1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
|
.help export Oct94 dataio
.ih
NAME
export -- create a binary image file from one or more IRAF images
.ih
USAGE
export images binfiles
.ih
PARAMETERS
.ls images
The list of input IRAF images to be converted. The list may contain
either 2-D images or 3-D images.
Any number of 2-D images may be combined to a single output file, only
one 3-D image (or section) at a time may be converted. See the \fIBuiltin
Formats\fR section for notes about the number of image expressions required
for each builtin format and the handling of 3-D image data. Images greater
than three dimensions should be converted using image sections.
.le
.ls binfiles
The list of output binary files to create. If any of the builtin formats
is selected for conversion the filename will have an extension added
reflecting the format (if it is not already given).
.le
.ce
OUTPUT PARAMETERS
.ls format = "raw"
The type of binary file to write. If the value is "raw" then the input
images are converted directly to a raw binary raster using the task
parameters. If the value is "list" the pixel values will be written
to the standard output after evaluation of the \fIoutbands\fR parameter in
the same format as would appear from the \fILISTPIX\fR task. Finally,
the value may include any of the currently supported specific builtin formats:
.nf
eps - Encapsulated PostScript
gif - Compuserve's GIF format
imh - IRAF OIF image
miff - ImageMagick MIFF format image
pgm - PBMPlus PGM format image
ppm - PBMPlus PPM format image
ras - Sun rasterfile format
rgb - SGI RGB format image
xwd - X11 Window dump file
.fi
If any of these builtin formats is selected one or more of the following
parameters may be ignored. See the \fIBuiltin Formats\fR section for notes
about the formats supported by this task.
.le
.ls outbands = ""
Output image band expressions to write. This is a comma-delimited list of
expressions or an @-file containing the expressions. Evaluated expressions
do not all need to be the same length since the output image will be padded
to the maximum size. See below for more information.
.le
.ls verbose = no
Print verbose output to the screen during conversion?
.le
.ce
RAW BINARY OUTPUT PARAMETERS
.ls header = yes
For raw binary file output only, prepend a header describing how the data
are stored? If set to "no" then no header will be written. If set to "yes",
a standard text header describing how the data were written will be
prepended to the output file. Setting the \fIheader\fR parameter to the
reserved string "long" will write the image headers from the IRAF images
making up the output file in the standard header. The parameter may also
be set to a filename that will be prepended to the output file. This
parameter is ignored for builtin format output. See below for a description
of the header layout.
.le
.ls outtype = ""
Output pixel type if \fIformat\fR is set to "raw" or "list". This is a
string giving the type and size of each pixel, the syntax for the outtype
entry is
.nf
<type>[<nbytes>]
where
type = b # byte
u # unsigned (short) integer
i # signed integer
r # ieee floating point
n # native floating point
nbytes = 1, 2, 4, or 8
.fi
If no value for \fInbytes\fR is given the smallest size for the given type
(i.e. 1 byte for 'b', 2 bytes for ints, 4 bytes for floating point) will
be used. If no value is entered at all the type of the input image is used,
for multiple images used to create a single binary file the type of the first
image is used. This parameter is ignored for builtin format output options.
.le
.ls interleave = 0
Pixel interleave type. If the \fIoutbands\fR parameter is composite
(i.e. a comma-delimited list of expressions) the output file is pixel
interleaved and the \fIinterleave\fR parameter is ignored. If the
\fIoutbands\fR parameter is a single expression the file is line-interleaved
when the \fIinterleave\fR value is a positive integer. If the \fIoutbands\fR
is an empty string or a single expression the binary file is band interleaved
if this parameter is zero. This parameter is ignored for builtin formats
where the pixel storage is predefined.
.le
.ls bswap = "no"
Type of byte-swapping to perform on output. The default is bswap=no which
may be abbreviated "bswap-" (similarly a value of 'yes' can be abbreviated
"bswap+"). If disabled no byte-swapping is performed, if set all integers
are swapped on output relative to the current machine's byte ordering.
Values of 'i2' or 'i4' will swap only two or four byte integers respectively,
floating point values remain unswapped. This parameter may be used by some
builtin formats that don't have a specified byte order.
.le
.ih
DESCRIPTION
The \fIexport\fR task will convert one or more images in an
input list to a binary raster file, a text listing of pixels values,
or one of several specific file formats. For general binary
rasters, various pixel types, data interleaving, and the byte order can be
specified. An optional header may be added to the output file.
Arbitrary arithmetic expressions, using both standard and custom
functions, may be applied to the images in the
input list before conversion allowing the user to scale intensity values,
change image orientation, compute colormaps, or compute output pixel
values.
