 0)) {
IM(sh) = im
call imseti (IM(sh), IM_WHEADER, YES)
call imaddr (IM(sh), "airmass", AM(sh))
} else {
im = immap (Memc[image], READ_ONLY, 0)
IM(sh) = im
}
}
}
for (i=0; i<nstds; i=i+1) {
std = Memi[stds+i]
if (STD_AP(std) == AP(sh))
break
}
# Allocate space for this aperture if not already done.
if (i >= nstds) {
if (nstds == 0)
call malloc (stds, 10, TY_INT)
else if (mod (nstds, 10) == 0)
call realloc (stds, nstds+10, TY_INT)
call salloc (std, STD_LEN, TY_STRUCT)
Memi[stds+i] = std
nstds = nstds + 1
STD_AP(std) = AP(sh)
STD_TYPE(std) = NONE
STD_SH(std) = NULL
STD_IFLAG(std) = interactive
STD_NWAVES(std) = 0
if (!samestar || i == 0) {
# Read calibration data
Memc[str] = EOS
repeat {
iferr (call std_gcalib (std, un)) {
j = errget (Memc[errstr], SZ_FNAME)
if (streq (Memc[errstr], Memc[str]))
call erract (EA_ERROR)
call strcpy (Memc[errstr], Memc[str], SZ_LINE)
call erract (EA_WARN)
next
}
break
}
} else {
CAL_NWAVES(std) = CAL_NWAVES(Memi[stds])
CAL_WAVES(std) = CAL_WAVES(Memi[stds])
CAL_DWAVES(std) = CAL_DWAVES(Memi[stds])
CAL_MAGS(std) = CAL_MAGS(Memi[stds])
}
if (IS_INDEF (bandwidth)) {
do j = 1, CAL_NWAVES(std) {
wave = Memr[CAL_WAVES(std)+j-1]
dwave = Memr[CAL_DWAVES(std)+j-1]
call std_addband (std, wave, dwave, 0.)
}
} else {
wave = W0(sh) + bandwidth / 2
dwave = W0(sh) + (SN(sh)-1) * WP(sh) - bandwidth / 2
while (wave <= dwave) {
call std_addband (std, wave, bandwidth, 0.)
wave = wave + bandsep
}
}
}
# The copying of SHDR structures and associated MWCS only
# occurs with beam switched data.
if (bswitch) {
switch (STD_TYPE(std)) {
case NONE:
STD_TYPE(std) = OFLAG(sh)
call shdr_copy (sh, STD_SH(std), YES)
next
case SKY:
obj = sh
sky = STD_SH(std)
if (OFLAG(sh) == SKY) {
call eprintf ("%s[%d]: Object spectrum not found\n")
call pargstr (IMNAME(sky))
call pargi (AP(sky))
call smw_close (MW(sky))
call shdr_copy (sh, STD_SH(std), YES)
next
}
case OBJ:
obj = STD_SH(std)
sky = sh
if (OFLAG(sh) == OBJ) {
obj = STD_SH(std)
call eprintf ("%s[%d]: Sky spectrum not found\n")
call pargstr (IMNAME(obj))
call pargi (AP(obj))
call smw_close (MW(obj))
call shdr_copy (sh, STD_SH(std), YES)
next
}
}
} else {
obj = sh
sky = NULL
}
# Generate a calibration table
call std_calib (obj, sky, std, gp, Memr[ewaves], Memr[emags],
enwaves)
call std_output (obj, sky, std, Memc[output])
if (interactive == YES1) {
if (STD_IFLAG(std) == NO3 || STD_IFLAG(std) == YES3) {
interactive = STD_IFLAG(std)
do i = 0, nstds-1
STD_IFLAG(Memi[stds+i]) = interactive
}
if (interactive == NO3 && gp != NULL)
call gclose (gp)
}
if (bswitch) {
call smw_close (MW(STD_SH(std)))
STD_TYPE(std) = NONE
}
}
call smw_close (MW(sh))
call imunmap (IM(sh))
}
if (un != NULL) {
call un_close (un)
call un_close (unang)
}
if (obs != NULL)
call obsclose (obs)
if (gp != NULL)
call gclose (gp)
do i = 0, nstds-1 {
std = Memi[stds+i]
obj = STD_SH(std)
switch (STD_TYPE(std)) {
case SKY:
call eprintf ("%s[%d]: Object spectrum not found\n")
call pargstr (IMNAME(obj))
call pargi (AP(obj))
case OBJ:
call eprintf ("%s[%d]: Sky spectrum not found\n")
call pargstr (IMNAME(obj))
call pargi (AP(obj))
}
if (obj != NULL)
call shdr_close (obj)
if (!samestar || i == 0) {
call mfree (CAL_WAVES(std), TY_REAL)
call mfree (CAL_DWAVES(std), TY_REAL)
