aboutsummaryrefslogtreecommitdiff
path: root/noao/twodspec/apextract/apscatter.x
blob: 44f56a7230b8fecc3c554b43133610389acc8756 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
include	<error.h>
include	<imhdr.h>
include	<imset.h>
include	<pkg/gtools.h>
include	"apertures.h"
 
define	MAXBUF	500000		# Buffer size (number of reals) for col access
 
 
# AP_SCATTER -- Fit and subtract the scattered light from between the apertures.
#
# Each line of the input image across the dispersion is read.  The points to
# be fit are selected from between the apertures (which includes a buffer
# distance).  The fitting is done using the ICFIT package.  If not smoothing
# along the dispersion write the scattered light subtracted output directly
# thus minimizing I/O.  If smoothing save the fits in memory.  During the
# smoothing process the fits are evaluated at each point along the dispersion
# and then fit to the create the scattered light subtracted output image.  A
# scattered light image is only created after the output image by subtracting
# the input from the output.

procedure ap_scatter (input, output, scatter, aps, naps, line)
 
char	input[SZ_FNAME]		# Input image
char	output[SZ_FNAME]	# Output image
char	scatter[SZ_FNAME]	# Scattered light image
pointer	aps[ARB]		# Apertures
int	naps			# Number of apertures
int	line			# Line to be edited
 
bool	smooth
int	i, aaxis, daxis, npts, nlines, nscatter, nscatter1, new
pointer	sp, str, in, out, scat, cv, cvs, gp, indata, outdata, col, x, y, w 
pointer	ic1, ic2, ic3, gt1, gt2
data	ic3/NULL/

real	clgetr()
int	clgeti(), ap_gline(), ap_gdata()
bool	clgetb(), ap_answer(), apgansb()
pointer	gt_init(), immap(), ap_immap(), imgl2r(), impl2r()

common	/aps_com/ ic1, ic2, gt1, gt2
 
begin
	if (naps < 1)
	    return
 
	# Query the user.
	call smark (sp)
	call salloc (str, SZ_LINE, TY_CHAR)
	call sprintf (Memc[str], SZ_LINE, "Subtract scattered light in %s?")
	        call pargstr (input)
	if (!ap_answer ("ansscat", Memc[str])) {
	    call sfree (sp)
	    return
	}

	call sprintf (Memc[str], SZ_LINE,
	    "Fit scattered light for %s interactively?")
	    call pargstr (input)
	if (ap_answer ("ansfitscatter", Memc[str]))
	    ;

	call sprintf (Memc[str], SZ_LINE, "Smooth the scattered light in %s?")
	    call pargstr (input)
	if (ap_answer ("anssmooth", Memc[str])) {
	    call sprintf (Memc[str], SZ_LINE,
	        "Smooth the scattered light for %s interactively?")
	        call pargstr (input)
	    if (ap_answer ("ansfitsmooth", Memc[str]))
		;
	}
	smooth = apgansb ("anssmooth")

	# Initialize the ICFIT pointers.
	if (ic1 == NULL || ic3 == NULL) {
	    call ic_open (ic1)
	    call clgstr ("apscat1.function", Memc[str], SZ_LINE)
	    call ic_pstr (ic1, "function", Memc[str])
	    call ic_puti (ic1, "order", clgeti ("apscat1.order"))
	    call clgstr ("apscat1.sample", Memc[str], SZ_LINE)
	    call ic_pstr (ic1, "sample", Memc[str])
	    call ic_puti (ic1, "naverage", clgeti ("apscat1.naverage"))
	    call ic_puti (ic1, "niterate", clgeti ("apscat1.niterate"))
	    call ic_putr (ic1, "low", clgetr ("apscat1.low_reject"))
	    call ic_putr (ic1, "high", clgetr ("apscat1.high_reject"))
	    call ic_putr (ic1, "grow", clgetr ("apscat1.grow"))
	    call ic_pstr (ic1, "ylabel", "")
	    gt1 = gt_init()
	    call gt_sets (gt1, GTTYPE, "line")
 
