1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
|
include <imhdr.h>
include "export.h"
# Size definitions
define A_BITS 8 # Number of bits of color
define B_BITS 5 # Number of bits/pixel to use
define C_BITS 3 # Number of cells/color to use
define A_LEN 256 # 2 ** A_BITS
define B_LEN 32 # 2 ** B_BITS
define C_LEN 8 # 2 ** C_BITS
define AB_SHIFT 8 # 2 ** (A_BITS - B_BITS)
define BC_SHIFT 4 # 2 ** (B_BITS - C_BITS)
define AC_SHIFT 32 # 2 ** (A_BITS - C_BITS)
# Color metric definitions
define R2FACT 20 # .300 * .300 * 256 = 23
define G2FACT 39 # .586 * .586 * 256 = 88
define B2FACT 8 # .114 * .114 * 256 = 3
define RED 1
define GREEN 2
define BLUE 3
# Colorbox structure
define CBOX_LEN 9
define CBOX_NEXT Memi[$1] # pointer to next colorbox structure
define CBOX_PREV Memi[$1+1] # pointer to previous colorbox structure
define CBOX_RMIN Memi[$1+2]
define CBOX_RMAX Memi[$1+3]
define CBOX_GMIN Memi[$1+4]
define CBOX_GMAX Memi[$1+5]
define CBOX_BMIN Memi[$1+6]
define CBOX_BMAX Memi[$1+7]
define CBOX_TOTAL Memi[$1+8]
# Color cell structure
define CCELL_LEN (A_LEN*2+1)
define CCELL_NUM_ENTS Memi[$1]
define CCELL_ENTRIES Memi[$1+2*($2)+$3+1]
# Output number of colors
define NCOLORS 256
# EX_MKCMAP -- Generate an 8-bit colormap from three input image expressions
# using Heckbert's Median Cut algorithm. The implementation of this algorithm
# was modeled, with permission, on that in the program XV written by John
# Bradley.
procedure ex_mkcmap (ex)
pointer ex #i task struct pointer
pointer oim # Output image
real z1[3], dz[3] # Display ranges
int i, ncolors
pointer sp, cmap, box_list, histogram, ColorCells
pointer freeboxes, usedboxes, ptr, im
pointer immap(), cm_largest_box()
errchk open, immap
begin
# Since we're creating a colormap we force the output pixel size
# to be 8-bits.
call ex_do_outtype (ex, "b1")
# Create a temporary image of the processed expressions. We'll
# evaluate the expressions only once an save the results, later
# we'll path up the operand and expressions structs to it copies
# this out to the requested format.
if (EX_TIMPTR(ex) == NULL)
call calloc (EX_TIMPTR(ex), SZ_FNAME, TY_CHAR)
else
call aclrc (TIMNAME(ex), SZ_FNAME)
call mktemp ("tmp$ex", TIMNAME(ex), SZ_FNAME)
oim = immap (TIMNAME(ex), NEW_IMAGE, 0)
IM_PIXTYPE(oim) = TY_SHORT
IM_LEN(oim,1) = EX_OCOLS(ex)
IM_LEN(oim,2) = EX_OROWS(ex)
IM_NDIM(oim) = 2
# Set input image intensity scaling.
z1[1] = 0.0
dz[1] = 1.0
z1[2] = 0.0
dz[2] = 1.0
z1[3] = 0.0
dz[3] = 1.0
# Allocate color map.
ncolors = NCOLORS
call smark (sp)
call salloc (cmap, 3 * ncolors, TY_SHORT)