call mfree (CAL_MAGS(std), TY_REAL)
}
call mfree (STD_WAVES(std), TY_REAL)
call mfree (STD_DWAVES(std), TY_REAL)
call mfree (STD_MAGS(std), TY_REAL)
call mfree (STD_FLUXES(std), TY_REAL)
}
call mfree (stds, TY_INT)
call mfree (ewaves, TY_REAL)
call mfree (emags, TY_REAL)
call shdr_close (sh)
call rng_close (aps)
call imtclose (list)
call sfree (sp)
end
# STD_CALIB -- Compute standard star calibrations
procedure std_calib (obj, sky, std, gp, ewaves, emags, enwaves)
pointer obj # Object pointer
pointer sky # Sky pointer
pointer std # Standard pointer
pointer gp # Graphics pointer
real ewaves[enwaves] # Extinction wavelengths
real emags[enwaves] # Extinction magnitudes
int enwaves # Extinction points
int i, j, n, nwaves, wcs, key, newgraph
real wave, dwave, flux, wx1, wx2, wy
pointer sp, cmd, gt, waves, dwaves, fluxes, x, y
real std_flux()
double shdr_wl()
int clgcur(), strdic(), clgwrd()
pointer gopen(), gt_init()
errchk gopen, std_output
define beep_ 99
begin
call smark (sp)
call salloc (cmd, SZ_LINE, TY_CHAR)
# Sky subtract
if (sky != NULL) {
call shdr_rebin (sky, obj)
call asubr (Memr[SY(obj)], Memr[SY(sky)], Memr[SY(obj)], SN(obj))
}
# Remove extinction correction
if (EC(obj) == ECYES) {
x = SX(obj)
y = SY(obj)
n = SN(obj)
do i = 1, n {
call intrp (EXT_LOOKUP, ewaves, emags, enwaves,
Memr[x], flux, j)
Memr[y] = Memr[y] * 10.0 ** (-0.4 * flux * AM(obj))
x = x + 1
y = y + 1
}
}
nwaves = STD_NWAVES(std)
waves = STD_WAVES(std)
dwaves = STD_DWAVES(std)
fluxes = STD_FLUXES(std)
do i = 0, nwaves-1 {
wave = Memr[waves+i]
dwave = Memr[dwaves+i]
Memr[fluxes+i] = std_flux (obj, wave, dwave, ewaves, emags, enwaves)
}
# Plot spectrum if user wants to see whats happening
if (STD_IFLAG(std) == NO1 || STD_IFLAG(std) == YES1) {
call printf ("%s[%d]: Edit bandpasses? ")
call pargstr (IMNAME(obj))
call pargi (AP(obj))
STD_IFLAG(std) = clgwrd ("answer", Memc[cmd], SZ_FNAME, ANSWERS)
}
i = STD_IFLAG(std)
if (i==YES1||i==Y2||i==YES2||i==YES3) {
if (gp == NULL) {
call clgstr ("graphics", Memc[cmd], SZ_FNAME)
gp = gopen (Memc[cmd], NEW_FILE, STDGRAPH)
}
gt = gt_init()
call gt_sets (gt, GTTITLE, TITLE(obj))
call gt_sets (gt, GTPARAMS, IMNAME(obj))
call gt_sets (gt, GTXLABEL, LABEL(obj))
call gt_sets (gt, GTXUNITS, UNITS(obj))
call gt_sets (gt, GTYLABEL, "instrumental flux")
call gt_sets (gt, GTTYPE, "line")
key = 'r'
repeat {
switch (key) {
case '?':
call gpagefile (gp, KEY, PROMPT)
case ':':
if (Memc[cmd] == '/')
call gt_colon (Memc[cmd], gp, gt, newgraph)
else {
switch (strdic (Memc[cmd],Memc[cmd],SZ_LINE,"|show|")) {
case 1:
call mktemp ("std", Memc[cmd], SZ_LINE)
call std_output (obj, sky, std, Memc[cmd])
call gpagefile (gp, Memc[cmd], "standard star data")
call delete (Memc[cmd])
default:
goto beep_
}
}
case 'a':
call printf ("a again:\n")
i = clgcur ("cursor", wx2, wy, wcs, key, Memc[cmd], SZ_LINE)
call printf ("\n")
if (wx1 == wx2) {
call printf ("\07Two cursor positions required")
goto beep_
}
# Create artificial standard wavelength and bandpass
wave = (wx1 + wx2) / 2.0
dwave = wx2 - wx1
flux = std_flux (obj, wave, dwave, ewaves, emags, enwaves)
call std_addband (std, wave, dwave, flux)
flux = flux / abs (shdr_wl (obj, double(wx1)) -
shdr_wl (obj, double (wx2)))
call gmark (gp, wave, flux, GM_BOX, -dwave, 3.)
