1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
include <math.h>
include <mach.h>
# FUNCS - File to contain all of the functional models and derivatives.
# Models currently supported are:
# - Gaussian on a constant background
# - N-th order polynomial
# - Lorentzian on a constant background
# CGAUSS1D - Procedure to compute the value of a 1-D Gaussian function
# sitting on top of a constant background.
procedure cgauss1d (x, nvars, p, np, z)
real x # position coordinate
int nvars # number of variables
real p[ARB] # p[1]=amplitude p[2]=center p[3]=sigma p[4]=background
int np # number of parameters np = 4
real z # function return
real r2
begin
r2 = (x - p[2]) ** 2 / (2. * p[3])
if (abs (r2) > 25.0)
z = p[4]
else
z = p[1] * exp (-r2) + p[4]
end
# CDGAUSS1D -- Procedure to compute a 1-D Gaussian profile and its derivatives.
# The Gaussian is assumed to sitting on top of a constant background.
procedure cdgauss1d (x, nvars, p, dp, np, z, der)
real x # position coordinate
int nvars # number of variables
real p[ARB] # p[1]=amplitude, p[2]=center, p[3]=sky, p[4]=sigma
real dp[ARB] # parameter derivatives
int np # number of parameters np=4
real z # function value
real der[ARB] # derivatives
real dx, r2
begin
dx = x - p[2]
r2 = dx * dx / (2.0 * p[3])
if (abs (r2) > 25.0) {
z = p[4]
der[1] = 0.0
der[2] = 0.0
der[3] = 0.0
der[4] = 1.0
} else {
der[1] = exp (-r2)
z = p[1] * der[1]
der[2] = z * dx / p[3]
der[3] = z * r2 / p[3]
der[4] = 1.0
z = z + p[4]
}
end
# D_CGAUSS1D - Procedure to compute the value of a 1-D Gaussian function
# sitting on top of a constant background.
procedure d_cgauss1d (x, nvars, p, np, z)
double x # position coordinate
int nvars # number of variables
double p[ARB] # p[1]=amplitude p[2]=center p[3]=sigma p[4]=background
int np # number of parameters np = 4
double z # function return
double r2
begin
r2 = (x - p[2]) ** 2 / (2. * p[3])
if (abs (r2) > 25.0)
z = p[4]
else
z = p[1] * exp (-r2) + p[4]
end
# D_CDGAUSS1D -- Procedure to compute a 1-D Gaussian profile and its deriv-
# atives. The Gaussian is assumed to sitting on top of a constant background.
procedure d_cdgauss1d (x, nvars, p, dp, np, z, der)
double x # position coordinate
int nvars # number of variables
double p[ARB] # p[1]=amplitude, p[2]=center, p[3]=sky, p[4]=sigma
double dp[ARB] # parameter derivatives
int np # number of parameters np=4
double z # function value
double der[ARB] # derivatives
double dx, r2
begin
dx = x - p[2]
r2 = dx * dx / (2.0 * p[3])
if (abs (r2) > 25.0) {
z = p[4]
der[1] = 0.0
der[2] = 0.0
der[3] = 0.0
der[4] = 1.0
} else {
der[1] = exp (-r2)
z = p[1] * der[1]
der[2] = z * dx / p[3]
der[3] = z * r2 / p[3]
der[4] = 1.0
z = z + p[4]
}
end
# POLYFIT -- Procedure to compute the fit of an N-order polynomial
procedure polyfit (x, nvars, p, np, z)
real x # position coordinate
int nvars # number of variables
real p[ARB] # coefficients of polynomial
int np # number of parameters
real z # function return
int i
real r
begin
r = 0.0
do i = 2, np
r = r + x**(i-1) * p[i]