	    call ic_open (ic2)
	    call clgstr ("apscat2.function", Memc[str], SZ_LINE)
	    call ic_pstr (ic2, "function", Memc[str])
	    call ic_puti (ic2, "order", clgeti ("apscat2.order"))
	    call clgstr ("apscat2.sample", Memc[str], SZ_LINE)
	    call ic_pstr (ic2, "sample", Memc[str])
	    call ic_puti (ic2, "naverage", clgeti ("apscat2.naverage"))
	    call ic_puti (ic2, "niterate", clgeti ("apscat2.niterate"))
	    call ic_putr (ic2, "low", clgetr ("apscat2.low_reject"))
	    call ic_putr (ic2, "high", clgetr ("apscat2.high_reject"))
	    call ic_putr (ic2, "grow", clgetr ("apscat2.grow"))
	    call ic_pstr (ic2, "ylabel", "")
	    gt2 = gt_init()
	    call gt_sets (gt2, GTTYPE, "line")

	    ic3 = ic1
	}
 
	# Map the input and output images.  Warn and return on an error.
	iferr (in = ap_immap (input, aaxis, daxis)) {
	    call sfree (sp)
	    call erract (EA_WARN)
	    return
	}
	iferr (out = immap (output, NEW_COPY, in)) {
	    call imunmap (in)
	    call sfree (sp)
	    call erract (EA_WARN)
	    return
	}
	if (IM_PIXTYPE(out) != TY_DOUBLE)
	    IM_PIXTYPE(out) = TY_REAL
 
	# Allocate memory for curve fitting.
	call ap_sort (i, aps, naps, 1)
	npts = IM_LEN (in, aaxis)
	nlines = IM_LEN (in, daxis)
	call salloc (col, npts, TY_REAL)
	call salloc (x, npts, TY_REAL)
	call salloc (y, npts, TY_REAL)
	call salloc (w, npts, TY_REAL)
 
	do i = 1, npts
	    Memr[col+i-1] = i
	call ic_putr (ic1, "xmin", Memr[col])
	call ic_putr (ic1, "xmax", Memr[col+npts-1])
 
	# If the interactive flag is set then use icg_fit to set the
	# fitting parameters.  AP_GLINE returns EOF when the user
	# is done.
 
	if (apgansb ("ansfitscatter")) {
	    call ap_gopen (gp)
 
	    if (IS_INDEFI (line))
		i = nlines / 2
	    else
		i = line
	    indata = NULL
	    while (ap_gline (ic1, gt1, NULL, in, aaxis, aaxis, i, indata) !=
		EOF) {
	        call ap_gscatter1 (aps, naps, i, Memr[indata], npts,
		    Memr[x], Memr[y], Memr[w], nscatter)
	        call icg_fit (ic1, gp, "gcur", gt1, cv, Memr[x], Memr[y],
		    Memr[w], nscatter)
	    }
	    call cvfree (cv)
	}
 
	# Loop through the input image and create an output image.
	# To minimize I/O if not smoothing write the final image
	# directly otherwise save the fit.  AP_SMOOTH will then
	# smooth along the dispersion and compute the scattered
	# light subtracted image.
 
	if (clgetb ("verbose")) {
	    call printf (
		"Fitting the scattered light across the dispersion ...\n")
	    call flush (STDOUT)
	}
 
	if (!smooth) {
	    nscatter = 0
	    i = 0
	    while (ap_gdata (in, out, NULL, aaxis, MAXBUF, i,
		indata, outdata) != EOF) {
		call ap_gscatter1 (aps, naps, i, Memr[indata], npts, Memr[x],
		    Memr[y], Memr[w], nscatter1)
		if (nscatter != nscatter1)
		    new = YES
		else
		    new = NO
		nscatter = nscatter1
		call ic_fit (ic1, cv, Memr[x], Memr[y], Memr[w], nscatter,
		    new, YES, new, new)
		call cvvector (cv, Memr[col], Memr[outdata], npts)
		call asubr (Memr[indata], Memr[outdata], Memr[outdata], npts)
	    }
	    call cvfree (cv)
	} else {
	    call salloc (cvs, nlines, TY_POINTER)
	    call amovki (NULL, Memi[cvs], nlines)