nwaves = STD_NWAVES(std)
waves = STD_WAVES(std)
dwaves = STD_DWAVES(std)
fluxes = STD_FLUXES(std)
case 'd':
dwave = MAX_REAL
do i = 0, nwaves-1 {
wave = Memr[waves+i]
if (abs (wx1 - wave) < dwave) {
dwave = abs (wx1 - wave)
j = i
}
}
wave = Memr[waves+j]
dwave = Memr[dwaves+j]
flux = Memr[fluxes+j]
flux = flux / abs (shdr_wl (obj, double(wave-dwave/2)) -
shdr_wl (obj, double (wave+dwave/2)))
call gseti (gp, G_PMLTYPE, 0)
call gmark (gp, wave, flux, GM_BOX, -dwave, 3.)
call gseti (gp, G_PMLTYPE, 1)
call gscur (gp, wave, flux)
call std_delband (std, j)
case 'q':
break
case 'I':
call fatal (0, "Interrupt")
case 'r':
newgraph = YES
case 'w':
call gt_window (gt, gp, "cursor", newgraph)
default: # Invalid keystroke
beep_ call printf ("\007")
}
if (newgraph == YES) {
call std_graph (obj, std, gp, gt, YES)
newgraph = NO
}
} until (clgcur ("cursor",wx1,wy,wcs,key,Memc[cmd],SZ_LINE) == EOF)
call gt_free (gt)
}
call sfree (sp)
end
# STD_OUTPUT -- Output standard star data.
# For now we do this in Angstroms.
procedure std_output (obj, sky, std, output)
pointer obj # Object pointer
pointer sky # Sky pointer
pointer std # Standard pointer
char output[ARB] # Output file name
int i, fd, open()
real wave, dwave, mag, flux, fnuzero, flambda, clgetr()
pointer unang, un_open()
errchk open, un_open, un_ctranr, std_units
begin
fd = open (output, APPEND, TEXT_FILE)
call fprintf (fd, "[%s]")
call pargstr (IMNAME(obj))
if (sky != NULL) {
call fprintf (fd, "-[%s]")
call pargstr (IMNAME(sky))
}
unang = un_open ("Angstroms")
call un_ctranr (UN(obj), unang, W0(obj), wave, 1)
call un_ctranr (UN(obj), unang, W0(obj)+(SN(obj)-1)*WP(obj), dwave, 1)
call fprintf (fd, " %d %d %.2f %5.3f %9.3f %9.3f %s\n")
call pargi (AP(obj))
call pargi (SN(obj))
call pargr (IT(obj))
call pargr (AM(obj))
#call pargr (W0(obj))
#call pargr (W0(obj) + (SN(obj)-1) * WP(obj))
call pargr (wave)
call pargr (dwave)
call pargstr (TITLE(obj))
fnuzero = clgetr ("fnuzero")
do i = 0, STD_NWAVES(std)-1 {
wave = Memr[STD_WAVES(std)+i]
dwave = Memr[STD_DWAVES(std)+i]
mag = Memr[STD_MAGS(std)+i]
flux = Memr[STD_FLUXES(std)+i]
if (flux == 0.)
