1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
|
include <imhdr.h>
include <math/iminterp.h>
include <units.h>
define ITYPES "|nearest|linear|poly3|poly5|spline3|"
# T_TRANSFORM -- Transform longslit images.
# Input consists of images to be transformed, the user coordinate surfaces
# describing the output coordinates in terms of the input coordinates,
# and the desired coordinates for the output images. The type of image
# interpolation is also input. There is a log output as well as the
# transformed images. The output image may replace the input image.
procedure t_transform ()
int input # List of input images
int output # List of output images
int minput # List of input masks
int moutput # List of output masks
int fitnames # List of user coordinate fits
pointer database # Database
char interp[10] # Interpolation type
int logfiles # List of log files
int itypes[II_NTYPES2D], logfd, nusf, nvsf
pointer in, out, pmin, pmout
pointer un[2], mw, ct, usf, vsf, xmsi, ymsi, jmsi, xout, yout, dxout, dyout
pointer sp, image1, image2, image3, minname, moutname, mname, str
int clpopnu(), clgfil(), clplen(), clgeti(), clgwrd(), open()
int imtopenp(), imtlen(), imtgetim()
bool clgetb()
real clgetr()
pointer immap(), mw_openim(), yt_mappm()
errchk tr_gsf, tr_setup, open, mw_openim, yt_mappm
data itypes /II_BINEAREST, II_BILINEAR, II_BIPOLY3, II_BIPOLY5,
II_BISPLINE3, II_SINC, II_LSINC, II_DRIZZLE/
include "transform.com"
begin
call smark (sp)
call salloc (database, SZ_FNAME, TY_CHAR)
call salloc (image1, SZ_FNAME, TY_CHAR)
call salloc (image2, SZ_FNAME, TY_CHAR)
call salloc (image3, SZ_FNAME, TY_CHAR)
call salloc (minname, SZ_FNAME, TY_CHAR)
call salloc (moutname, SZ_FNAME, TY_CHAR)
call salloc (mname, SZ_FNAME, TY_CHAR)
call salloc (str, SZ_LINE, TY_CHAR)
# Get and error check the input and output image lists and the other
# task parameters.
input = imtopenp ("input")
output = imtopenp ("output")
if (imtlen (input) != imtlen (output)) {
call imtclose (input)
call imtclose (output)
call error (1, "Number of input and output images differ")
}
minput = imtopenp ("minput")
moutput = imtopenp ("moutput")
if (imtlen (minput) > 1 && imtlen (minput) != imtlen (input)) {
call imtclose (input)
call imtclose (output)
call imtclose (minput)
call imtclose (moutput)
call error (1, "Can't associate input masks with input images")
}
if (imtlen (moutput) > 0 && imtlen (input) != imtlen (moutput)) {
call imtclose (input)
call imtclose (output)
call imtclose (minput)
call imtclose (moutput)
call error (1, "Number output masks differ from input")
}
fitnames = clpopnu ("fitnames")
call clgstr ("database", Memc[database], SZ_FNAME)
itype = itypes[clgwrd ("interptype", interp, 10, II_FUNCTIONS)]
logfiles = clpopnu ("logfiles")
u1 = clgetr ("x1")
u2 = clgetr ("x2")
du = clgetr ("dx")
nu = clgeti ("nx")
v1 = clgetr ("y1")
v2 = clgetr ("y2")
dv = clgetr ("dy")
nv = clgeti ("ny")
ulog = clgetb ("xlog")
vlog = clgetb ("ylog")
flux = clgetb ("flux")
blank = clgetr ("blank")
usewcs = (clplen (fitnames) == 0)