	    new = YES
	    i = 0
	    while (ap_gdata (in, NULL, NULL, aaxis, MAXBUF, i,
		indata, outdata) != EOF) {
		call ap_gscatter1 (aps, naps, i, Memr[indata], npts, Memr[x],
		    Memr[y], Memr[w], nscatter)
		call ic_fit (ic1, Memi[cvs+i-1], Memr[x], Memr[y], Memr[w],
		    nscatter, new, YES, new, new)
	    }
     
	    # Smooth and subtract along the dispersion.
	    call ap_smooth (in, out, aaxis, daxis, aps, naps, ic2, gt2, cvs)
	    do i = 1, nlines
		call cvfree (Memi[cvs+i-1])
	}

	call imastr (out, "apscatter", "Scattered light subtracted")
	call imunmap (out)
	call imunmap (in)
 
	# If a scattered light image is desired compute it from the difference
	# of the input and output images.
 
	if (scatter[1] != EOS) {
	    in = immap (input, READ_ONLY, 0)
	    out = immap (output, READ_ONLY, 0)
	    ifnoerr (scat = immap (scatter, NEW_COPY, in)) {
		if (IM_PIXTYPE(scat) != TY_DOUBLE)
		    IM_PIXTYPE(scat) = TY_REAL
		npts = IM_LEN(in,1)
		nlines = IM_LEN(in,2)
		do i = 1, nlines
		    call asubr (Memr[imgl2r(in,i)], Memr[imgl2r(out,i)],
			Memr[impl2r(scat,i)], npts)
		call imunmap (scat)
	    } else
		call erract (EA_WARN)
	    call imunmap (in)
	    call imunmap (out)
	}
 
	# Make a log.
	call sprintf (Memc[str], SZ_LINE,
	    "SCATTER - Scattered light subtracted from %s")
	    call pargstr (input)
	call ap_log (Memc[str], YES, YES, NO)
 
	call sfree (sp)
end


# SCAT_FREE -- Free scattered light memory.

procedure scat_free ()

pointer	ic1, ic2, gt1, gt2
pointer	sp, str

int	ic_geti()
real	ic_getr()

common	/aps_com/ ic1, ic2, gt1, gt2

begin
	if (ic1 != NULL) {
	    call smark (sp)
	    call salloc (str, SZ_LINE, TY_CHAR)
 
	    call ic_gstr (ic1, "function", Memc[str], SZ_LINE)
	    call clpstr ("apscat1.function", Memc[str])
	    call ic_gstr (ic1, "sample", Memc[str], SZ_LINE)
	    call clpstr ("apscat1.sample", Memc[str])
	    call clputi ("apscat1.order", ic_geti (ic1, "order"))
	    call clputi ("apscat1.naverage", ic_geti (ic1, "naverage"))
	    call clputi ("apscat1.niterate", ic_geti (ic1, "niterate"))
	    call clputr ("apscat1.low", ic_getr (ic1, "low"))
	    call clputr ("apscat1.high", ic_getr (ic1, "high"))
	    call clputr ("apscat1.grow", ic_getr (ic1, "grow"))
 
	    call ic_gstr (ic2, "function", Memc[str], SZ_LINE)
	    call clpstr ("apscat2.function", Memc[str])
	    call ic_gstr (ic2, "sample", Memc[str], SZ_LINE)
	    call clpstr ("apscat2.sample", Memc[str])
	    call clputi ("apscat2.order", ic_geti (ic2, "order"))
	    call clputi ("apscat2.naverage", ic_geti (ic2, "naverage"))
	    call clputi ("apscat2.niterate", ic_geti (ic2, "niterate"))
	    call clputr ("apscat2.low", ic_getr (ic2, "low"))
	    call clputr ("apscat2.high", ic_getr (ic2, "high"))
	    call clputr ("apscat2.grow", ic_getr (ic2, "grow"))
 
	    call ic_closer (ic1)
	    call gt_free (gt1)
	    call ic_closer (ic2)
	    call gt_free (gt2)
	    call sfree (sp)
	}
end
 