The \fIformat\fR parameter controls the type of output generated:
if set to \fIraw\fR a binary file described by the \fIouttype\fR,
\fIinterleave\fR, and \fIbswap\fR parameters is written with pixel values
determined from the expressions in the
\fIoutbands\fR parameter. The value of \fIouttype\fR
defines the output pixel size and type (long or short ints, native or IEEE
reals, see parameter description for details). The
\fIbswap\fR parameter can be used to set the byte order (relative to the
current machine) of integer values, this
parameter is ignored for floating point pixels or builtin
formats with a specified byte order. The \fIoutbands\fR and \fIinterleave\fR
parameters define the pixel storage in the binary file. For multiple
\fIoutbands\fR
expressions the data are assumed to be pixel interleaved (e.g. written
as { {RGB}, {RGB} ...} triplets). For single expressions, a positive value
of \fIinterleave\fR indicates that the data are written in a line-interleaved
manner (e.g. a line of R, a line of G, ...). If \fIinterleave\fR is
zero and \fIoutbands\fR is a single expression
then no interleaving is done and the image bands are written sequentially.
If \fIoutbands\fR is the null string, all pixels in a single input image
will be written to a single output file.
Error checking is done to make sure the combination of these
parameters is correct. If the \fIheader\fR parameter is "yes" a text header
describing how the data were written will be prepended to the file, setting
the \fIheader\fR parameter to the reserved string "long"
will cause the image header for each input image
to be saved in the standard header. The \fIheader\fR parameter may also
be the name of a user-defined file to prepend to the output instead of the
standard header.
If the \fIformat\fR parameter is set to "list" the pixels values
will be written to the screen as an ascii list of pixel coordinates
followed by the pixel value. Pixel coordinates are determined using the
same interleaving scheme as above, values are determined by evaluating
each \fIoutbands\fR expression.
Lastly, the \fIformat\fR parameter may be any of the currently
supported builtin formats. See the section on \fIBuiltin Formats\fR for
more information and the restrictions or requirements of each format.
.ih
MORE ON OUTBANDS EXPRESSIONS
The simplest specification for \fIoutbands\fR is a null string,
in which case the image is converted directly (i.e. band storage,
pixels converted to output type). Arbitrary interpreted arithmetic
expressions using standard and custom functions and operators are also
supported. If the \fIimages\fR parameter is a list of 3-D images the
operand names are the predefined tags b1, b2, ... bN for the bands in each
image, the \fIbinfiles\fR parameter must contain an equal number of
output files. To convert multiple 3-D images they must either be sliced
to individual 2-D images (or specified as image sections) or stacked into
a single image. If the \fIimages\fR parameter is a list of 2-D images
(or sections) the operand names are the predefined tags i1, i2, ... iN for
the each image in the input list, the b1, b2, etc names are also recognized.
For more complex or
lengthy expressions the \fIoutbands\fR parameter may alternatively be an
@-file containing the expressions. Within this @-file whitespace and
newline characters are ignored to allow expressions to be indented in a
readable manner.
The image operands determine which input images in the list are
converted to which output files. For 3-D input images one IRAF image is
converted for each output file in the list, for 2-D images multiple images
may be converted to a single output file. In the latter case the list
pointers are updated automatically to keep track of the images. For example,
to convert six images to two output files, the \fIoutbands\fR expression
should contain three images operands. The first three images in the list
will be used in evaluating the expressions for the first output file,
the last three for the second file.
The image tags may be reordered in the expression but still refer to
e.g. band-1, band-2 and so on. For example (where rgbim is a 512x512x3 image,
and rim, gim, and bim are 512x512 images),
.nf
cl> export rgbim file outtype="u2" header- (1)
cl> export rgbim file outtype="u2" header- outbands="b3,b2,b1" (2)
cl> export rim,gim,bim file outty="u2" outbands="i3,i2,i1" (3)
cl> export rim,gim,bim file outty="b" outbands="gray(i1,i2,i3)" (4)
.fi
Example (1) converts the input image pixels to a raw binary file of
unsigned short integers with no header written as one image band following
another. In example (2) the order of the bands is reversed and the binary
file is stored as pixel interleaved BGR triplets of short ints.
Example (3) is the same as (2) except that the input images in the list
are reordered instead of bands within a single image. When using the image
tags the input list is updated to account for this, so it is allowed to have
more input images than output binary files.
In example (4) the three images are converted to a single grayscale image
before being written as byte data to the binary file.
More complex and detailed examples are given below.
Individual \fIoutbands\fR expressions are composed of operators and operands
in general interpreted arithmetic expressions as follows:
\fBOperands\fR
.nf
iN # image list item
iN.param # image parameter
@"param" # parameter of 3-D image
bN # band within 3-D image
func() # function
constant # numeric constant
.fi
The 'iN.param' and '@"param"' syntax allows an image header parameter
to be accessed. For example 'i2.otime' refers to the 'otime' image
header parameter in the second image of a list and '@"otime"' refers to the
current image if the input list contains 3-D images. They may
be used in an outbands expression such as
.nf
(i1*(i1.otime/i2.otime)),i2,(i3*(i3.otime/i2.otime)) (1)
(b1/@"otime")),(b2/@"otime"),(b3/@"otime") (2)
.fi
to normalize the output bands by the exposure time value in the second image
in the first example, or to normalize by the 'otime' keyword of a 3-D image
in the second example.