# Allocate and initialize color boxes.
call salloc (box_list, ncolors * CBOX_LEN, TY_STRUCT)
freeboxes = box_list
usedboxes = NULL
ptr = freeboxes
CBOX_PREV(ptr) = NULL
CBOX_NEXT(ptr) = ptr + CBOX_LEN
for (i=2; i<ncolors; i=i+1) {
ptr = ptr + CBOX_LEN
CBOX_PREV(ptr) = ptr - CBOX_LEN
CBOX_NEXT(ptr) = ptr + CBOX_LEN
}
ptr = ptr + CBOX_LEN
CBOX_PREV(ptr) = ptr - CBOX_LEN
CBOX_NEXT(ptr) = NULL
ptr = freeboxes
freeboxes = CBOX_NEXT(ptr)
if (freeboxes != NULL)
CBOX_PREV(freeboxes) = NULL
CBOX_NEXT(ptr) = usedboxes
usedboxes = ptr
if (CBOX_NEXT(ptr) != NULL)
CBOX_PREV(CBOX_NEXT(ptr)) = ptr
# Allocate and get histogram.
if (EX_VERBOSE(ex) == YES) {
call printf ("Computing colormap....\n")
call flush (STDOUT)
}
call salloc (histogram, B_LEN*B_LEN*B_LEN, TY_INT)
call aclri (Memi[histogram], B_LEN*B_LEN*B_LEN)
call cm_get_histogram(ex, z1, dz, ptr, Memi[histogram])
EX_OUTFLAGS(ex) = or (EX_OUTFLAGS(ex), OF_CMAP)
# Subdivide boxes until no more free boxes remain
while (freeboxes != NULL) {
ptr = cm_largest_box (usedboxes)
if (ptr != NULL)
call cm_splitbox (ptr, usedboxes, freeboxes, Memi[histogram])
else
break
}
# Set color map and write it out.
ptr = usedboxes
for (i=0; i<ncolors && ptr!=NULL; i=i+1) {
call cm_assign_color (ptr, Mems[cmap+3*i])
ptr = CBOX_NEXT(ptr)
}
ncolors = i
# Copy the colormap to the main task array.
call cm_save_cmap (ex, Mems[cmap], ncolors)
# Scan histogram and map all values to closest color.
# First create cell list as described in Heckbert[2] and then
# create mapping from truncated pixel space to color table entries
call salloc (ColorCells, C_LEN*C_LEN*C_LEN, TY_POINTER)
call aclri (Memi[ColorCells], C_LEN*C_LEN*C_LEN)
call cm_map_colortable (Memi[histogram], Mems[cmap], ncolors,
Memi[ColorCells])
# Scan image and match input values to table entries.
# Apply Floyd-Steinberg dithering.
if (EX_VERBOSE(ex) == YES) {
call printf ("Computing color indices....\n")
call flush (STDOUT)
}
call cm_quant_fsdither (ex, z1, dz, Memi[histogram],
Memi[ColorCells], Mems[cmap], ncolors, oim)
# Unmap the current image pointer(s).
do i = 1, EX_NIMAGES(ex) {
im = IO_IMPTR(IMOP(ex,i))
if (im != NULL)
call imunmap (im)
}
# Free the current operand and outbands pointers and fake up a new
# one that processes the temporary image.
for (i=1; i < EX_NEXPR(ex); i=i+1)
call ex_free_outbands (OBANDS(ex,i))
for (i=1; i < EX_NIMOPS(ex); i=i+1)
call ex_free_operand (IMOP(ex,i))
call ex_do_outbands (ex, "b1")
O_HEIGHT(ex,1) = EX_OROWS(ex)
O_WIDTH(ex,1) = EX_OCOLS(ex)
# Set the temp image as the only valid image and fudge the operands.
EX_NIMAGES(ex) = 1
EX_NEXPR(ex) = 1
EX_NLINES(ex) = EX_OROWS(ex)
IO_IMPTR(IMOP(ex,1)) = oim
EX_OUTFLAGS(ex) = or (EX_OUTFLAGS(ex), OF_BAND)
EX_OUTFLAGS(ex) = or (EX_OUTFLAGS(ex), BAND_STORAGE)
for (i=0; i < C_LEN*C_LEN*C_LEN; i=i+1) {
if (Memi[ColorCells+i] != NULL)
call mfree (Memi[ColorCells+i], TY_STRUCT)
}
call sfree (sp)
end
# CM_SAVE_CMAP -- Save color map for to main structure.
procedure cm_save_cmap (ex, map, ncolors)
pointer ex #i task struct pointer
short map[3,ncolors] #i Color map
int ncolors #i Number of colors
int i
pointer cmap
begin
# Allocate the colormap pointer and read the colormap.
iferr (call calloc (EX_CMAP(ex), 3*CMAP_SIZE, TY_CHAR))
call error (0, "Error allocating colormap pointer.")
