aboutsummaryrefslogtreecommitdiff
path: root/noao/twodspec/longslit/illumination.x
blob: c291d6f4558f3f83df8f795f10ec52c5e37474a3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
include	<imhdr.h>
include	<error.h>
include	<math/iminterp.h>
include	<pkg/gtools.h>
include	<pkg/rg.h>
include	<pkg/xtanswer.h>

# T_ILLUMINATION -- Determine the illumination function for longslit spectra.
#
# The calibration image is binned in wavelength.  Each wavelength  bin is
# then smoothed by curve fitting and normalized to the middle point.
# Finally the binned image is interpolated back to the original image
# dimension.  The binning and curve fitting may be performed interactively.
# A illumination function is determined for each input images.  Image
# sections in the input image allow only parts of the illumination function
# to be created.  Thus, multiple slits in the same image may have
# independent illumination functions on the same illumination image.

# CL callable procedure.
#
# The input and output images are given by image templates.  The
# number of output images must match the number of input images.
# Input image sections are allowed.

procedure t_illumination ()

pointer	image1
pointer	image2
int	list1				# Calibration image list
int	list2				# Illumination image list
int	interactive			# Interactive?
int	naverage			# Sample averaging size
int	order				# Order of curve fitting function
real	low_reject, high_reject		# Rejection thresholds
int	niterate			# Number of rejection iterations
real	grow				# Rejection growing radius

int	answer
char	history[SZ_LINE]
pointer	in, out, ic, gt, sp, str

int	clgeti(), imtopen(), imtgetim(), imtlen(), gt_init()
bool	clgetb()
real	clgetr()
errchk	il_make

begin
	call smark (sp)
	call salloc (image1, SZ_LINE, TY_CHAR)
	call salloc (image2, SZ_LINE, TY_CHAR)
	call salloc (str, SZ_LINE, TY_CHAR)
 
	# Get calibration and illumination image template lists.

	call clgstr ("images", Memc[image1], SZ_LINE)
	call clgstr ("illuminations", Memc[image2], SZ_LINE)

	# Check that the number of illumination calibration images are the same.

	list1 = imtopen (Memc[image1])
	list2 = imtopen (Memc[image2])
	if (imtlen (list1) != imtlen (list2)) {
	    call imtclose (list1)
	    call imtclose (list2)
	    call error (0,
		"The number of input and output images are not the same.")
	}

	# Get other parameters and initialize the curve fitting package.

	if (clgetb ("interactive"))
	    interactive = YES
	else
	    interactive = ALWAYSNO

	call clgstr ("sample", Memc[image1], SZ_LINE)
	naverage = clgeti ("naverage")
	call clgstr ("function", Memc[str], SZ_LINE)
	order = clgeti ("order")
	low_reject = clgetr ("low_reject")
	high_reject = clgetr ("high_reject")
	niterate = clgeti ("niterate")
	grow = clgetr ("grow")

	# Set the ICFIT pointer structure.
	call ic_open (ic)
	call ic_pstr (ic, "sample", Memc[image1])
	call ic_puti (ic, "naverage", naverage)
	call ic_pstr (ic, "function", Memc[str])
	call ic_puti (ic, "order", order)
	call ic_putr (ic, "low", low_reject)
	call ic_putr (ic, "high", high_reject)
	call ic_puti (ic, "niterate", niterate)
	call ic_putr (ic, "grow", grow)
	call ic_pstr (ic, "ylabel", "")

	gt = gt_init()
	call gt_sets (gt, GTTYPE, "line")

	# Create an illumination image for each calibration image
	while ((imtgetim (list1, Memc[image1], SZ_LINE) != EOF) &&
	    (imtgetim (list2, Memc[image2], SZ_LINE) != EOF)) {

	    call ls_immap (Memc[image1], Memc[image2], in, out)

	    call sprintf (Memc[str], SZ_LINE,
		"Determine illumination interactively for %s")
	        call pargstr (Memc[image1])
	    call xt_answer (Memc[str], interactive)
	    answer = interactive

	    iferr {
		call il_make (in, out, ic, gt, Memc[str], answer)
 
	        call imaddr (out, "ccdmean", 1.)
	        call sprintf (history, SZ_LINE,
		    "Illumination correction determined from %s.")
		    call pargstr (Memc[image1])
	        call imastr (out, "mkillum", history)
	        call imunmap (in)
	        call imunmap (out)
	    } then {
		call erract (EA_WARN)
	        call imunmap (in)
	        call imunmap (out)
		call imdelete (Memc[image2])
	    }
	}

	call ic_closer (ic)
	call gt_free (gt)
	call imtclose (list1)
	call imtclose (list2)
	call sfree (sp)
end


