aboutsummaryrefslogtreecommitdiff
path: root/noao/rv/rvlinefit.x
blob: b80a4f954e1149cdc846cb06d51c61ff5bc8961e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
include	<error.h>
include	<mach.h>
include	<gset.h>
include "rvflags.h"
include "rvpackage.h"

define	SQ2PI	2.5066283


# RV_LINEFIT - Fit a gaussian to a line between two specified endpoints.

procedure rv_linefit  (rv, x1, x2, stdlam, which)

pointer	rv					#I RV struct pointer
real	x1					#I left edge of fit
real	x2					#I right edge of fit
real	stdlam					#I standard wavelength
int	which					#I which spectrum to fit

int	ix1, ix2

begin
        if (which == OBJECT_SPECTRUM) {          # Fit at the top 
	    if (RV_DCFLAG(rv) != -1) {
           	x1 = (log10(x1) - RV_OW0(rv)) / RV_OWPC(rv) + 1
            	x2 = (log10(x2) - RV_OW0(rv)) / RV_OWPC(rv) + 1
	    }
	    ix1 = int (x1 + 0.5)		# round off
	    ix2 = int (x2 + 0.5)
	    if (OBJCONT(rv) == NO) {
	        call rv_gfit (rv, RV_GP(rv), RV_OW0(rv), RV_OWPC(rv), 
		    ix1, ix2, OBJPIXX(rv,1), OBJPIXY(rv,1), 
		    RV_NPTS(rv), stdlam, TOP)
	    } else {
	        call rv_gfit (rv, RV_GP(rv), RV_OW0(rv), RV_OWPC(rv), 
		    ix1, ix2, OBJPIXX(rv,1), OCONT_DATA(rv,1), 
		    RV_NPTS(rv), stdlam, TOP)
	    }

	} else {
            if (RV_DCFLAG(rv) != -1) {
                x1 = (log10(x1) - RV_RW0(rv)) / RV_RWPC(rv) + 1
                x2 = (log10(x2) - RV_RW0(rv)) / RV_RWPC(rv) + 1
	    }
	    ix1 = int (x1 + 0.5)		# round off
	    ix2 = int (x2 + 0.5)
	    if (REFCONT(rv) == NO) {
	        call rv_gfit (rv, RV_GP(rv), RV_RW0(rv), RV_RWPC(rv), 
		    ix1, ix2, REFPIXX(rv,1), REFPIXY(rv,1), 
		    RV_RNPTS(rv), stdlam, BOTTOM)
	    } else {
	        call rv_gfit (rv, RV_GP(rv), RV_RW0(rv), RV_RWPC(rv), 
		    ix1, ix2, REFPIXX(rv,1), RCONT_DATA(rv,1), 
		    RV_RNPTS(rv), stdlam, BOTTOM)
	    }
	}
end


# RV_GFIT -- Fit a Gaussian to a spectral line and output it's velocity
# based on a standard wavelength.

procedure rv_gfit (rv, gp, w0, wpc, left, right, pixx, pixy, ndata, lam, 
    where)

pointer	rv					#I RV task structure
pointer	gp					#I GIO pointer
real	w0, wpc					#I Dispsersion params
int	left, right				#I Fitting region endpoints
real	pixx[ARB]				#I Spectrum data
real	pixy[ARB]				#I Spectrum data
int	ndata					#I Number of points
real	lam					#I standard line wavelength
int	where					#I where to plot the line

int	i, j, npts, nlines
real	w, wyc, wx, wy, wx2, wy2, wx1, wy1, a[5]
real	x1, x2, y1, y2, range, peakx, vel, shift
real	slope, height, flux, cont, sigma, eqw, scale, chisq
bool	fit
pointer	sp, x, y, z

double	dex(), rv_shift2vel()
real	model(), rv_maxpix(), rv_minpix()
bool	fp_equalr()
errchk	dofit

define	done_	99

begin
	# Determine number of points to fit.
	npts = right - left + 1
	if (npts < 3) {
	    call eprintf ("At least 3 points are required\n")
	    return
	}

	# Allocate space for the points to be fit.
	call smark (sp)
	call salloc (x, npts, TY_REAL)
	call salloc (y, npts, TY_REAL)
	call salloc (z, npts, TY_REAL)