cmap = EX_CMAP(ex)
for (i=1; i<=min(ncolors,256); i=i+1) {
CMAP(cmap,EX_RED,i) = (map[1,i] + 0.5)
CMAP(cmap,EX_GREEN,i) = (map[2,i] + 0.5)
CMAP(cmap,EX_BLUE,i) = (map[3,i] + 0.5)
}
for (; i<=256; i=i+1) {
CMAP(cmap,EX_RED,i) = 0
CMAP(cmap,EX_GREEN,i) = 0
CMAP(cmap,EX_BLUE,i) = 0
}
end
# CM_GETLINE -- Get a line of intensity mapped input data.
procedure cm_getline (ex, z1, dz, line, data)
pointer ex #I task struct pointer
real z1[3] #I Intensity mapping origins
real dz[3] #I Intensity mapping ranges
int line #I Line to be obtained
pointer data #O Intensity mapped data
int i, j, nc, lnum
pointer iptr, optr, bptr, op
pointer ex_evaluate(), ex_chtype()
begin
# See if we're flipping the image.
if (bitset (EX_OUTFLAGS(ex), OF_FLIPY))
lnum = EX_NLINES(ex) - line + 1
else
lnum = line
# Get the pixels.
call ex_getpix (ex, lnum)
nc = EX_OCOLS(ex)
call malloc (iptr, nc, TY_SHORT)
do i = 1, 3 {
op = ex_evaluate (ex, O_EXPR(ex,i))
bptr = ex_chtype (ex, op, EX_OUTTYPE(ex))
call achtbs (Memc[bptr], Mems[iptr], nc)
call evvfree (op)
optr = data + i - 1
do j = 1, nc {
Memi[optr] = max (0, min (255, int (Mems[iptr+j-1])))
optr = optr + 3
}
call mfree (bptr, TY_CHAR)
}
call mfree (iptr, TY_SHORT)
end
# CM_GET_HISTOGRAM -- Compute color histogram
procedure cm_get_histogram (ex, z1, dz, box, histogram)
pointer ex #I task struct pointer
real z1[3] #I Intensity mapping origins
real dz[3] #I Intensity mapping ranges
pointer box #O Initial box
int histogram[B_LEN,B_LEN,B_LEN] #O Histogram
int i, j, nc, nl, r, g, b, rmin, gmin, bmin, rmax, gmax, bmax
pointer sp, data, ptr
begin
nc = EX_OCOLS(ex)
nl = EX_OROWS(ex)
call smark (sp)
call salloc (data, 3 * nc, TY_INT)
rmin = A_LEN; rmax = -1
gmin = A_LEN; gmax = -1
bmin = A_LEN; bmax = -1
# calculate histogram
do j = 1, nl {
call cm_getline (ex, z1, dz, j, data)
ptr = data
do i = 1, nc {
r = Memi[ptr] / AB_SHIFT + 1
g = Memi[ptr+1] / AB_SHIFT + 1
b = Memi[ptr+2] / AB_SHIFT + 1
ptr = ptr + 3
histogram[r,g,b] = histogram[r,g,b] + 1
rmin = min (rmin, r)
rmax = max (rmax, r)
gmin = min (gmin, g)
gmax = max (gmax, g)
bmin = min (bmin, b)
bmax = max (bmax, b)
}
}
CBOX_RMIN(box) = rmin
CBOX_GMIN(box) = gmin
CBOX_BMIN(box) = bmin
CBOX_RMAX(box) = rmax
CBOX_GMAX(box) = gmax
CBOX_BMAX(box) = bmax
CBOX_TOTAL(box) = nc * nl
call sfree (sp)
end
# CM_LARGEST_BOX -- Return pointer to largest box
pointer procedure cm_largest_box (usedboxes)