# IL_MAKE -- Given the calibration and illumination image descriptors
# make the illumination function.

procedure il_make (in, out, ic, gt, title, interactive)

pointer	in			# Calibration IMIO pointer
pointer	out			# Illumination IMIO pointer
pointer	ic			# ICFIT pointer
pointer	gt			# GTOOLS pointer
char	title[ARB]		# Title
int	interactive		# Interactive?

char	graphics[SZ_FNAME]	# Graphics output device
int	i, laxis, paxis, axis, npts, nbins, len_title
pointer	bins, cv, gp, sp, x, y, z, z1, wts

pointer	gopen()
int	strlen()
errchk	get_daxis

begin
	# Determine the slit axis and set the axis labels.
	call get_daxis (in, laxis, paxis)
	if (laxis == 1)
	    axis = 2
	else
	    axis = 1

	switch (axis) {
	case 1:
	    call ic_pstr (ic, "xlabel", "Column")
	case 2:
	    call ic_pstr (ic, "xlabel", "Line")
	}

	# Set the bins and bin the calibration image.

	switch (axis) {
	case 1:
	    call il_setbins (in, 2, interactive, bins)
	case 2:
	    call il_setbins (in, 1, interactive, bins)
	}

	call il_binimage (in, axis, bins, x, y, z, npts, nbins)
	call rg_free (bins)

	# Allocate memory for the fit.

	call smark (sp)
	call salloc (wts, npts, TY_REAL)
	call amovkr (1., Memr[wts], npts)

	# Smooth each bin.
		
	call ic_putr (ic, "xmin", Memr[x])
	call ic_putr (ic, "xmax", Memr[x+npts-1])

	len_title = strlen (title)
	z1 = z

	do i = 1, nbins {
	    title[len_title + 1] = EOS
	    call sprintf (title, SZ_LINE, "%s at bin %d")
		call pargstr (title)
		call pargi (i)
	    call xt_answer (title, interactive)

	    if ((interactive == YES) || (interactive == ALWAYSYES)) {
	        call sprintf (title, SZ_LINE, "%s\n%s")
	            call pargstr (title)
	            call pargstr (IM_TITLE(in))
	        call gt_sets (gt, GTTITLE, title)

		call clgstr ("graphics", graphics, SZ_FNAME)
	        gp = gopen (graphics, NEW_FILE, STDGRAPH)
	        call icg_fit (ic, gp, "cursor", gt, cv, Memr[x], Memr[z1],
		    Memr[wts], npts)
		call amovkr (1., Memr[wts], npts)
	        call gclose (gp)
	    } else {
	        call ic_fit (ic, cv, Memr[x], Memr[z1], Memr[wts], npts,
		    YES, YES, YES, YES)
	    }

	    call cvvector (cv, Memr[x], Memr[z1], npts)
	    z1 = z1 + npts
	}
	call cvfree (cv)

	# Compute the illumination image by linear interpolation.

	call il_expand (out, axis, Memr[x], Memr[y], Memr[z], npts, nbins)

	# Free allocated memory.

	call mfree (x, TY_REAL)
	call mfree (y, TY_REAL)
	call mfree (z, TY_REAL)
	call sfree (sp)
end


# IL_BINIMAGE -- Read the calibration image and bin it.

procedure il_binimage (im, axis, bins, x, y, z, npts, nbins)

pointer im			# Calibration IMIO pointer
int	axis			# Slit axis
pointer	bins			# Bins
pointer	x			# Slit positions
pointer	y			# Dispersion positions of bins
pointer	z			# Binned image
int	npts			# Number of points per bin
int	nbins			# Number of bins

int	i, y1, y2
pointer	z1

begin
	# Allocate memory.

	npts = IM_LEN (im, axis)
	nbins = RG_NRGS (bins)
	call malloc (y, nbins, TY_REAL)
	call malloc (z, npts * nbins, TY_REAL)