In cases where a constant value is used as an outbands expression an
alpha channel (an extra 8-bits of constant intensity) will be created
consisting of that value. For example, writing a 32-bit RGB image with an
alpha channel of 255 could be written using
cl> export rgbim file outtype="b1" outbands="b1,b2,b3,255"
\fBOperators\fR
The expression syntax implemented by \fIexport\fR provides the following
set of operators:
.nf
( expr ) - grouping
+ - * / - arithmetic
** - exponentiation
// - concatenate
expr ? expr1 : expr2 - conditional expression
&& - logical and
|| - logical or
! - logical not
< - less than
<= - less than or equal
> - greater than
>= - greater than or equal
== - equals
!= - not equals
?= - substring equals
.fi
The conditional expression has the value \fIexpr1\fR if \fIexpr\fR is true,
and \fIexpr2\fR otherwise. Since the expression is evaluated at every pixel
this permits pixel-dependent operations such as checking for special pixel
values, or selection of elements from either of two vectors. For example,
the command
(i1 <= 0) ? 0 : 1
has the constant value zero if "i1" is less than or equal to zero,
and one otherwise, effectively creating a pixel mask of positive pixels.
Conditional expressions are general expressions and may be nested or used
anywhere an expression is permitted.
The concatenation operator applies to all types of data, not just
strings. Concatenating two vectors results in a vector the
combined length of the two input vectors. An example use of this would
be to concatenate images side-by-side on output.
\fBSpecial Functions\fR
In addition to the intrinsic functions already provided (see the help
page for the \fIimexpr\fR task for a list of standard, mathematical and type
conversion functions) there are a number of custom functions for this task:
.ce
\fBOutput Functions:\fR
.nf
band (args) - force band interleaved storage
line (args) - force line interleaved storage
flipx (args) - flip image in X dimension
flipy (args) - flip image in Y dimension
block (val,width,height) - block fill area with a constant
.fi
These functions define how the output data are written. For builtin
formats whose normal orientation and storage format is known these functions
are ignored (except where noted). These functions may not be used as arguments to other functions (except where noted) or as single operands
within expressions (e.g. "255 + flipx(i1)"), however their arguments may
be expressions or (perhaps output) functions themselves.
.ls band (args)
Force band storage in the output file regardless of the value of the
\fIinterleave\fR parameter. This may be used to specify multiple
expressions for each band while still forcing band storage (the default
for multiple expressions is pixel-interleaved storage). This function
may be used with some builtin formats to write multiple images to the output
file as if they were a column of images in the original. This function
is ignored by builtin formats that do not support this scheme (i.e RGB
format) and may be used as an argument to the \fIsetcmap()\fR, \fIpsdpi()\fR,
and \fIpsscale()\fR functions only.
.le
.ls line (args)
Force line storage in the output file regardless of the value of the
\fIinterleave\fR parameter. This may be used to specify multiple
expressions for each band while still forcing line storage (the default
for multiple expressions is pixel-interleaved storage). This function
is ignored by builtin formats that do not support this scheme.
.le
.ls flipx (args)
Flip the image left-to-right on output. This function may be used as an
argument to the \fIband()\fR, \fIsetcmap()\fR, \fIpsdpi()\fR, or
\fIpsscale()\fR functions only.
.le
.ls flipy (args)
Flip the image top-to-bottom on output. Certain builtin formats (such as
GIF, PGM, PPM, RAS and XWD) have their normal orientation already flipped wrt
to IRAF and these will automatically be flipped on output. Using this
function with those formats cancels the flip action, writing the image in the
normal IRAF orientation and not the normal format orientation.
This function may be used as an argument to the \fIband()\fR, \fIsetcmap()\fR,
\fIpsdpi()\fR, or \fIpsscale()\fR functions only.
.le
.ls block (value, width, height)
Fill an area with a constant value. This function can be used to fill a
vertical area between images to provide padding of a constant value. It
is similar to the "repl()" intrinsic function which replicates a data element
a given number of times.
.le
.ce
\fBScaling Functions:\fR
.nf
zscale (arg [,z1, z2 [, nbins]]) - scale to a fixed number of bins
zscalem (arg1, arg2) - automatic scaling with filtering
gr[ea]y (arg1,arg2,arg3) - RGB to grayscale conversion
bscale (arg, zero, scale) - linearly transform intensity scale
gamma (arg, gamma [, scale]) - apply a gamma correction
.fi
These functions may be used to scale the intensity values of the
image before output in order to map image datatypes to a specified range.
The 'args' value may be a list of image operands or expressions. These
functions may be used as arguments to the output functions above
or as operands within more complex expressions.
.ls zscale (arg [,z1,z2 [,nbins]])
Scale the pixels in a given range to a specified number of bins. This
function will map the input pixels within the range z1 to z2 to one of
'nbins' values. Pixels less than z1 are mapped to the lowest output
intensity value, pixels greater than z2 are mapped to the highest value.