# Transform each input image to the output image.
Memc[minname] = EOS
Memc[moutname] = EOS
Memc[mname] = EOS
xmsi = NULL
while ((imtgetim (input, Memc[image1], SZ_FNAME) != EOF) &&
(imtgetim (output, Memc[image2], SZ_FNAME) != EOF)) {
# Get mask names.
if (imtgetim (minput, Memc[image3], SZ_FNAME) != EOF)
call strcpy (Memc[image3], Memc[minname], SZ_FNAME)
if (imtgetim (moutput, Memc[image3], SZ_FNAME) != EOF)
call strcpy (Memc[image3], Memc[moutname], SZ_FNAME)
# Map the input and output images.
call xt_mkimtemp (Memc[image1], Memc[image2], Memc[image3],SZ_FNAME)
in = immap (Memc[image1], READ_ONLY, 0)
out = immap (Memc[image2], NEW_COPY, in)
# Map masks.
pmin = NULL; pmout = NULL
if (Memc[minname] != EOS)
pmin = yt_mappm (Memc[minname], in, "logical", Memc[mname],
SZ_FNAME)
if (Memc[moutname] != EOS) {
call xt_maskname (Memc[moutname], "", NEW_IMAGE,
Memc[moutname], SZ_FNAME)
pmout = immap (Memc[moutname], NEW_COPY, in)
call imastr (out, "BPM", Memc[moutname])
}
# Get the coordinate transformation surfaces from the database
# and setup the transformations.
# Do this only on the first pass.
if (xmsi == NULL) {
if (usewcs) {
mw = mw_openim (in)
call tr_gwcs (mw, un, IM_LEN(in,1), IM_LEN(in,2), ct,
usf, nusf, vsf, nvsf)
} else {
mw = NULL
ct = NULL
call tr_gsf (Memc[database], fitnames, un, usf, nusf,
vsf, nvsf)
}
call tr_setup (ct, usf, nusf, vsf, nvsf, un, xmsi, ymsi, jmsi,
xout, yout, dxout, dyout)
if (mw != NULL)
call mw_close (mw)
}
# Write log information.
while (clgfil (logfiles, Memc[str], SZ_LINE) != EOF) {
logfd = open (Memc[str], APPEND, TEXT_FILE)
call sysid (Memc[str], SZ_LINE)
call fprintf (logfd, "\n%s\n")
call pargstr (Memc[str])
call fprintf (logfd, " Transform %s to %s.\n")
call pargstr (Memc[image1])
call pargstr (Memc[image3])
if (pmout != EOS) {
if (pmin != EOS) {
call fprintf (logfd, " Transform mask %s to %s.\n")
call pargstr (Memc[mname])
call pargstr (Memc[moutname])
} else {
call fprintf (logfd, " Output mask is %s.\n")
call pargstr (Memc[moutname])
}
}
if (flux)
call fprintf (logfd, " Conserve flux per pixel.\n")
if (usewcs)
call fprintf (logfd, " Transforming using image WCS.\n")
else {
call fprintf (logfd, " User coordinate transformations:\n")
while (clgfil (fitnames, Memc[str], SZ_LINE) != EOF) {
call fprintf (logfd, " %s\n")
call pargstr (Memc[str])
}
}
call fprintf (logfd, " Interpolation is %s.\n")
call pargstr (interp)
if (!IS_INDEFR(blank)) {
call fprintf (logfd, " Out of bounds pixel value is %g.\n")
call pargr (blank)
} else
call fprintf (logfd,
" Using edge extension for out of bounds pixel values.\n")
call fprintf (logfd, " Output coordinate parameters are:\n")
call fprintf (logfd,
" x1 = %10.4g, x2 = %10.4g, dx = %10.4g, nx = %4d, xlog = %b\n")
call pargr (u1)
call pargr (u2)
call pargr (du)
call pargi (nu)
call pargb (ulog)
call fprintf (logfd,
" y1 = %10.4g, y2 = %10.4g, dy = %10.4g, ny = %4d, ylog = %b\n")
call pargr (v1)
call pargr (v2)
call pargr (dv)
call pargi (nv)
call pargb (vlog)
call close (logfd)
}
call clprew (logfiles)
call tr_transform (in, out, pmin, pmout, un, xmsi, ymsi, jmsi,
Memr[xout], Memr[yout], Memr[dxout], Memr[dyout])
if (pmout != NULL)
call imunmap (pmout)
if (pmin != NULL)
call xt_pmunmap (pmin)
call imunmap (in)
call imunmap (out)
call xt_delimtemp (Memc[image2], Memc[image3])
if (usewcs) {
call mfree (xout, TY_REAL)
call mfree (yout, TY_REAL)
call mfree (dxout, TY_REAL)
call mfree (dyout, TY_REAL)
if (xmsi != NULL)
call msifree (xmsi)
if (ymsi != NULL)
call msifree (ymsi)
if (jmsi != NULL)
call msifree (jmsi)
if (un[1] != NULL)
call un_close (un[1])
if (un[2] != NULL)
call un_close (un[2])
xmsi = NULL
}
}
call mfree (xout, TY_REAL)
call mfree (yout, TY_REAL)
call mfree (dxout, TY_REAL)
call mfree (dyout, TY_REAL)
if (xmsi != NULL)
call msifree (xmsi)
if (ymsi != NULL)
call msifree (ymsi)
if (jmsi != NULL)
call msifree (jmsi)
if (un[1] != NULL)
call un_close (un[1])
if (un[2] != NULL)
call un_close (un[2])
call imtclose (minput)
call imtclose (moutput)
call imtclose (input)
call imtclose (output)
call clpcls (fitnames)
call clpcls (logfiles)
call sfree (sp)