	# Bin the image data.

	x = NULL
	do i = 1, nbins {
	    y1 = RG_X1 (bins, i)
	    y2 = RG_X2 (bins, i)
	    Memr[y+i-1] = (y1 + y2) / 2

	    call mfree (x, TY_REAL)
	    switch (axis) {
	    case 1:
	        call ls_aimavg (im, axis, 1, IM_LEN(im, 1), y1, y2, x, z1, npts)
	    case 2:
	        call ls_aimavg (im, axis, y1, y2, 1, IM_LEN(im, 2), x, z1, npts)
	    }
	    call amovr (Memr[z1], Memr[z+(i-1)*npts], npts)
	    call mfree (z1, TY_REAL)
	}
end


# IL_EXPAND -- Expand the reduced illumination back to the original size.
# This procedure request the interpolation type.

procedure il_expand (im, axis, x, y, z, nx, ny)

pointer	im			# Illumination image pointer
int	axis			# Slit axis
real	x[nx]			# Slit coordinates
real	y[ny]			# Dispersion coordinates
real	z[nx, ny]		# Slit profile
int	nx			# Number of points per slit profile
int	ny			# Number of slit profiles

char	dummy[7]
int	nyout, ncols, nlines
int	i, j, y1, y2
real	dy
pointer	msi, sp, out, yout

int	clgwrd()
pointer	impl2r()

int	msitypes[5]
data	msitypes/II_BINEAREST,II_BILINEAR,II_BIPOLY3,II_BIPOLY5,II_BISPLINE3/
string	msinames "|nearest|linear|poly3|poly5|spline3|"

begin
	ncols = IM_LEN (im, 1)
	nlines = IM_LEN (im, 2)

	# Normalize illumination to the center of each slit.

	i = nx / 2 - 1
	do j = 1, ny {
	    dy = z[i, j]
	    call adivkr (z[1, j], dy, z[1, j], nx)
	}

	# If there is only one slit profile then copy the profile to each
	# image line or column.

	if (ny == 1) {
	    switch (axis) {
	    case 1:
	        do i = 1, nlines
	            call amovr (z, Memr[impl2r (im, i)], ncols)
	    case 2:
	        do i = 1, nlines
		    call amovkr (z[i, 1], Memr[impl2r (im, i)], ncols)
	    }

	    return
	}

	# If there is more than one slit profile fit a 2D interpolator.

	i = clgwrd ("interpolator", dummy, 7, msinames)
	if (i == 0)
	    i = II_BILINEAR
	else
	    i = msitypes[i]

	switch (i) {
	case II_POLY3, II_SPLINE3:
	    if (ny < 4)
		i = II_BILINEAR
	case II_POLY5:
	    if (ny < 6) {
		if (ny < 4)
		   i = II_BILINEAR
		else
		   i = II_POLY3
	    }
	}

	call msiinit (msi, i)
	call msifit (msi, z, nx, ny, nx)

	# Set the output grid in terms of the interpolation surface.

	switch (axis) {
	case 1:
	    nyout = IM_LEN (im, 2)
	case 2:
	    nyout = IM_LEN (im, 1)
	}

	call smark (sp)
	call salloc (yout, nyout, TY_REAL)

	y1 = 1
	y2 = y[1]
	do i = y1, y2
	    Memr[yout+i-1] = 1
	do j = 2, ny {
	    y1 = y2 + 1
	    y2 = y[j]
	    dy = 1. / (y2 - y1)
	    do i = y1, y2
		Memr[yout+i-1] = j - 1 + (i - y1) * dy
	    }
	y1 = y2 + 1
	y2 = nyout
	do i = y1, y2
	    Memr[yout+i-1] = ny

	# Evaluate the interpolation surface on the output grid.

	ncols = IM_LEN (im, 1)
	nlines = IM_LEN (im, 2)
	call salloc (out, ncols, TY_REAL)

	switch (axis) {
	case 1:
	    do i = 1, nlines {
	        call amovkr (Memr[yout+i-1], Memr[out], ncols)
	        call msivector (msi, x, Memr[out], Memr[impl2r (im, i)],
		    ncols)
	    }
	case 2:
	    do i = 1, nlines {
	        call amovkr (x[i], Memr[out], ncols)
	        call msivector (msi, Memr[out], Memr[yout], Memr[impl2r(im, i)],
		    ncols)
	    }
	}

	call sfree (sp)
end