If no \fIz1\fR and \fIz2\fR arguments are given appropriate values will
be computed using the same algorithm and default parameters used by
the \fIDISPLAY\fR task (see the help page for more information).
If no \fInbins\fR value is given 256 bins are assumed.
If the given value of z1 is greater than z2 the mappings will be inverted,
i.e. larger pixel values will map to the lower bin numbers, smaller pixel
values will map to larger bin numbers. For example, to map the dev$pix
test image to 200 colors such that there are "black" stars on a "white"
background one could use
.nf
zscale (b1, @"i_maxpixval", @"i_minpixval", 200)
.fi
.le
.ls zscalem (arg1, arg2)
This is a variant of the zscale operand with automatic scale calculation;
i.e. zscale (arg). The first argument is the same as for zscale to select
the pixel values. The second argument is a boolean (true or false)
expression selecting whether a value in the first argument is to be used in
the calculation. This allows limiting the automatic scale calculation to
pixels specified in a mask or to a certain range to exclude extreme or bad
values that would otherwise perturb the result. Typical usages might be
.nf
zscalem (i1, i2==0)
zscalem (i1, i1>0&&i1<10000)
.fi
where i1 are the image pixels and i2 would be pixels from the second
input argument which defines a mask. Note that you can't just say i2
for a mask but must use it in an expression resulting in a true or false
value. Also note that the result is always in the range 0 to 255.
.le
.ls grey (arg1,arg2,arg3) or gray (arg1,arg2,arg3)
Convert three image operands or expressions to a single grayscale image
using the standard NTSC equation:
.nf
Gray = 0.3 * arg1 + 0.59 * arg2 + 0.11 * arg3
.fi
.le
.ls bscale (arg, zero, scale)
Linearly transform the intensity scale of the image using the equation
.nf
new[i] = (arg[i] - zero) / scale
.fi
Pixels are scaled in their input datatype prior to converting to the output
datatype.
.le
.ls gamma (arg, gamma [, scale])
Apply a gamma correction to the pixels. Pixel values are scaled according to
the equation
.nf
new = scale * [ (old/scale) ** (1.0/gamma) ]
.fi
If no scale argument is given a value of 255 will be assumed.
.le
\fIAdditional functions\fR are supported for specific formats:
.nf
Function Description Formats
-------- ----------- -------
cmap (r,g,b [,ncols]) create 8-bit colormap GIF,RAS,XWD,EPS
setcmap (args, [opts]) define a colormap GIF,RAS,XWD,EPS
psdpi (args, dpi) set dpi for output EPS
psscale (args, scale) set scale of output EPS
.fi
These functions may take as arguments some of the output functions
named above. For example, one can specify the dpi resolution of EPS output
and band storage of images using something like
.nf
psdpi(band(args), dpi)
.fi
.ls cmap (arg1,arg2,arg3 [, ncolors])
Compute an 8-bit colormap from three image operands or expressions using a
Median-Cut Algorithm and Floyd-Steinberg dithering. The computed colormap
is written to the header of the output file. The resultant image
is an 8-bit color index into the computed colormap. The \fIncolors\fR argument
specifies the number of desired colors, a default value of 256 will be used
if not provided. This function is only
allowed for builtin formats supporting color lookup tables and may not be
used within another expression or function.
.le
.ls setcmap (args, cmap [, brightness, contrast])
Define the colormap to be used on output. This function is only supported
for formats that support colormaps, the \fIargs\fR expressions are used to
compute the color index values. The \fIcmap\fR argument may either be the
filename of a normalized colormap table (such as is used by \fIXImtool\fR)
or one of the builtin values:
.nf
aips0 - and RGB false color mapping
blue - various shades of blue
color - standard B/W and RGB colormap
grayscale - standard grayscale
greyscale - (alias for above)
green - various shades of green
halley - standard halley mission colormap
heat - temperatures as colors
rainbow - rainbow colors
red - various shades of red
staircase - RGB staircase
standard - RGB ramps
overlay - grayscale with IMDKERN overlay colors
.fi
Colormap names must be quoted with either single or double quote characters.
The optional \fIbrightness\fR and \fIcontrast\fR arguments have default
values of 0.5 and 1.0 respectively corresponding to the default
brightness/contrast scaling of the \fIXImtool\fR display server.
If the cmap argument is an empty string the default Grayscale LUT will
be used, IRAF logical paths may be used in the filename specification.
.le
.ls psdpi (args, dpi)
Specify the dots-per-inch resolution of the output image. The default
resolution is 300dpi, this may need to be reset for some printers or if
the raster rendering produces "bands" in the output. This function may
only be used as an argument to the \fIpsscale()\fR function.
.le
.ls psscale (args, scale)
Specify the scale of the output image. The default value is 1.0 which
means that image printed on a 300dpi device is roughly the same size
as displayed on a typical 72dpi screen. Scale values less than one reduce
the image size on the page, values greater than one increase the size. The
scale value will automatically be adjusted if it creates an image that will
not fit on a 8.5 inch by 11 inch page. A scale value of 0.25 prints one
image pixel per 300dpi printer pixel. This function may
only be used as an argument to the \fIpsdpi()\fR function.