end
# TR_SETOUTPUT -- Set the output coordinates in the common block.
# This procedure allows the user to specifying a part of the output
# coordinates and let the rest default based on the full limits of
# the user coordinate surfaces.
procedure tr_setoutput (xmin, xmax, ymin, ymax, umin, umax, vmin, vmax)
real xmin, xmax, ymin, ymax
real umin, umax, vmin, vmax
int nua, nva
real u1a, u2a, dua, v1a, v2a, dva
include "transform.com"
begin
# Save the original values of the user parameters.
u1a = u1
u2a = u2
dua = du
nua = nu
v1a = v1
v2a = v2
dva = dv
nva = nv
# If the output coordinate limits are not defined then use the
# transformation surface limits.
if (IS_INDEF (u1))
u1 = umin
if (IS_INDEF (u2))
u2 = umax
if (IS_INDEF (v1))
v1 = vmin
if (IS_INDEF (v2))
v2 = vmax
# If the number of output pixels are not defined then use the number
# of pixels in the input image.
if (IS_INDEFI (nu))
nu = xmax - xmin + 1
if (IS_INDEFI (nv))
nv = ymax - ymin + 1
# If the coordinate interval is not defined determine it from the
# number of pixels and the coordinate limits. If the interval is
# defined then override the number of pixels.
if (ulog) {
if (IS_INDEF (du))
du = (log10 (u2) - log10 (u1)) / (nu - 1)
else if (IS_INDEFI (nua))
nu = nint ((log10 (u2) - log10 (u1)) / du + 1)
else if (IS_INDEF (u1a))
u1 = 10.0 ** (log10 (u2) - du * (nu - 1))
else
u2 = 10.0 ** (log10 (u1) + du * (nu - 1))
} else {
if (IS_INDEF (du))
du = (u2 - u1) / (nu - 1)
else if (IS_INDEFI (nua))
nu = nint ((u2 - u1) / du + 1)
else if (IS_INDEF (u1a))
u1 = u2 - du * (nu - 1)
else
u2 = u1 + du * (nu - 1)
}
if (vlog) {
if (IS_INDEF (dv))
dv = (log10 (v2) - log10 (v1)) / (nv - 1)
else if (IS_INDEFI (nva))
nv = nint ((log10 (v2) - log10 (v1)) / dv + 1)
else if (IS_INDEF (v1a))
v1 = 10.0 ** (log10 (v2) - dv * (nv - 1))
else
v2 = 10.0 ** (log10 (v1) + dv * (nv - 1))
} else {
if (IS_INDEF (dv))
dv = (v2 - v1) / (nv - 1)
else if (IS_INDEFI (nva))
nv = nint ((v2 - v1) / dv + 1)
else if (IS_INDEF (v1a))
v1 = v2 - dv * (nv - 1)
else
v2 = v1 + dv * (nv - 1)
