1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
include <math.h>
include <mach.h>
# COMPLEX.X - File containing utility routines for complex arithmetic.
# CX_ADD - Addition of complex numbers.
procedure cx_add (ar, ai, br, bi, cr, ci)
real ar, ai #I First number
real br, bi #I Second number
real cr, ci #O Computed value
begin
cr = ar + br
ci = ai + bi
end
# CX_SUB - Subtraction of complex numbers.
procedure cx_sub (ar, ai, br, bi, cr, ci)
real ar,ai #I First number
real br,bi #I Second number
real cr,ci #O Computed value
begin
cr = ar - br
ci = ai - bi
end
# CX_MUL - Multiplication of complex numbers.
procedure cx_mul (ar, ai, br, bi, cr, ci)
real ar,ai #I First number
real br,bi #I Second number
real cr,ci #O Computed value
begin
cr = ar*br - ai*bi
ci = ai*br + ar*bi
end
# CX_DIV - Division of complex numbers.
procedure cx_div (ar, ai, br, bi, cr, ci)
real ar,ai #I First number
real br,bi #I Second number
real cr,ci #O Computed value
real r, den
begin
if (br == 0.0 && bi == 0.0) { # Trap divide by zero
cr = 0.0
ci = 0.0
return
}
if (abs(br) >= abs(bi)) {
r = bi / br
den = br + r*bi
cr = (ar + r*ai) / den
ci = (ai - r*ar) / den
} else {
r = br / bi
den = bi + r*br
cr = (ar*r + ai) / den
ci = (ai*r - ar) / den
}
end
# CX_ABS - Absolute value of complex numbers.
real procedure cx_abs (ar, ai)
real ar, ai #I First number
real x, y, ans, temp
begin
x = abs (ar)
y = abs (ai)
if (x == 0.0)
ans = y
else if (y == 0.0)
ans = x
else if (x > y) {
temp = y / x
ans = x * sqrt (1.0 + temp*temp)
} else {
temp = x / y
ans = y * sqrt (1.0 + temp*temp)
}
return (ans)
end
# CX_CONJG - Complex conjugate.
procedure cx_conjg (ar, ai, br, bi)
real ar,ai #I First number
real br,bi #I Conjugate
begin
br = ar
bi = - ai
end
# CX_SQRT - Square root of complex numbers.
procedure cx_sqrt (ar, ai, br, bi)
real ar, ai #I First number
real br, bi #I Square root
real x, y, w, r
begin
if (ar == 0.0 && ai == 0.0) {
br = 0.0
bi = 0.0
} else {
x = abs (ar)
y = abs (ai)
if (x >= y) {
r = y / x
w = sqrt (x) * sqrt (0.5*(1.0+sqrt(1.0+r*r)))
} else {
r = x / y
w = sqrt (y) * sqrt (0.5*(1.0+sqrt(1.0+r*r)))
}
if (ar >= 0.0) {
br = w
bi = ai / (2.0*w)
} else {
if (ai >= 0)
bi = w
else
bi = -w
br = ai / (2.0*bi)
}
}
end
# CEXP1 - Complex exponentiation routine.
procedure cexp1 (a, b, dr, di)
real a #I Real part of argument
real b #I Complex part of argument
real dr, di #O Resultant real/imaginary components
begin
if (a > log(MAX_REAL)) {
dr = 0.0
di = 0.0
} else
call cx_div (cos(b), sin(b), exp(a), 0.0, dr, di)
end
# CX_PAK - Pack two real arrays of an FFT into one real FFT array.
# The array `fft' must be dimensioned to at least 2*fnpts elements.
procedure cx_pak (creal, cimg, fft, fnpts)
real creal[fnpts], cimg[fnpts] #I Real/Img complex components
real fft[ARB] #O Output 'real' array
int fnpts #I Npts in array
int i,j
begin
j = 1
do i = 1, fnpts {
fft[j] = creal[i]
j = j + 1
fft[j] = cimg[i]
j = j + 1
}
end
# CX_UNPAK - Unpack one real FFT array into two component real arrays.
# The array `fft' must be dimensioned to at least 2*fnpts elements.
procedure cx_unpak (fft, creal, cimg, fnpts)
real fft[ARB] #O Output 'real' array
real creal[fnpts], cimg[fnpts] #I Real/Img complex components
int fnpts #I Npts in array
int i,j
begin
j = 1
do i = 1, fnpts {
creal[i] = fft[j]
j = j + 1
cimg[i] = fft[j]
j = j + 1
}
end
|