.le
.ih
EXPORT HEADER FORMAT
The header prepended to the binary data is ascii text consisting of
keyword-value pairs, one per line, terminated with a newline after the
value, beginning with the magic string
"format = EXPORT". Using an ascii header allows the file format to be
easily determined by the user with a file pager or any program reading
the file.
Defined keywords are:
.nf
date - date file was written (dd/mm/yy)
hdrsize - size of header (bytes)
ncols - no. of image columns
nrows - no. of image rows
nbands - no. of image bands
datatype - pixel type (as <type><nbytes>)
outbands - outband expression list
interleave - interleave value (same as above)
bswap - are ints swapped relative to MII format?
image1 - image names used in creating file
:
imageN
header1 '{' <header> '}' - image headers of above
:
headerN '{' <header> '}'
end - terminate header
.fi
If the \fIheader\fR parameter is set to "long" the image headers for
each image used in creating the file is included in the output header,
otherwise only the image names are included.
A sample (verbose) header might look like:
.nf
format = EXPORT
date = '19/06/94'
hdrsize = 2084
nrows = 512
ncols = 512
nbands = 1
datatype = 'i2'
outbands = ''
interleave = 0
bswap = no
image1 = "dev$pix"
header1 = {
IRAF-BPX= 16 / DATA BITS/PIXEL
IRAFTYPE= 'SHORT ' / PIXEL TYPE
CCDPICNO= 53 / ORIGINAL CCD PICTURE NUM
ITIME = 600 / INTEGRATION TIME (SECS)
: : : :
}
end
.fi
.ih
BUILTIN FORMATS
While the task provides a way of writing general binary raster
files there is still a need for converting to specific formats.
Implementing most formats is trivial since they usually follow the
data model and the only "builtin" knowledge of the format is the minimal
header required. More complex formats such as GIF and EPS are implemented
as special cases. Note that all of the builtin formats require 8-bit color
index or 8-bits per color in RGB or RGBA files, users should be careful
in how the datatype conversion from IRAF image types is handled. In most
cases this can be handled with the \fIzscale()\fR or \fIzscalem\fR functions.
For each of the formats listed below the table shows the number
of \fIoutbands\fR expressions required and the type of output file that
can be written. Complete examples for the most common cases are shown in
the \fIExamples\fR section below. The columns in the table are defined as
.nf
#expr - number of required \fIoutbands\fR expressions
Type - RGB or 8-bit colormap (index) file
bitpix - number of bits-per-pixel
CLT? - does the file have a colormap?
Alpha? - does the file have an alpha channel?
Interleaving - type of pixel interleaving
Notes - see explanation below each table
.fi
A general description and specific restrictions or requirements are given for
each format. An error is generated of the input parameters do not meet the
requirements of the requested format. Unless otherwise noted the values of
the \fIheader\fR, \fIbswap\fR and \fIinterleave\fR parameters will be ignored.
The value of \fIouttype\fR will be set internally and is also ignored.
If the input image is 3-D and no \fIoutbands\fR expressions are
given, then where supported each band will be written to the output file as
a complete image or RGB color component. For example, a 512x512x3 image
will be written as a 512x1536 image with each band comprising one third
the height of the output image. If the output format requires 24-bit pixels
then each band of the image will be written as a color component.
The currently supported builtin formats include:
.ls EPS - Encapsulated PostScript
.nf
#expr Type bitpix CLT? Alpha? Interleaving Notes
----- ----- ------ ---- ------ ------------ -----
1 index 8 no no none
.fi
The output 8-bit Encapsulated PostScript image
centered on the page at a default scale of 1.0 at 300dpi (i.e. the image will
appear on a 300dpi printer about the same size as displayed on a 72dpi
screen). The output scale may be adjusted using
the \fIpsscale()\fR function, e.g. to set the output for one image pixel
per 300 dpi printer pixel use "psscale(b1,0.25)" (one quarter the normal size
on the page). The output dpi resolution may be set explicitly with
the \fIpsdpi()\fR function, this is sometimes necessary if "bands" appear
in the final output image. Color EPS files may be written as either RGB
postscript or with a colormap applied to the data (using either the
\fIcmap()\fR or \fIsetcmap()\fR functions).
.le
.ls GIF - Compuserve's GIF format
.nf
#expr Type bitpix CLT? Alpha? Interleaving Notes
----- ----- ------ ---- ------ ------------ -----
1 index 8 yes no none 1
3 index 8 yes no none 2
Notes:
1) Colormap generation enabled using \fIsetcmap()\fR or else
default grayscale colormap will be used
2) use of \fIcmap()\fR required to generate colormap
.fi
The output file is a GIF '87 image. A linear colormap of 256 entries
will automatically be generated if only one image or expression is given for
conversion and no colormap is specified.