}
end
define NBUF 16 # Additional buffer for interpolation
define NEDGE 2 # Number of edge lines to add for interpolation
define MINTERP 100 # Mask value for input mask interpolation
define MTHRESH 10 # Interpolated mask value for bad pixels
define MBAD 1 # Mask value for output bad pixels
define MBLANK 1 # Mask value for out of bounds pixels
# TR_TRANSFORM -- Perform the image transformation using a user specified
# image interpolator. If an input and output mask are included the input
# mask values are set to MINTERP, interpolated in the same way, and any values
# greater than MTHRESH are set to MBAD. Note that currently the input mask
# values are not used in computing the input data interpolation value.
# The masks MUST be the same size as the input data and are assumed to
# be registered in logical pixel coordinates.
procedure tr_transform (in, out, pmin, pmout, un, xmsi, ymsi, jmsi, xout, yout,
dxout, dyout)
pointer in, out #I IMIO data pointers
pointer pmin, pmout #I IMIO mask pointers (NULL if not used)
pointer un[2] #I Units
pointer xmsi, ymsi #I Coordinate interpolation pointers
pointer jmsi #I Jacobian interpolation pointer
real xout[ARB], yout[ARB] #I Output grid relative to interpolation surface
real dxout[ARB], dyout[ARB] #I Output coordinate intervals
int i, j, nxin, nyin, line1, line2, line3, line4, nlines, laxis, paxis
bool xofb, yofb
real a, b, c, r[2], w[2], cd[2,2]
pointer zmsi, mzmsi, buf, mbuf, bufout
pointer sp, xin, yin, jbuf, xin1, yin1, y, mw
pointer mw_open(), impl2r()
errchk get_daxis
include "transform.com"
begin
# Initialize the output image header.
IM_LEN(out, 1) = nu
IM_LEN(out, 2) = nv
if (pmout != NULL) {
IM_LEN(pmout, 1) = nu
IM_LEN(pmout, 2) = nv
}
mw = mw_open (NULL, 2)
call mw_newsystem (mw, "world", 2)
do i = 1, 2 {
call mw_swtype (mw, i, 1, "linear", "")
if (un[i] != NULL) {
call mw_swattrs (mw, i, "label", UN_LABEL(un[i]))
call mw_swattrs (mw, i, "units", UN_UNITS(un[i]))
}
}
r[1] = 1.
if (ulog)
w[1] = log10 (u1)
else
w[1] = u1
cd[1,1] = du
cd[1,2] = 0.
r[2] = 1.
if (vlog)
w[2] = log10 (v1)
else
w[2] = v1
cd[2,2] = dv
cd[2,1] = 0.
call mw_swtermr (mw, r, w, cd, 2)
# The following image parameters are for compatibility with the
# ONEDSPEC package if using database solutions.
if (!usewcs) {
call imastr (out, "DCLOG1", "Transform")
iferr (call imdelf (out, "REFSPEC1"))
;
iferr (call imdelf (out, "REFSPEC2"))
;
call get_daxis (in, laxis, paxis)
call imaddi (out, "dispaxis", laxis)
switch (laxis) {
case 1:
if (ulog)
call imaddi (out, "dc-flag", 1)
else
call imaddi (out, "dc-flag", 0)
if (un[laxis] == NULL) {
call mw_swattrs (mw, laxis, "label", "Wavelength")
call mw_swattrs (mw, laxis, "units", "Angstroms")
}
case 2:
if (vlog)
call imaddi (out, "dc-flag", 1)
else
call imaddi (out, "dc-flag", 0)
if (un[laxis] == NULL) {
call mw_swattrs (mw, laxis, "label", "Wavelength")
call mw_swattrs (mw, laxis, "units", "Angstroms")
}
}
}
call mw_saveim (mw, out)
if (pmout != NULL)
call mw_saveim (mw, pmout)
call mw_close (mw)
# Allocate memory for the input coordinates and a vector for the
# output y coordinates. Also initialize the image data buffer.
call smark (sp)
call salloc (xin, nu, TY_REAL)
call salloc (yin, nu, TY_REAL)
call salloc (y, nu, TY_REAL)
if (flux)
call salloc (jbuf, nu, TY_REAL)
if (!IS_INDEFR(blank) || pmout != NULL) {
call salloc (xin1, nu, TY_REAL)
call salloc (yin1, nu, TY_REAL)