 
# AP_SMOOTH -- Smooth the scattered light by fitting one dimensional functions.
#
# The output image consists of smooth one dimensional fits across the
# dispersion.  This routine reads each line along the dispersion and fits
# a function to smooth the fits made across the dispersion.  The output
# image is used both as input of the cross dispersion fits and as output
# of the scattered light subtracted image.
 
procedure ap_smooth (in, out, aaxis, daxis, aps, naps, ic, gt, cvs)
 
pointer	in			# Input IMIO pointer
pointer	out			# Output IMIO pointer
int	aaxis, daxis		# Aperture and dispersion axes
pointer	aps[ARB]		# Apertures
int	naps			# Number of apertures
pointer	ic			# ICFIT pointer
pointer	gt			# GTOOLS pointer
pointer	cvs			# CURFIT pointers
 
int	i, npts, nlines, new
pointer	cv, gp, indata, outdata, x, w 

int	ap_gline(), ap_gdata()
bool	clgetb(), apgansb()
 
begin
	if (!apgansb ("anssmooth"))
	    return
 
	# Allocate memory for curve fitting.
	npts = IM_LEN (in, daxis)
	nlines = IM_LEN (in, aaxis)
	call salloc (x, npts, TY_REAL)
	call salloc (w, npts, TY_REAL)
 
	do i = 1, npts
	    Memr[x+i-1] = i
	call amovkr (1., Memr[w], npts)
	call ic_putr (ic, "xmin", Memr[x])
	call ic_putr (ic, "xmax", Memr[x+npts-1])
 
	# If the interactive flag is set then use icg_fit to set the
	# fitting parameters.  AP_GLINE returns EOF when the user
	# is done.
 
	if (apgansb ("ansfitsmooth")) {
	    call ap_gopen (gp)
 
	    i = nlines / 2
	    outdata = NULL
	    while (ap_gline (ic, gt, cvs, out, daxis, aaxis, i, outdata) !=
		EOF) {
	        call icg_fit (ic, gp, "gcur", gt, cv, Memr[x],
		    Memr[outdata], Memr[w], npts)
		call amovkr (1., Memr[w], npts)
	    }
	    call mfree (outdata, TY_REAL)
	}
 
	# Loop through the input image and create an output image.
	if (clgetb ("verbose")) {
	    call printf ("Smoothing scattered light along the dispersion ...\n")
	    call flush (STDOUT)
	}
 
	# Use the new flag to optimize the fitting.
	new = YES
	i = 0
	while (ap_gdata (in, out, cvs, daxis, MAXBUF, i,
	    indata, outdata) != EOF) {
	    call ic_fit (ic, cv, Memr[x], Memr[outdata], Memr[w], npts,
		new, YES, new, new)
	    call cvvector (cv, Memr[x], Memr[outdata], npts)
	    call asubr (Memr[indata], Memr[outdata], Memr[outdata], npts)
	    new = NO
	}
	call cvfree (cv)
end
 
 
# AP_GSCATTER -- Get scattered light pixels.
#
# The pixels outside the apertures extended by the specified buffer
# distance are selected.  The x and weight arrays are also set.
# The apertures must be sorted by position.
 
procedure ap_gscatter1 (aps, naps, line, data, npts, x, y, w, nscatter)
 
pointer	aps[naps]		# Apertures
int	naps			# Number of apertures
int	line			# Line
real	data[npts]		# Image data
int	npts			# Number of points
real	x[npts]			# Scattered light positions
real	y[npts]			# Image data
real	w[npts]			# Weights
int	nscatter		# Number of scattered light pixels
 
real	buf			# Aperture buffer
 
int	i, j, axis
int	low, high
real	center, ap_cveval(), clgetr()
 
begin
	buf = clgetr ("buffer") + 0.5
	call aclrr (x, npts)
 
	axis = AP_AXIS(aps[1])
	do i = 1, naps {
	    center = AP_CEN(aps[i],axis) + ap_cveval (AP_CV(aps[i]), real(line))
	    low = max (1, int (center + AP_LOW(aps[i],axis) - buf))
	    high = min (npts, int (center + AP_HIGH(aps[i],axis) + buf))
	    do j = low, high
		x[j] = 1
	}

	nscatter = 0
	do i = 1, npts {
	    if (x[i] == 0.) {
		nscatter = nscatter + 1
		x[nscatter] = i
		y[nscatter] = data[i]
		w[nscatter] = 1.
	    }
	}
end
 