If three images or expressions are specified a 24-to-8 bit
conversion can be done using a Median Cut Algorithm and Floyd-Steinberg
dithering with the required \fIcmap()\fR function. Since the colormap
sizes are limited to 256 entries the maximum pixel value is assumed to
be 255, i.e. the output pixel size will be forced to 8-bits or less.
.le
.ls IMH - IRAF image file
The output file is an IRAF OIF format image of the specified datatype.
Writing the image out as another IRAF image may be used to scale or composite
several images into a new image that can be annotated with the \fITVMARK\fR
task before writing out the final format.
.le
.ls MIFF - ImageMagick MIFF format image
.nf
#expr Type bitpix CLT? Alpha? Interleaving Notes
----- ----- ------ ---- ------ ------------ -----
1 index 8 no no none
1 index 8 yes no none 1,2
3 rgb 24 no no pixel
Notes:
1) Colormap generation enabled using \fIsetcmap()\fR
2) Colormap generation enabled using \fIcmap()\fR
.fi
The output file is a Machine Independent File Format image, with or
without a colormap or as a 24-bit RGB image. Although MIFF permits 64K
colors in a colormap the task only supports 256 colors, no compression is
used in the image. The maximum pixel value per color is assumed to be 255.
.le
.ls PGM - PBMPlus PGM format image
.nf
#expr Type bitpix CLT? Alpha? Interleaving Notes
----- ----- ------ ---- ------ ------------ -----
1 index 8 no no none
3 index 8 no no none 1
Notes:
1) Grayscale may be produce with \fIgray()\fR function
.fi
The output file is an 8-bit raw (i.e. binary pixels) PGM image.
The maximum pixel value is assumed to be 255.
.le
.ls PPM - PBMPlus PPM format image
.nf
#expr Type bitpix CLT? Alpha? Interleaving Notes
----- ----- ------ ---- ------ ------------ -----
3 rgb 24 no no pixel
.fi
The output file is an 24-bit raw (i.e. binary pixels) PPM image.
The maximum pixel value per color is assumed to be 255.
.le
.ls RAS - Sun rasterfile format
.nf
#expr Type bitpix CLT? Alpha? Interleaving Notes
----- ----- ------ ---- ------ ------------ -----
1 index 8 no no none
1 index 8 yes no none 1,2
3 rgb 24 no no pixel
4 rgb 32 no yes pixel
Notes:
1) Colormap generation enabled using \fIsetcmap()\fR
2) Colormap generation enabled using \fIcmap()\fR
.fi
The output file will be a Sun rasterfile. The header values
(long integers) may be byte swapped by setting the \fIbswap\fR parameter
to "yes" or "i4". For 32-bit true-color rasterfiles the
alpha channel should be specified as the first expression. The maximum
pixel value is assumed to be 255.
.le
.ls RGB - SGI RGB format image
.nf
#expr Type bitpix CLT? Alpha? Interleaving Notes
----- ----- ------ ---- ------ ------------ -----
1 index 8 no no none
3 rgb 24 no no scanline
.fi
The output file will be an SGI RGB (IRIS) format image. Although
this format supports colormaps they are not supported by this task.
The maximum pixel value is assumed to be 255.
.le
.ls XWD - X11 Window dump file
.nf
#expr Type bitpix CLT? Alpha? Interleaving Notes
----- ----- ------ ---- ------ ------------ -----
1 index 8 yes no none 1,2,3
3 rgb 24 no no none
Notes:
1) Linear grayscale colormap automatically generated
2) Colormap generation enabled using \fIsetcmap()\fR
3) Colormap generation enabled using \fIcmap()\fR
.fi
The output file will be an X11 window dump file.
A linear colormap of 256 entries will automatically be generated if only
one image or expression is given for conversion, the \fIsetcmap()\fR function
may be used to create an alternate colormap. If three images or expressions
are specified a 24-to-8 bit conversion can be done using a Median Cut
Algorithm and Floyd-Steinberg dithering if the \fIcmap()\fR function is
specified. Header values (long integers) may be byte swapped by setting the
task \fIbswap\fR parameter to "yes" or "i4". The maximum pixel value is
assumed to be 255.
.le
.ih
COLOR OUTPUT IMAGES
In theory the colormaps generated by the \fIcmap()\fR and
\fIsetcmap()\fR functions could be written in the header for raw binary
output and the pixel written out as color indices, but since we also
support color index formats which are recognized widely by other packages
there is no need to do this. Therefore we limit the use of colormaps to
the builtin formats which already support it.
The simplest type of "color" image is the familiar grayscale image.
Pixel values represent the display gray level, although for some formats a CLT
(color lookup table) is required (e.g. GIF) and these pixel values are
actually indices into a grayscale colormap. Most of the conversion done
with this task will produce a grayscale image of some sort. For "color
index" images the pixel values are indices into a colormap containing the
RGB components of the color for a pixel with that value. Colormaps
usually permit at most 256 possible colors implying 8-bit pixels.