next
call std_units (UN(obj), unang, wave, dwave, 1)
flambda = fnuzero * 10. ** (-0.4 * mag) * VLIGHT / wave**2
call fprintf (fd, "%8.2f %12.5g %8.3f %12.5g\n")
call pargr (wave)
call pargr (flambda)
call pargr (dwave)
call pargr (flux)
}
call close (fd)
call un_close (unang)
end
# STD_FLUX -- Add up the flux in a given bandpass centered on a given
# wavelength. The bandpass must be entirely within the data.
# A correction for differential extinction across the bandpass is made
# by applying the extinction correction and then removing the correction
# at the bandpass center
real procedure std_flux (sh, wave, dwave, ewaves, emags, enwaves)
pointer sh # Spectrum
real wave # Bandpass wavelength
real dwave # Bandpass width
real ewaves[enwaves] # Extinction wavelengths
real emags[enwaves] # Extinction magnitudes
int enwaves # Extinction points
real flux # Bandpass flux
int i, i1, i2, ierr
real a, e, ec, x1, x2
double w1, w2, w3, w4, shdr_lw(), shdr_wl()
pointer x, y
begin
# Determine bandpass limits in pixel and return if out of bounds.
w1 = wave - dwave / 2.
w2 = wave + dwave / 2.
w3 = shdr_lw (sh, 0.5D0)
w4 = shdr_lw (sh, double (SN(sh)+0.5))
if (w1 < min (w3, w4) || w2 > max (w3, w4))
return (0.)
a = shdr_wl (sh, w1)
x2 = shdr_wl (sh, w2)
x1 = min (a, x2)
x2 = max (a, x2)
i1 = nint (x1)
i2 = nint (x2 - 0.00001)
if (x1 == x2 || i1 < 1 || i2 > SN(sh))
return (0.)
a = AM(sh)
x = SX(sh) + i1 - 1
y = SY(sh) + i1 - 1
call intrp (EXT_LOOKUP, ewaves, emags, enwaves, wave, ec, ierr)
call intrp (EXT_LOOKUP, ewaves, emags, enwaves, Memr[x], e, ierr)
if (i1 == i2) {
flux = (x2-x1) * Memr[y] * 10.0 ** (0.4 * a * (e - ec))
return (flux)
}
flux = (i1+0.5-x1) * Memr[y] * 10.0 ** (0.4 * a * (e - ec))
x = x + 1
y = y + 1
for (i=i1+1; i<=i2-1; i=i+1) {
call intrp (EXT_LOOKUP, ewaves, emags, enwaves, Memr[x], e, ierr)
flux = flux + Memr[y] * 10.0 ** (0.4 * a * (e - ec))
x = x + 1
y = y + 1
}
call intrp (EXT_LOOKUP, ewaves, emags, enwaves, Memr[x], e, ierr)
flux = flux + (x2-i2+0.5) * Memr[y] * 10.0 ** (0.4 * a * (e - ec))
return (flux)
end
# STD_ADDBAND -- Add a standard bandpass
procedure std_addband (std, wave, dwave, flux)
pointer std # Pointer to standard star data
real wave # Wavelength to be added
real dwave # Bandpass to be added
real flux # Flux to be added
int i, nwaves
real mag
pointer waves, dwaves, mags, fluxes
begin
nwaves = STD_NWAVES(std)
if (nwaves == 0) {
call malloc (STD_WAVES(std), 10, TY_REAL)
call malloc (STD_DWAVES(std), 10, TY_REAL)
call malloc (STD_MAGS(std), 10, TY_REAL)
call malloc (STD_FLUXES(std), 10, TY_REAL)
} else if (mod (nwaves, 10) == 0) {
call realloc (STD_WAVES(std), nwaves+10, TY_REAL)
call realloc (STD_DWAVES(std), nwaves+10, TY_REAL)
call realloc (STD_MAGS(std), nwaves+10, TY_REAL)
call realloc (STD_FLUXES(std), nwaves+10, TY_REAL)
}
call intrp (MAG_LOOKUP, Memr[CAL_WAVES(std)], Memr[CAL_MAGS(std)],
CAL_NWAVES(std), wave, mag, i)
waves = STD_WAVES(std)
dwaves = STD_DWAVES(std)