}
buf = NULL
mbuf = NULL
nlines = 0
# Initialize the interpolator.
call msiinit (zmsi, itype)
if (pmin != NULL)
call msiinit (mzmsi, itype)
# Do each line of the output image.
nxin = IM_LEN(in, 1)
nyin = IM_LEN(in, 2)
do i = 1, nv {
# Evaluate the input coordinates at the output grid for a line
# of the output image using the interpolation surfaces.
call amovkr (yout[i], Memr[y], nu)
if (!IS_INDEFR(blank) || pmout != NULL) {
call msivector (xmsi, xout, Memr[y], Memr[xin1], nu)
call msivector (ymsi, xout, Memr[y], Memr[yin1], nu)
call amovr (Memr[xin1], Memr[xin], nu)
call amovr (Memr[yin1], Memr[yin], nu)
} else {
call msivector (xmsi, xout, Memr[y], Memr[xin], nu)
call msivector (ymsi, xout, Memr[y], Memr[yin], nu)
}
# Determine the coordinate ranges and check for out of bounds.
call alimr (Memr[xin], nu, a, b)
xofb = (a < 1 || b > nxin)
if (xofb) {
if (a < 1)
call arltr (Memr[xin], nu, 1., 1.)
if (b > nxin)
call argtr (Memr[xin], nu, real (nxin), real (nxin))
}
call alimr (Memr[yin], nu, a, b)
yofb = (a < 1 || b > nyin)
if (yofb) {
if (a < 1) {
call arltr (Memr[yin], nu, 1., 1.)
a = 1.
b = max (a, b)
}
if (b > nyin) {
call argtr (Memr[yin], nu, real (nyin), real (nyin))
b = nyin
a = min (a, b)
}
}
# Get the input image data and fit an interpolator to the data.
if ((buf == NULL) || (b > line2) || (a < line1)) {
nlines = max (nlines, int (b - a + 2 + NBUF))
if (buf == NULL) {
if (a < nyin / 2) {
line1 = max (1, int (a))
line2 = min (nyin, line1 + nlines - 1)
} else {
line2 = min (nyin, int (b+1.))
line1 = max (1, line2 - nlines + 1)
}
} else if (b > line2) {
line1 = max (1, int (a))
line2 = min (nyin, line1 + nlines - 1)
line1 = max (1, line2 - nlines + 1)
} else {
line2 = min (nyin, int (b+1.))
line1 = max (1, line2 - nlines + 1)
line2 = min (nyin, line1 + nlines - 1)
}
line3 = max (1, line1 - NEDGE)
line4 = min (nyin, line2 + NEDGE)
call tr_bufl2r (in, pmin, line3, line4, buf, mbuf)
call msifit (zmsi, Memr[buf], nxin, line4 - line3 + 1, nxin)
if (pmin != NULL)
call msifit (mzmsi, Memr[mbuf], nxin, line4 - line3 + 1,
nxin)
}
# The input coordinates must be offset to interpolation data grid.
call asubkr (Memr[yin], real (line3 - 1), Memr[yin], nu)
# Evaluate output image pixels, conserve flux (if requested) using
# the Jacobian, and set the out of bounds values.
bufout = impl2r (out, i)
call msivector (zmsi, Memr[xin], Memr[yin], Memr[bufout], nu)
if (flux) {
call msivector (jmsi, xout, Memr[y], Memr[jbuf], nu)
call amulr (dxout, Memr[jbuf], Memr[jbuf], nu)
call amulkr (Memr[jbuf], dyout[i], Memr[jbuf], nu)
call amulr (Memr[bufout], Memr[jbuf], Memr[bufout], nu)
}
if (!IS_INDEFR(blank)) {
if (xofb) {
do j = 0, nu-1 {
if (Memr[xin1+j] < 1 || Memr[xin1+j] > nxin)
Memr[bufout+j] = blank
}
}
if (yofb) {
do j = 0, nu-1 {
if (Memr[yin1+j] < 1 || Memr[yin1+j] > nyin)