z = p[1] + r
end
# DPOLYFIT -- Procedure to compute the function value and derivatives of
# a N-order polynomial.
procedure dpolyfit (x, nvars, p, dp, np, z, der)
real x # position coordinate
int nvars # number of variables
real p[ARB] # p[1]=amplitude, p[2]=center, p[3]=sigma
real dp[ARB] # parameter derivatives
int np # number of parameters
real z # function value
real der[ARB] # derivatives
int i
begin
der[1] = 1.0
z = 0.0
do i = 2, np {
der[i] = x ** (i-1)
z = z + x**(i-1) * p[i]
}
z = p[1] + z
end
# LORENTZ -- Procedure to compute a Lorentzian profile
procedure lorentz (x, nvars, p, np, z)
real x # position coordinate
int nvars # number of variables
real p[ARB] # p[1]=amplitude p[2]=center p[3]=fwhm p[4]=background
int np # number of parameters np = 4
real z # function return
real r2
begin
r2 = (x - p[2])**2 + (p[3] / 2.0)**2
if (r2 != 0.0)
z = p[1] * ((p[3]/2.0) / r2) + p[4]
else
z = p[4]
end
# DLORENTZ -- Procedure to compute the function value and derivatives of
# a Lorentzian profile
procedure dlorentz (x, nvars, p, dp, np, z, der)
real x # position coordinate
int nvars # number of variables
real p[ARB] # p[1]=amplitude, p[2]=center, p[3]=fwhm, [4]=background
real dp[ARB] # parameter derivatives
int np # number of parameters
real z # function value
real der[ARB] # derivatives
real dl, dr, d2
begin
dl = (x - p[2]) * (x - p[2])
dr = (0.5 * p[3]) * (0.5 * p[3])
d2 = dl + dr
if (d2 == 0.0) {
der[1] = 0.0
der[2] = 0.0
der[3] = 0.0
der[4] = 1.0
z = p[4]
} else {
der[1] = ((p[3]/2.0) / d2)
der[2] = (p[1]*p[3]/2.0) * (2.0 * (x - p[2])) / (d2 * d2)
der[3] = ((p[1] / (2.0 * d2)) - (((p[1]*p[3]*p[3])/2.0)/(d2*d2)))
der[4] = 1.0
z = p[1] * ((p[3]/2.0) / d2) + p[4]
}
end
# LORENTZ -- Procedure to compute a Lorentzian profile
procedure lorentz_old (x, nvars, p, np, z)
real x # position coordinate
int nvars # number of variables
real p[ARB] # p[1]=amplitude p[2]=center p[3]=fwhm p[4]=background
int np # number of parameters np = 4
real z # function return
begin
if (p[3] != 0.0)
z = p[1] / (1. + ((x-p[2])/p[3])**2) + p[4]
else
z = p[4]
end
# DLORENTZ -- Procedure to compute the function value and derivatives of
# a Lorentzian profile
procedure dlorentz_old (x, nvars, p, dp, np, z, der)
real x # position coordinate
int nvars # number of variables
real p[ARB] # p[1]=amplitude, p[2]=center, p[3]=fwhm, [4]=background
real dp[ARB] # parameter derivatives
int np # number of parameters
real z # function value
real der[ARB] # derivatives
real dx, D
begin
#dx = (x - p[2]) / p[3] # Frank's derivs
dx = (x - p[2])
D = 1. + (dx/p[3])**2
if (p[3] == 0.0) {
der[1] = 0.0
der[2] = 0.0
der[3] = 0.0
der[4] = 1.0
z = p[4]
} else {
der[1] = 1. / D
der[2] = p[1] / D**2 * (2. * dx / p[3]**2)
der[3] = p[1] / D**2 * (2. * dx * dx / p[3]**3)
#der[2] = p[1] / D**2 * (2. * dx / p[3]) # Frank's derivs
#der[3] = -p[1] / D**2 * (2. * dx * dx / p[3])
der[4] = 1.0
if (p[3] != 0.0)
z = p[1] / (1. + ((x-p[2])/p[3])**2) + p[4]
else
z = p[4]
}
end
|