1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
include <math.h>
include <mach.h>
# NUMREP.X - A collection of routines recoded from Numerical Recipes by
# Press, Flannery, Teukolsky, and Vetterling. Used by permission of the
# authors. Copyright(c) 1986 Numerical Recipes Software.
# FOUR1 - Replaces DATA by it's discrete transform, if ISIGN is input
# as 1; or replaces DATA by NN times it's inverse discrete Fourier transform
# if ISIGN is input as -1. Data is a complex array of length NN or, equiv-
# alently, a real array of length 2*NN. NN *must* be an integer power of
# two.
procedure four1 (data, nn, isign)
real data[ARB] #U Data array (returned as FFT)
int nn #I No. of points in data array
int isign #I Direction of transform
double wr, wi, wpr, wpi # Local variables
double wtemp, theta
real tempr, tempi
int i, j, istep
int n, mmax, m
begin
n = 2 * nn
j = 1
for (i=1; i<n; i = i + 2) {
if (j > i) { # Swap 'em
tempr = data[j]
tempi = data[j+1]
data[j] = data[i]
data[j+1] = data[i+1]
data[i] = tempr
data[i+1] = tempi
}
m = n / 2
while (m >= 2 && j > m) {
j = j - m
m = m / 2
}
j = j + m
}
mmax = 2
while (n > mmax) {
istep = 2 * mmax
theta = TWOPI / double (isign*mmax)
wtemp = dsin (0.5*theta)
wpr = -2.d0 * wtemp * wtemp
wpi = dsin (theta)
wr = 1.d0
wi = 0.d0
for (m=1; m < mmax; m = m + 2) {
for (i=m; i<=n; i = i + istep) {
j = i + mmax
tempr = real (wr) * data[j] - real (wi) * data[j+1]
tempi = real (wr) * data[j + 1] + real (wi) * data[j]
data[j] = data[i] - tempr
data[j+1] = data[i+1] - tempi
data[i] = data[i] + tempr
data[i+1] = data[i+1] + tempi
}
wtemp = wr
wr = wr * wpr - wi * wpi + wr
wi = wi * wpr + wtemp * wpi + wi
}
mmax = istep
}
end
# REALFT - Calculates the Fourier Transform of a set of 2N real valued
# data points. Replaces this data (which is stored in the array DATA) by
# the positive frequency half of it's complex Fourier Transform. The real
# valued first and last components of the complex transform are returned
# as elements DATA(1) and DATA(2) respectively. N must be an integer power
# of 2. This routine also calculates the inverse transform of a complex
# array if it is the transform of real data. (Result in this case must be
# multiplied by 1/N). A forward transform is perform for isign == 1, other-
# wise the inverse transform is computed.
procedure realft (data, N, isign)
real data[ARB] #U Input data array & output FFT
int N #I No. of points
int isign #I Direction of transfer
double wr, wi, wpr, wpi, wtemp, theta # Local variables
real c1, c2, h1r, h1i, h2r, h2i
real wrs, wis
int i, i1, i2, i3, i4
int N2P3
begin
# Initialize
theta = PI/double(N)
c1 = 0.5
if (isign == 1) {
c2 = -0.5
call four1 (data,n,1) # Forward transform is here
} else {
c2 = 0.5
theta = -theta
}
wtemp = sin (0.5 * theta)
wpr = -2.0d0 * wtemp * wtemp
wpi = dsin (theta)
wr = 1.0D0 + wpr
wi = wpi
n2p3 = 2*n + 3
for (i=2; i<=n/2; i = i + 1) {
i1 = 2 * i - 1
i2 = i1 + 1
i3 = n2p3 - i2
i4 = i3 + 1
wrs = sngl (wr)
wis = sngl (wi)
# The 2 transforms are separated out of Z
h1r = c1 * (data[i1] + data[i3])
h1i = c1 * (data[i2] - data[i4])
h2r = -c2 * (data[i2] + data[i4])
h2i = c2 * (data[i1] - data[i3])
# Here they are recombined to form the true
# transform of the original real data.
data[i1] = h1r + wr*h2r - wi*h2i
data[i2] = h1i + wr*h2i + wi*h2r
data[i3] = h1r - wr*h2r + wi*h2i
data[i4] = -h1i + wr*h2i + wi*h2r
wtemp = wr # The reccurrence
wr = wr * wpr - wi * wpi + wr
wi = wi * wpr + wtemp * wpi + wi
}
if (isign == 1) {
h1r = data[1]
data[1] = h1r + data[2]
data[2] = h1r - data[2]
} else {
h1r = data[1]
data[1] = c1 * (h1r + data[2])
data[2] = c1 * (h1r - data[2])
call four1 (data,n,-1)
}
end
# TWOFFT - Given two real input arrays DATA1 and DATA2, each of length
# N, this routine calls cc_four1() and returns two complex output arrays,
# FFT1 and FFT2, each of complex length N (i.e. real length 2*N), which
# contain the discrete Fourier transforms of the respective DATAs. As
# always, N must be an integer power of 2.
procedure twofft (data1, data2, fft1, fft2, N)
real data1[ARB], data2[ARB] #I Input data arrays
real fft1[ARB], fft2[ARB] #O Output FFT arrays
int N #I No. of points
int nn3, nn2, jj, j
real rep, rem, aip, aim
begin
nn2 = 2 + N + N
nn3 = nn2 + 1
jj = 2
for (j=1; j <= N; j = j + 1) {
fft1[jj-1] = data1[j] # Pack 'em into one complex array
fft1[jj] = data2[j]
jj = jj + 2
}
call four1 (fft1, N, 1) # Transform the complex array
fft2[1] = fft1[2]
fft2[2] = 0.0
fft1[2] = 0.0
for (j=3; j <= N + 1; j = j + 2) {
rep = 0.5 * (fft1[j] + fft1[nn2-j])
rem = 0.5 * (fft1[j] - fft1[nn2-j])
aip = 0.5 * (fft1[j + 1] + fft1[nn3-j])
aim = 0.5 * (fft1[j + 1] - fft1[nn3-j])
fft1[j] = rep
fft1[j+1] = aim
fft1[nn2-j] = rep
fft1[nn3-j] = -aim
fft2[j] = aip
fft2[j+1] = -rem
fft2[nn2-j] = aip
fft2[nn3-j] = rem
}
end
|