Memr[bufout+j] = blank
}
}
}
# Evaluate output mask pixels and set output bad values.
if (pmout != NULL) {
bufout = impl2r (pmout, i)
if (pmin != NULL) {
call msivector (mzmsi, Memr[xin], Memr[yin], Memr[bufout],
nu)
do j = 0, nu-1 {
c = Memr[bufout+j]
if (Memr[xin1+j] < 1 || Memr[xin1+j] > nxin ||
Memr[yin1+j] < 1 || Memr[yin1+j] > nyin)
Memr[bufout+j] = MBLANK
else if (c > 0.) {
if (c > MTHRESH)
Memr[bufout+j] = MBAD
else
Memr[bufout+j] = 0
}
}
} else {
call aclrr (Memr[bufout], nu)
if (xofb) {
do j = 0, nu-1 {
if (Memr[xin1+j] < 1 || Memr[xin1+j] > nxin)
Memr[bufout+j] = MBLANK
}
}
if (yofb) {
do j = 0, nu-1 {
if (Memr[yin1+j] < 1 || Memr[yin1+j] > nyin)
Memr[bufout+j] = MBLANK
}
}
}
}
}
# Free memory.
call mfree (buf, TY_REAL)
call mfree (mbuf, TY_REAL)
call msifree (zmsi)
if (pmin != NULL)
call msifree (mzmsi)
call sfree (sp)
end
# TR_BUFL2R -- Maintain buffer of image lines. A new buffer is created when
# the buffer pointer is null or if the number of lines requested is changed.
# The minimum number of image reads is used.
procedure tr_bufl2r (im, pmin, line1, line2, buf, mbuf)
pointer im #I Image pointer
pointer pmin #I Mask pointer
int line1 #I First image line of buffer
int line2 #I Last image line of buffer
pointer buf #U Output data buffer
pointer mbuf #U Output mask buffer
int i, nlines, nx, last1, last2, nlast
pointer buf1, buf2
pointer imgl2r()
begin
nlines = line2 - line1 + 1
# If the buffer pointer is undefined then allocate memory for the
# buffer. If the number of lines requested changes reallocate
# the buffer. Initialize the last line values to force a full
# buffer image read.
if (buf == NULL) {
nx = IM_LEN(im, 1)
call malloc (buf, nx * nlines, TY_REAL)
if (pmin != NULL)
call malloc (mbuf, nx * nlines, TY_REAL)
last1 = line1 - nlines
last2 = line2 - nlines
} else if (nlines != nlast) {
call realloc (buf, nx * nlines, TY_REAL)
if (pmin != NULL)
call realloc (mbuf, nx * nlines, TY_REAL)
last1 = line1 - nlines
last2 = line2 - nlines
}
# Read only the image lines with are different from the last buffer.
if (line1 < last1) {
do i = line2, line1, -1 {
if (i > last1)
buf1 = buf + (i - last1) * nx
else
buf1 = imgl2r (im, i)
buf2 = buf + (i - line1) * nx
call amovr (Memr[buf1], Memr[buf2], nx)
}
} else if (line2 > last2) {
do i = line1, line2 {
if (i < last2)
buf1 = buf + (i - last1) * nx
else
buf1 = imgl2r (im, i)
buf2 = buf + (i - line1) * nx
call amovr (Memr[buf1], Memr[buf2], nx)
}
}
if (pmin != NULL) {
if (line1 < last1) {
do i = line2, line1, -1 {
if (i > last1)
buf1 = mbuf + (i - last1) * nx
else
buf1 = imgl2r (pmin, i)
buf2 = mbuf + (i - line1) * nx
call amovr (Memr[buf1], Memr[buf2], nx)
call argtr (Memr[buf2], nx, 0.1, real(MINTERP))
}
} else if (line2 > last2) {
do i = line1, line2 {
if (i < last2)
buf1 = mbuf + (i - last1) * nx
else
buf1 = imgl2r (pmin, i)
buf2 = mbuf + (i - line1) * nx
call amovr (Memr[buf1], Memr[buf2], nx)
call argtr (Memr[buf2], nx, 0.1, real(MINTERP))
}
}
}
# Save the buffer parameters.
last1 = line1
last2 = line2
nlast = nlines
end
|