In this task the colormap may be computed either with the \fIcmap()\fR (which
does a 24-to-8 bit mapping of the colors) or the \fIsetcmap()\fR function
(which computes the colormap from a display lookup table of colors).
"True color" images are those which have 24-bits of color (8-bit for each
component) for each pixel, some true color images also contain an alpha
channel (an extra 8-bits of constant intensity) which may or may not be
used by the software displaying the image.
The \fIcmap()\fR function takes three images and computes a colormap
using Paul Heckbert's Median Cut Algorithm ("Color Image Quantization for
Frame Buffer Display", SIGGRAPH '82 Proceedings, pg 297) and Floyd-Steinberg
dithering technique. The computed colormap is written to the file header
and pixel values are converted to color indices. By default 256 colors are
computed but fewer colors may be requested. This function is most useful
for generating pseudo-color images from three input images taken in different
filter bands (which is required for some formats like GIF that do not
support 24-bit RGB).
The \fIsetcmap()\fR function, on the other hand, can be used to
generate a color image from a single input image and a lookup table such as
the ones used by displays servers like XImtool. In this case the pixel
values are indices into a pre-defined colormap which is normalized between
zero and one (so that it may be scaled to the desired number of colors).
The \fIbrightness\fR argument defines the center of the transfer function, the
default is 0.5 because it in the middle of the normalized range. The
\fIcontrast\fR arguments sets the contrast of the transfer function. For
example, the normalized pixel values and default brightness/contrast settings
will map the pixel values to the corresponding color in the LUT. Changing
the brightness to a lower value means that pixel intensities will map to lower
values in the LUT, doubling the contrast for instance means that the LUT
will increment two colors for every unit pixel change. This is what happens
when changing a displayed image in IRAF with the mouse by moving the cursor
left-right (changing the brightness) or up-down (changing the contrast).
An example use of this function would be if one wanted to convert an
IRAF image to a color rasterfile with the same colormap and intensity
scaling as was displayed in XImtool. After adjusting the display the
brightness/contrast values could be read from the control panel and the
rasterfile generated using
.nf
setcmap (b1, "aips0", 0.36, 1.2)
.fi
where the "aips0" is one of the builtin colormaps and the brightness and
contrast arguments are those from the ximtool display. Similarly, the
expression
.nf
setcmap (zscale(i1),"idl15.lut")
.fi
will save the image with the same intensity scaling and color as would be see
by displaying it to ximtool using the default DISPLAY task settings,
normalized XImtool brightness/contrast values and the "idl15.lut" LUT in the
current directory.
.ih
EXAMPLES
The examples below are divided into several categories showing
typical usage when creating various raw and builtin output files. Note
that the output file will have a filename extension added indicating the
format when converting to a builtin format.
\fICreating Raw Binary Files\fR
.nf
List the pixels being one the standard output, apply a linear scale
function first:
cl> export dev$pix "" list outbands="bscale(b1,1.0,3.2)"
Convert the dev$pix test image to an 8-bit binary file with a gamma
correction, write the standard header:
cl> export dev$pix bfil raw header+ outty="u1" outbands="gamma(b1,1.8)"
Write the three bands of an IRAF image to a pixel interleaved binary
file of short integers, prepend a user-defined header:
cl> export rgbim bfil raw header="hdr.txt" outty="i2" outban="b1,b2,b3"
Convert three images representing RGB to a 4-color line-interleaved
file, the IRAF images don't require scaling, create alpha channel:
cl> export rim,gim,bim bfil raw outty="u1" outban="line(i1,i2,i3,0)"
Write the three bands of an IRAF image to a line-interleaved binary
file of short integers:
cl> export rgbim binfil raw outtype="i2" outbands="line(b1,b2,b3)"
cl> export rgbim binfil raw outtype="i2" outbands="" interleave=3
Write the three bands of an IRAF image to a grayscale binary file using
a custom conversion formula. Pixel values are truncated to 8-bits:
cl> export rgbim grey raw outty="u1" outban="(.2*b1)+(.5*b2)+(.3*b3)"
.fi
\fICreating Specific Formats\fR
.nf
Convert dev$pix to an 8-bit Sun rasterfile with no colormap, scale the
image to 8-bits using the default \fIzscale()\fR intensity mapping:
cl> export dev$pix dpix ras outbands="zscale(i1)"
Apply various functions to the data before doing the same conversion:
cl> export dev$pix dpix ras outbands="zscale(log(i1))"
cl> export dev$pix dpix ras outbands="zscale(sqrt(i1))"
Convert dev$pix to an 8-bit Sun rasterfile with no colormap, image pixel
values are truncated to 8-bits:
cl> export dev$pix dpix ras
Convert three images representing RGB to a 24-bit Sun rasterfile, assume
the IRAF images don't require intensity scaling:
cl> export rim,gim,bim rgb ras outbands="i1,i2,i3"
Create a Silicon Graphics RGB format image from a 3-D image:
cl> export rgbim bdata rgb outbands="b1,b2,b3"
Convert dev$pix to an 8-bit GIF grayscale image, scale the image to map
only pixel values between 0 and 320:
cl> export dev$pix dpix gif outbands="zscale(i1,0.0,320.0)"
Combine three images representing RGB into an 8-bit X11 window dump
grayscale image:
cl> export rim,gim,bim gray xwd outbands="gray(i1,i2,i3)"
Convert dev$pix to an Encapsulated PostScript file at half the normal scale
and apply a linear transformation to scale the pixel values:
cl> export dev$pix dpix eps \
>>> outbands="psscale(bscale(i1,0.,0.32), 0.5)"
Convert three images representing RGB to an 8-bit GIF color image with
a computed colormap:
cl> export rim,gim,bim rgb gif outbands="cmap(i1,i2,i3)"
Convert dev$pix to a color rasterfile using the builtin "heat" colormap
and default intensity mapping:
cl> export dev$pix dpix ras outban='setcmap(zscale(i1),"heat")'
Convert dev$pix to a color rasterfile using the XImtool "idl15.lut"
LUT file in the current directory and default intensity mapping:
cl> copy /usr/local/lib/imtoolcmap/idl15.lut .
