1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
include <gset.h>
include <smw.h>
include "identify.h"
# ID_CENTER -- Locate the center of a feature.
double procedure id_center (id, x, n, width, type, interactive)
pointer id # ID pointer
double x[n] # Initial guess
int n # Number of features
real width # Feature width
int type # Feature type
int interactive # Interactive?
int np1
real value
real center1d()
double smw_c1trand()
begin
switch (type) {
case EMISSION, ABSORPTION:
np1 = NP1(ID_SH(id)) - 1
value = smw_c1trand (ID_PL(id), x[1]) - np1
value = center1d (value, IMDATA(id,1), ID_NPTS(id),
width, type, ID_CRADIUS(id), ID_THRESHOLD(id))
if (IS_INDEF(value))
return (INDEFD)
else
return (smw_c1trand (ID_LP(id), double(value+np1)))
case GEMISSION, GABSORPTION:
iferr (call id_gcenter (id, x, n, INDEF, INDEF, INDEF, INDEF,
width, type, interactive))
return (INDEFD)
return (x[1])
}
end
# ID_GCENTER -- Locate the center of a feature.
procedure id_gcenter (id, x, ng, xa, ya, xb, yb, width, type, interactive)
pointer id # ID pointer
double x[ng] # Initial guess
int ng # Number of features
real xa, ya, xb, yb # Background points
real width # Feature width
int type # Feature type
int interactive # Draw gaussian fit?
int i, np1, x1, x2
real ag, bg, pix, w, y
pointer sp, xr, xg, yg, sg, gp
bool fp_equalr()
real id_model()
double smw_c1trand(), id_fitpt()
errchk gcenter1d
begin
call smark (sp)
call salloc (xr, ng, TY_REAL)
call salloc (xg, ng, TY_REAL)
call salloc (yg, ng, TY_REAL)
call salloc (sg, ng, TY_REAL)
np1 = NP1(ID_SH(id)) - 1
# Compute background in logical units.
if (IS_INDEF(xa) || IS_INDEF(ya) || IS_INDEF(xb) || IS_INDEF(yb)) {
ag = INDEF
bg = INDEF
} else {
ag = smw_c1trand (ID_PL(id), double(xa)) - np1
bg = smw_c1trand (ID_PL(id), double(xb)) - np1
if (!fp_equalr (ag, bg)) {
bg = (yb - ya) / (bg - ag)
ag = ya - bg * ag
} else {
ag = INDEF
bg = INDEF
}
}
do i = 1, ng
Memr[xr+i-1] = smw_c1trand (ID_PL(id), x[i]) - np1
call gcenter1d (Memr[xr], ng, IMDATA(id,1), ID_NPTS(id),
width, type, ID_CRADIUS(id), ID_THRESHOLD(id),
x1, x2, Memr[xg], Memr[yg], Memr[sg], ag, bg)
do i = 1, ng
x[i] = smw_c1trand (ID_LP(id), double(Memr[xg+i-1]+np1))
if (interactive == YES) {
gp = ID_GP(id)
call gseti (gp, G_PLTYPE, 2)
call gseti (gp, G_PLCOLOR, 2)
pix = x1
w = id_fitpt (id, smw_c1trand (ID_LP(id), double (pix+np1)))
y = id_model (pix, Memr[xg], Memr[yg], Memr[sg], ng) + ag +
bg * pix
call gamove (gp, w, y)
for (pix = x1; pix <= x2; pix = pix + .1) {
w = id_fitpt (id, smw_c1trand (ID_LP(id), double (pix+np1)))
y = id_model (pix, Memr[xg], Memr[yg], Memr[sg], ng) +
ag + bg * pix
call gadraw (gp, w, y)
}
call gseti (gp, G_PLTYPE, 3)
call gseti (gp, G_PLCOLOR, 3)
pix = x1
w = id_fitpt (id, smw_c1trand (ID_LP(id), double (pix+np1)))
y = ag + bg * pix
call gamove (gp, w, y)
pix = x2
w = id_fitpt (id, smw_c1trand (ID_LP(id), double (pix+np1)))
y = ag + bg * pix
call gadraw (gp, w, y)
call gseti (gp, G_PLTYPE, 1)
call gseti (gp, G_PLCOLOR, 1)
call gflush (gp)
}
call sfree (sp)