mags = STD_MAGS(std)
fluxes = STD_FLUXES(std)
for (i=nwaves; (i>0)&&(Memr[waves+i-1]>wave); i=i-1) {
Memr[waves+i] = Memr[waves+i-1]
Memr[dwaves+i] = Memr[dwaves+i-1]
Memr[mags+i] = Memr[mags+i-1]
Memr[fluxes+i] = Memr[fluxes+i-1]
}
Memr[waves+i] = wave
Memr[dwaves+i] = dwave
Memr[mags+i] = mag
Memr[fluxes+i] = flux
STD_NWAVES(std) = nwaves + 1
end
# STD_DELBAND -- Delete a bandpass
procedure std_delband (std, band)
pointer std # Pointer to standard star data
int band # Band to be deleted
int i, nwaves
pointer waves, dwaves, mags, fluxes
begin
nwaves = STD_NWAVES(std)
waves = STD_WAVES(std)
dwaves = STD_DWAVES(std)
mags = STD_MAGS(std)
fluxes = STD_FLUXES(std)
for (i=band+1; i<nwaves; i=i+1) {
Memr[waves+i-1] = Memr[waves+i]
Memr[dwaves+i-1] = Memr[dwaves+i]
Memr[mags+i-1] = Memr[mags+i]
Memr[fluxes+i-1] = Memr[fluxes+i]
}
nwaves = nwaves - 1
STD_NWAVES(std) = nwaves
if (nwaves == 0) {
call mfree (STD_WAVES(std), TY_REAL)
call mfree (STD_DWAVES(std), TY_REAL)
call mfree (STD_MAGS(std), TY_REAL)
call mfree (STD_FLUXES(std), TY_REAL)
}
end
# STD_GRAPH -- Graph the spectrum and standard star calibration points.
procedure std_graph (sh, std, gp, gt, clear)
pointer sh # Spectrum pointer
pointer std # Standard star data
pointer gp # GIO pointer
pointer gt # GTOOLS pointer
int clear # Clear flag
int i
real dw, wave, dwave, flux
double shdr_wl()
begin
if (clear == YES) {
call gclear (gp)
call gascale (gp, Memr[SX(sh)], SN(sh), 1)
call gascale (gp, Memr[SY(sh)], SN(sh), 2)
call gt_swind (gp, gt)
call gt_labax (gp, gt)
}
call gt_plot (gp, gt, Memr[SX(sh)], Memr[SY(sh)], SN(sh))
do i = 0, STD_NWAVES(std)-1 {
wave = Memr[STD_WAVES(std)+i]
dwave = Memr[STD_DWAVES(std)+i]
flux = Memr[STD_FLUXES(std)+i]
if (flux == 0.)
next
dw = abs (shdr_wl (sh, double(wave-dwave/2)) -
shdr_wl (sh, double (wave+dwave/2)))
flux = flux / dw
call gmark (gp, wave, flux, GM_BOX, -dwave, 3.)
}
end
# STD_GCALIB -- Get calibration data in desired units.
procedure std_gcalib (std, un)
pointer std #I Standard pointer
pointer un #I Desired units pointer
pointer unang, un_open()
errchk getcalib, std_units
begin
call getcalib (CAL_WAVES(std), CAL_DWAVES(std), CAL_MAGS(std),
CAL_NWAVES(std))
# Cnvert to desired units.
unang = un_open ("Angstroms")
call std_units (unang, un,
Memr[CAL_WAVES(std)], Memr[CAL_DWAVES(std)], CAL_NWAVES(std))
call un_close (unang)
end
# STD_UNITS -- Convert bandpass information to different units.
procedure std_units (unin, unout, center, width, n)
pointer unin #I Input units
pointer unout #I Output units
real center[ARB] #U Bandpass centers
real width[ARB] #U Bandpass widths
int n #I Number of bandpasses
int i
real x1, x2
bool un_compare()
errchk un_ctranr
begin
if (un_compare (unin, unout))
return
do i = 1, n {
x1 = center[i] - width[i] / 2
x2 = center[i] + width[i] / 2
call un_ctranr (unin, unout, x1, x1, 1)
call un_ctranr (unin, unout, x2, x2, 1)
center[i] = (x1 + x2) / 2.
width[i] = abs (x1 - x2)
}
end
|