 
# AP_GDATA -- Get the next line of image data.  Return EOF at end.
# This task optimizes column access if needed.  It assumes sequential access.
 
int procedure ap_gdata (in, out, cvs, axis, maxbuf, index, indata, outdata)
 
pointer	in			# Input IMIO pointer
pointer	out			# Output IMIO pointer (NULL if no output)
pointer	cvs			# CURFIT pointers
int	axis			# Image axis
int	maxbuf			# Maximum buffer size chars for column axis
int	index			# Last line (input), current line (returned)
pointer	indata			# Input data pointer
pointer	outdata			# Output data pointer
 
real	val, ap_cveval()
int	i, last_index, col1, col2, nc, nd, ncols, nlines, ncols_block
pointer	inbuf, outbuf, ptr, imgl2r(), impl2r(), imgs2r(), imps2r()
 
begin
	# Increment to the next image vector.
	index = index + 1
 
	# Initialize for the first vector.
	if (index == 1) {
	    ncols = IM_LEN (in, 1)
	    if (IM_NDIM (in) == 1)
		nlines = 1
	    else
		nlines = IM_LEN (in, 2)
 
	    switch (axis) {
	    case 1:
		nd = ncols
		last_index = nlines
	    case 2:
		nd = nlines
		last_index = ncols
	        ncols_block =
		    max (1, min (ncols, maxbuf / nlines))
		col2 = 0
 
	        call malloc (indata, nlines, TY_REAL)
		if (out != NULL)
		    call malloc (outdata, nlines, TY_REAL)
	    }
	}
 
	# Finish up if the last vector has been done.
	if (index > last_index) {
	    if (axis == 2) {
	        call mfree (indata, TY_REAL)
		if (out != NULL) {
		    ptr = outbuf + index - 1 - col1
		    do i = 1, nlines {
			Memr[ptr] = Memr[outdata+i-1]
			ptr = ptr + nc
		    }
		    call mfree (outdata, TY_REAL)
		}
	    }
	    index = 0
	    return (EOF)
	}
 
	# Get the next image vector.
	switch (axis) {
	case 1:
	    indata = imgl2r (in, index)
	    if (out != NULL)
		outdata = impl2r (out, index)
	case 2:
	    if (out != NULL)
		if (index > 1) {
		    ptr = outbuf + index - 1 - col1
		    do i = 1, nlines {
			Memr[ptr] = Memr[outdata+i-1]
			ptr = ptr + nc
		    }
		}
 
	    if (index > col2) {
		col1 = col2 + 1
		col2 = min (ncols, col1 + ncols_block - 1)
		nc = col2 - col1 + 1
		inbuf = imgs2r (in, col1, col2, 1, nlines)
		if (out != NULL)
		    outbuf = imps2r (out, col1, col2, 1, nlines)
	    }
 
	    ptr = inbuf + index - col1
	    do i = 1, nlines {
		Memr[indata+i-1] = Memr[ptr]
		ptr = ptr + nc
	    }
	}
	if (cvs != NULL) {
	    val = index
	    do i = 1, nd
		Memr[outdata+i-1] = ap_cveval (Memi[cvs+i-1], val)
	}
 
	return (index)
end
 
 
define	CMDS	"|quit|line|column|buffer|"
define	QUIT	1		# Quit
define	LINE	2		# Line to examine
define	COLUMN	3		# Column to examine
define	BUFFER	4		# Buffer distance
 
# AP_GLINE -- Get image data to be fit interactively.  Return EOF
# when the user enters EOF or CR.  The out of bounds
# requests are silently limited to the nearest edge.
 