end
define MIN_WIDTH 3. # Minimum centering width
# GCENTER1D -- Locate the center of a one dimensional feature by guassian fit.
# A value of INDEF is returned in the centering fails for any reason.
# This procedure just sets up the data and adjusts for emission or
# absorption features. The actual centering is done by GFIT.
# If width <= 1 return the nearest minima or maxima.
procedure gcenter1d (x, ng, data, npts, width, type, radius, threshold,
x1, x2, xg, yg, sg, ag, bg)
real x[ng] # Initial guess
int ng # Number of gaussians
real data[npts] # Data points
int npts # Number of data points
real width # Feature width
int type # Feature type
real radius # Centering radius
real threshold # Minimum range in feature
int x1, x2 # Fitting region
real xg[ng], yg[ng], sg[ng], ag, bg # Gaussian parameters
int i, nx, xa, xb
real a, b, c, d, rad, wid, ya, yb, chisq
pointer xfit
errchk id_mr_dofit
begin
# Check starting values.
do i = 1, ng
if (IS_INDEF(x[i]) || (x[i] < 1) || (x[i] > npts))
call error (1, "Invalid starting values")
# Set minimum width and error radius. The minimum in the error radius
# is for defining the data window. The user error radius is used to
# check for an error in the derived center at the end of the centering.
wid = max (width, MIN_WIDTH)
rad = max (2., radius)
# Determine the pixel value range around the initial center, including
# the width and error radius buffer. Check for a minimum range.
call alimr (x, ng, c, d)
x1 = max (1., c - wid / 2 - rad - wid)
x2 = min (real (npts), d + wid / 2 + rad + wid + 1)
nx = x2 - x1 + 1
call alimr (data[x1], nx, a, b)
if (b - a < threshold)
call error (1, "Data range below threshold")
# Allocate memory for the continuum subtracted data vector. The X
# range is just large enough to include the error radius and the
# half width.
x1 = max (1., c - wid / 2 - rad)
x2 = min (real (npts), d + wid / 2 + rad + 1)
nx = x2 - x1 + 1
# Make the centering data positive, subtract the continuum, and
# apply a threshold to eliminate noise spikes.
xa = nint(c)
ya = data[xa]
xb = nint(d)
yb = data[xb]
switch (type) {
case GEMISSION:
for (i = xa; i >= x1; i=i-1)
if (data[i] < ya) {
xa = i
ya = data[i]
}
for (i = xb; i <= x2; i=i+1)
if (data[i] < yb) {
xb = i
yb = data[i]
}
case GABSORPTION:
for (i = xa; i >= x1; i=i-1)
if (data[i] > ya) {
xa = i
ya = data[i]
}
for (i = xb; i <= x2; i=i+1)
if (data[i] > yb) {
xb = i
yb = data[i]
}
default:
call error (0, "Unknown feature type")
}
# Set initial gaussian parameters.
if (IS_INDEF(ag) || IS_INDEF(bg)) {
if (xa == xb)
call error (1, "Can't determine background")
bg = (yb-ya) / (xb-xa)
ag = ya - bg * xa
}
do i = 1, ng {
xg[i] = x[i]
yg[i] = data[nint(x[i])] - ag - bg * x[i]
sg[i] = width / 6.
}
# Determine the center.
call malloc (xfit, nx, TY_REAL)
do i = x1, x2
Memr[xfit+i-x1] = i
call id_mr_dofit (0, 3, 3, Memr[xfit], data[x1], nx,
ag, bg, xg, yg, sg, ng, chisq)
# Check user centering error radius.
do i = 1, ng {
if (!IS_INDEF(xg[i])) {
if (abs (x[i] - xg[i]) > radius)
call error (2, "Error radius exceeded")
}
}
# Free memory and return the center position.
call mfree (xfit, TY_REAL)
end
|