pointer usedboxes #I Pointer to used boxes
pointer tmp, ptr
int size
begin
size = -1
ptr = NULL
for (tmp=usedboxes; tmp!=NULL; tmp=CBOX_NEXT(tmp)) {
if ((CBOX_RMAX(tmp) > CBOX_RMIN(tmp) ||
CBOX_GMAX(tmp) > CBOX_GMIN(tmp) ||
CBOX_BMAX(tmp) > CBOX_BMIN(tmp)) &&
CBOX_TOTAL(tmp) > size) {
ptr = tmp
size = CBOX_TOTAL(tmp)
}
}
return(ptr)
end
# CM_SPLITBOX -- Split a box along largest dimension
procedure cm_splitbox (box, usedboxes, freeboxes, histogram)
pointer box #U Box to split
pointer usedboxes #U Used boxes
pointer freeboxes #U Free boxes
int histogram[B_LEN, B_LEN, B_LEN] #I Histogram
int first, last, i, j, rdel, gdel, bdel, sum1, sum2
pointer sp, hist, new
int ir, ig, ib
int rmin, rmax, gmin, gmax, bmin, bmax
int which
begin
call smark (sp)
call salloc (hist, B_LEN, TY_INT)
# see which axis is the largest, do a histogram along that
# axis. Split at median point. Contract both new boxes to
# fit points and return
first = 1; last = 1
rmin = CBOX_RMIN(box); rmax = CBOX_RMAX(box)
gmin = CBOX_GMIN(box); gmax = CBOX_GMAX(box)
bmin = CBOX_BMIN(box); bmax = CBOX_BMAX(box)
rdel = rmax - rmin
gdel = gmax - gmin
bdel = bmax - bmin
if (rdel>=gdel && rdel>=bdel)
which = RED
else if (gdel>=bdel)
which = GREEN
else
which = BLUE
# get histogram along longest axis
switch (which) {
case RED:
for (ir=rmin; ir<=rmax; ir=ir+1) {
sum1 = 0
for (ig=gmin; ig<=gmax; ig=ig+1) {
for (ib=bmin; ib<=bmax; ib=ib+1) {
sum1 = sum1 + histogram[ir,ig,ib]
}
}
Memi[hist+ir-1] = sum1
}
first = rmin; last = rmax
case GREEN:
for (ig=gmin; ig<=gmax; ig=ig+1) {
sum1 = 0
for (ir=rmin; ir<=rmax; ir=ir+1) {
for (ib=bmin; ib<=bmax; ib=ib+1) {
sum1 = sum1 + histogram[ir,ig,ib]
}
}
Memi[hist+ig-1] = sum1
}
first = gmin; last = gmax
case BLUE:
for (ib=bmin; ib<=bmax; ib=ib+1) {
sum1 = 0
for (ir=rmin; ir<=rmax; ir=ir+1) {
for (ig=gmin; ig<=gmax; ig=ig+1) {
sum1 = sum1 + histogram[ir,ig,ib]
}
}
Memi[hist+ib-1] = sum1
}
first = bmin; last = bmax
}
# find median point
sum1 = 0
sum2 = CBOX_TOTAL(box) / 2
for (i=first; i<=last; i=i+1) {
sum1 = sum1 + Memi[hist+i-1]
if (sum1 >= sum2)
break
}
if (i == first)
i = i + 1
# Create new box, re-allocate points
new = freeboxes
freeboxes = CBOX_NEXT(new)
if (freeboxes != NULL)
CBOX_PREV(freeboxes) = NULL
if (usedboxes != NULL)
CBOX_PREV(usedboxes) = new
CBOX_NEXT(new) = usedboxes
usedboxes = new
sum1 = 0
sum2 = 0
for (j = first; j < i; j=j+1)