cl> export dev$pix dpix ras outbands="setcmap(zscale(i1),'idl15.lut')"
\fIAdvanced Usage\fR
Given a set of DISPLAY task z1/z2 values of 10 and 320 respectively, and
brightness/contrast values from XImtool of 0.6 and 1.2 respectively,
convert an image to an EPS file with the same appearance:
im> type expr
setcmap ( zscale (i1, 10.0, 320.0), "greyscale", 0.6, 1.2 )
im> export dev$pix dpix eps outbands="@expr"
Concatenate two images side-by-side to a PGM file, normalize each image
by it's exposure time and apply a default intensity mapping:
cl> export im1,im2 two pgm \
>>> outbands='(zscale(i1/i1.otime)) // (zscale(i2/i2.otime))'
Convert dev$pix to a color GIF using the XImtool "idl15" LUT with a spec-
ified brightness/contrast scale. Map only pixel values between 5 and 300
to 201 output intensity values. This should produce and image identical
to what one would get by displaying dev$pix to imtool, setting the same
brightness/contrast scale, and selecting the idl15 LUT:
cl> copy /usr/local/lib/imtoolcmap/idl15.lut .
cl> type expr.dat
setcmap (
zscale(i1, 5.0, 320.0, 201),
"idl15.lut",
0.41,
1.35)
cl> export dev$pix dpix gif outbands="@expr.dat"
Combine three images representing RGB to an 8-bit Sun rasterfile with a
computed colormap. Scale the intensity value of each image differently.
cl> type expr.dat
cmap (
zscale (i1),
zscale (i2, 0.0, 1200.0),
zscale (i3, -1.0, 320.0) )
cl> export im1,im2,im3 rgb ras outbands="@expr.dat"
Do the same example but apply a gamma correction to the images:
cl> type expr.dat
cmap (
gamma (zscale(i1), 2.2),
gamma (zscale(i2,0,1200), 2.2),
gamma (zscale(i3,-1,320), 2.2) )
Write four images to a grayscale GIF file such that they are tiled in a
2x2 grid:
cl> export im1,im2,im3,im4 quad gif \
>>> outbands="band( (i1//i2), (i3//i4) )"
Do the same example but create a border of 2 gray pixels around each
of the images and apply the AIPS0 LUT with brightness/contrast values
to create a color image:
cl> copy /usr/local/lib/imtoolcmap/aips0.lut .
cl> type expr.dat
setcmap (
band(
128, 128,
(repl (128,2) // i1// repl (128,2) // i2 // repl (128,2)),
128, 128,
(repl (128,2) // i3// repl (128,2) // i4 // repl (128,2)),
128, 128 ),
"aips0.lut",
0.54,
1.03)
cl> export im1,im2,im3,im4 cquad gif outbands="@expr.dat"
.fi
Automatically scale an image ignoring data in a bad pixel mask (bpm), map the
result to the greyscale part of the "overlay" color map, and apply a
overlay pattern given by another mask (pattern).
cl> export dev$pix,bpm,pattern foo gif \
>>> outbands = "setcmap(i3==0?(zscalem(i1,i2==0)*200/255.):i3+203,'overlay')"
The pattern has values of 1 and 203 is added to get it into the color map
values of the overlay colors. The factor of 200/255 is to scale the result
of zscalem from the range 0-255 to the range 0-200.
.ih
NOTES
This task is new with V2.11.
(long int headers in RAS and XWD may cause problems on 64-bit
machines like the Alpha where host software expects 64-bit values. Need to
see if IRAF on the alpha produces 32 or 64-bit longs, either way exchanging
images may be a problem)
.ih
BUGS
Output of bitmap images is currently not supported.
.ih
SEE ALSO
import, tvmark, imexpr
.endhelp
|