	# Scale the data.
	scale = 0.
	do i = 1, npts {
	    Memr[x+i-1] = dex (pixx[left+i-1])
	    Memr[y+i-1] = pixy[left+i-1]
	    scale = max (scale, abs (Memr[y+i-1]))
	}
	if (fp_equalr(scale,0.0))
	    scale = 1.0
	call adivkr (Memr[y], scale, Memr[y], npts)

	# Setup initial estimates.
	wx1 = dex (pixx[left])
	wx2 = dex (pixx[right])
	wy1 = pixy[left]
	wy2 = pixy[right]
	slope = (wy2-wy1) / (wx2-wx1) / scale
	wyc = wy1 / scale - slope * wx1
	wx = 0
	do i = 0, npts-1 {
	    w = Memr[x+i]
	    wy = Memr[y+i] - wyc - slope * w
	    if (abs (wy) > wx) {
		wx = abs (wy)
		j = i
		peakx = w
	    }
	}

	w = Memr[x+j-1]
	wy = min (0.99, max (0.01, abs (Memr[y+j-1] - wyc - slope * w) / wx))
	sigma = sqrt (-0.5 * (w-peakx)**2 / log (wy))
	w = Memr[x+j+1]
	wy = min (0.99, max (0.01, abs (Memr[y+j+1] - wyc - slope * w) / wx))
	sigma = sigma + sqrt (-0.5 * (w-peakx)**2 / log (wy))

	# Do fit.
	a[1] = w				# initial shift
	#a[2] = 0.25 * abs (Memr[x+npts-1] - Memr[x])
	a[2] = sigma / 2
	call pixind (w0, wpc, log10(w), i)
	a[3] = (pixy[i] - (wyc + slope * (w - pixy[left]))) / scale
	a[4] = 0.
	a[5] = 1.
	nlines = 1
	iferr {
	    call dofit ('a', Memr[x], Memr[y], npts, a, nlines, chisq)
	    call dofit ('b', Memr[x], Memr[y], npts, a, nlines, chisq)
	} then {
	    call erract (EA_WARN)
	    fit = false
	    goto done_
	}
	a[3] = a[3] * scale
	wyc = (wyc + slope * wx1) * scale
	slope = slope * scale

	# Compute model spectrum with continuum and plot.
	fit = true
	do i = 1, npts {
	    w = Memr[x+i-1]
	    Memr[z+i-1] = model (w, a, 5) + wyc + slope * (w - wx1)
	}

        y2 = rv_maxpix (pixy, ndata)
        y1 = rv_minpix (pixy, ndata)
	range = abs (y2 - y1)
        y2 = y2 + (.15 * range)
        y1 = y1 - (.12 * range)
	x1 = dex (pixx[1])
	x2 = dex (pixx[ndata])
        call gswind (gp, x1, x2, y1, y2)
	if (where == TOP)
            call gsview (gp, 0.115, 0.95, 0.51, 0.865)
	else
            call gsview (gp, 0.115, 0.95, 0.125, 0.50)
	call gseti (gp, G_PLTYPE, GL_DASHED)
	call gseti (gp, G_PLCOLOR, RV_LINECOLOR(rv))
	call gpline (gp, Memr[x], Memr[z], npts)
	call gseti (gp, G_PLTYPE, GL_DOTTED)
	call gseti (gp, G_PLCOLOR, C_GREEN)
	call gline (gp, wx1, wyc, wx2, wyc + slope * (wx2 - wx1))
	call gseti (gp, G_PLTYPE, GL_SOLID)
	call gseti (gp, G_PLCOLOR, C_FOREGROUND)
	call gflush (gp)

done_
	# Log computed values
	if (fit) {
	    w = a[1]
	    cont = wyc + slope * (w - wx1)
	    height = a[3]
	    sigma = a[2]
	    flux = sigma * height * SQ2PI
	    shift = (log10(w) - log10(lam)) / wpc
	    vel = real (rv_shift2vel (rv, shift))
	    if (cont > 0.)
		eqw = -flux / cont
	    else
		eqw = INDEF

	    call printf (
	        "center = %8.6g, vel = %8.4g, eqw = %6.4g, fwhm = %6.4g")
	        call pargr (w)
	        call pargr (vel)
	        call pargr (eqw)
	        call pargr (2.355 * sigma)
	}

	call sfree (sp)
end