sum1 = sum1 + Memi[hist+j-1]
for (; j <= last; j=j+1)
sum2 = sum2 + Memi[hist+j-1]
CBOX_TOTAL(new) = sum1
CBOX_TOTAL(box) = sum2
CBOX_RMIN(new) = rmin; CBOX_RMAX(new) = rmax
CBOX_GMIN(new) = gmin; CBOX_GMAX(new) = gmax
CBOX_BMIN(new) = bmin; CBOX_BMAX(new) = bmax
switch (which) {
case RED:
CBOX_RMAX(new) = i-1; CBOX_RMIN(box) = i
case GREEN:
CBOX_GMAX(new) = i-1; CBOX_GMIN(box) = i
case BLUE:
CBOX_BMAX(new) = i-1; CBOX_BMIN(box) = i
}
call cm_shrinkbox (new, histogram)
call cm_shrinkbox (box, histogram)
call sfree (sp)
end
# CM_SHRINKBOX -- Shrink box
procedure cm_shrinkbox (box, histogram)
pointer box #U Box
int histogram[B_LEN,B_LEN,B_LEN] #I Histogram
int ir, ig, ib
int rmin, rmax, gmin, gmax, bmin, bmax
define have_rmin 11
define have_rmax 12
define have_gmin 13
define have_gmax 14
define have_bmin 15
define have_bmax 16
begin
rmin = CBOX_RMIN(box); rmax = CBOX_RMAX(box)
gmin = CBOX_GMIN(box); gmax = CBOX_GMAX(box)
bmin = CBOX_BMIN(box); bmax = CBOX_BMAX(box)
if (rmax > rmin) {
for (ir=rmin; ir<=rmax; ir=ir+1) {
for (ig=gmin; ig<=gmax; ig=ig+1) {
for (ib=bmin; ib<=bmax; ib=ib+1) {
if (histogram[ir,ig,ib] != 0) {
rmin = ir
CBOX_RMIN(box) = rmin
goto have_rmin
}
}
}
}
have_rmin
if (rmax > rmin) {
for (ir=rmax; ir>=rmin; ir=ir-1) {
for (ig=gmin; ig<=gmax; ig=ig+1) {
for (ib=bmin; ib<=bmax; ib=ib+1) {
if (histogram[ir,ig,ib] != 0) {
rmax = ir
CBOX_RMAX(box) = rmax
goto have_rmax
}
}
}
}
}
}
have_rmax
if (gmax > gmin) {
for (ig=gmin; ig<=gmax; ig=ig+1) {
for (ir=rmin; ir<=rmax; ir=ir+1) {
for (ib=bmin; ib<=bmax; ib=ib+1) {
if (histogram[ir,ig,ib] != 0) {
gmin = ig
CBOX_GMIN(box) = gmin
goto have_gmin
}
}
}
}
have_gmin
if (gmax > gmin) {
for (ig=gmax; ig>=gmin; ig=ig-1) {
for (ir=rmin; ir<=rmax; ir=ir+1) {
for (ib=bmin; ib<=bmax; ib=ib+1) {
if (histogram[ir,ig,ib] != 0) {
gmax = ig
CBOX_GMAX(box) = gmax
goto have_gmax
}
}
}
}
}
}
have_gmax
if (bmax > bmin) {
for (ib=bmin; ib<=bmax; ib=ib+1) {
for (ir=rmin; ir<=rmax; ir=ir+1) {
for (ig=gmin; ig<=gmax; ig=ig+1) {
if (histogram[ir,ig,ib] != 0) {
bmin = ib
CBOX_BMIN(box) = bmin
goto have_bmin
}
}
}
}
have_bmin
if (bmax > bmin) {
for (ib=bmax; ib>=bmin; ib=ib-1) {
for (ir=rmin; ir<=rmax; ir=ir+1) {
for (ig=gmin; ig<=gmax; ig=ig+1) {
if (histogram[ir,ig,ib] != 0) {
bmax = ib
CBOX_BMAX(box) = bmax
goto have_bmax
}
}
}
}
}
}
have_bmax
return
end
# CM_ASSIGN_COLOR -- Assign colors
procedure cm_assign_color (box, cmap)