int procedure ap_gline (ic, gt, cvs, im, axis, aaxis, line, data)
 
pointer	ic			# ICFIT pointer
pointer	gt			# GTOOLS pointer
pointer	cvs			# CURFIT pointers
pointer	im			# IMIO pointer
int	axis			# Image axis
int	aaxis			# Aperture axis
int	line			# Line to get
pointer	data			# Image data
 
real	rval, clgetr(), ap_cveval()
int	i, stat, cmd, ival, strdic(), scan(), nscan()
pointer	sp, name, str, imgl2r(), imgs2r()
 
begin
	call smark (sp)
	call salloc (name, SZ_FNAME, TY_CHAR)
	call salloc (str, SZ_LINE, TY_CHAR)

	stat = OK
	if (data != NULL) {
	    cmd = 0
	    repeat {
	        switch (cmd) {
	        case QUIT:
		    stat = EOF
		    break
	        case LINE:
		    call gargi (ival)
		    if (axis == 2 || nscan() == 1) {
		        call printf ("line %d - ")
		        call pargi (line)
		    } else {
		        line = max (1, min (IM_LEN(im,2), ival))
		        break
		    }
	        case COLUMN:
		    call gargi (ival)
		    if (axis == 1 || nscan() == 1) {
		        call printf ("column %d - ")
		        call pargi (line)
		    } else {
		        line = max (1, min (IM_LEN(im,1), ival))
		        break
		    }
	        case BUFFER:
		    if (axis == aaxis) {
			call gargr (rval)
			if (nscan() == 1) {
			    call printf ("buffer %g - ")
				call pargr (clgetr ("buffer"))
			} else {
			    call clputr ("buffer", rval)
			    break
			}
		    }
	        }
 
		if (axis == aaxis) {
		    if (axis == 1)
			call printf (
			    "Command (quit, buffer <value>, line <value>): ")
		    else
			call printf (
			    "Command (quit, buffer <value>, column <value>): ")
		} else {
		    if (axis == 1)
			call printf (
			    "Command (quit, line <value>): ")
		    else
			call printf (
			    "Command (quit, column <value>): ")
		}
		call flush (STDOUT)
		stat = scan ()
		if (stat == EOF)
		    break
		call gargwrd (Memc[str], SZ_LINE)
		cmd = strdic (Memc[str], Memc[str], SZ_LINE, CMDS)
	    }

	}

	if (stat != EOF) {
	    call imstats (im, IM_IMAGENAME, Memc[name], SZ_FNAME)
	    switch (axis) {
	    case 1:
		call sprintf (Memc[str], SZ_LINE, "%s: Fit line %d\n%s")
		    call pargstr (Memc[name])
		    call pargi (line)
		    call pargstr (IM_TITLE(im))
		call gt_sets (gt, GTTITLE, Memc[str])
		call ic_pstr (ic, "xlabel", "Column")
		if (axis == aaxis)
		    data = imgl2r (im, line)
		else {
		    if (data == NULL)
			call malloc (data, IM_LEN(im,1), TY_REAL)
		    rval = line
		    do i = 1, IM_LEN(im,1)
			Memr[data+i-1] = ap_cveval (Memi[cvs+i-1], rval)
		}
	    case 2:
		call sprintf (Memc[str], SZ_LINE, "%s: Fit column %d\n%s")
		    call pargstr (Memc[name])
		    call pargi (line)
		    call pargstr (IM_TITLE(im))
		call gt_sets (gt, GTTITLE, Memc[str])
		call ic_pstr (ic, "xlabel", "Line")
		if (axis == aaxis)
		    data = imgs2r (im, line, line, 1, IM_LEN(im,2))
		else {
		    if (data == NULL)
			call malloc (data, IM_LEN(im,2), TY_REAL)
		    rval = line
		    do i = 1, IM_LEN(im,2)
			Memr[data+i-1] = ap_cveval (Memi[cvs+i-1], rval)
		}
	    }
	}
 
	call sfree (sp)
	return (stat)
end