pointer box #I Box
short cmap[3] #O Color map entry
begin
# +1 ensures that color represents the middle of the box
cmap[1] = ((CBOX_RMIN(box) + CBOX_RMAX(box) - 2) * AB_SHIFT) / 2
cmap[2] = ((CBOX_GMIN(box) + CBOX_GMAX(box) - 2) * AB_SHIFT) / 2
cmap[3] = ((CBOX_BMIN(box) + CBOX_BMAX(box) - 2) * AB_SHIFT) / 2
end
# CM_MAP_COLORTABLE -- Map the color table
procedure cm_map_colortable (histogram, cmap, ncolor, ColorCells)
int histogram[B_LEN,B_LEN,B_LEN] #U Histogram
short cmap[3,ncolor] #I Color map
int ncolor #I Number of colors
pointer ColorCells[C_LEN,C_LEN,C_LEN] #O Color cells
int i, j, ir, ig, ib, rcell, bcell, gcell
long dist, d2, tmp
pointer cell, cm_create_colorcell()
begin
for (ir=0; ir<B_LEN; ir=ir+1) {
rcell = 1 + ir / BC_SHIFT
for (ig=0; ig<B_LEN; ig=ig+1) {
gcell = 1 + ig / BC_SHIFT
for (ib=0; ib<B_LEN; ib=ib+1) {
bcell = 1 + ib / BC_SHIFT
if (histogram[1+ir,1+ig,1+ib]==0)
histogram[1+ir,1+ig,1+ib] = -1
else {
cell = ColorCells[rcell, gcell, bcell]
if (cell == NULL)
cell = cm_create_colorcell (ColorCells,
ir*AB_SHIFT, ig*AB_SHIFT, ib*AB_SHIFT,
cmap, ncolor)
dist = 2000000000
for (i=0; i<CCELL_NUM_ENTS(cell) &&
dist>CCELL_ENTRIES(cell,i,1); i=i+1) {
j = CCELL_ENTRIES(cell,i,0)
d2 = cmap[1,1+j] - (ir * BC_SHIFT)
d2 = (d2 * d2 * R2FACT)
tmp = cmap[2,1+j] - (ig * BC_SHIFT)
d2 = d2 + (tmp*tmp * G2FACT)
tmp = cmap[3,1+j] - (ib * BC_SHIFT)
d2 = d2 + (tmp*tmp * B2FACT)
if (d2 < dist) {
dist = d2
histogram[1+ir,1+ig,1+ib] = j
}
}
}
}
}
}
end
# CM_CREATE_COLORCELL -- Create a color cell structure
pointer procedure cm_create_colorcell (ColorCells, ra, ga, ba, cmap, ncolor)
pointer ColorCells[C_LEN,C_LEN,C_LEN] #U Color cells
int ra, ga, ba #I Color to create cell for
short cmap[3,ncolor] #I Color map
int ncolor #I Number of colors
int i, n, next_n, ir,ig,ib, r1,g1,b1
long dist, mindist, tmp
pointer ptr
begin
ir = ra / AC_SHIFT
ig = ga / AC_SHIFT
ib = ba / AC_SHIFT
r1 = ir * AC_SHIFT
g1 = ig * AC_SHIFT
b1 = ib * AC_SHIFT
call malloc (ptr, CCELL_LEN, TY_STRUCT)
ColorCells[1+ir,1+ig,1+ib] = ptr
CCELL_NUM_ENTS(ptr) = 0
# step 1: find all colors inside this cell, while we're at
# it, find distance of centermost point to furthest corner
mindist = 2000000000
for (i=1; i<=ncolor; i=i+1) {
if (cmap[1,i]/AC_SHIFT == ir &&
cmap[2,i]/AC_SHIFT == ig &&
cmap[3,i]/AC_SHIFT == ib) {
CCELL_ENTRIES(ptr,CCELL_NUM_ENTS(ptr),0) = i - 1
CCELL_ENTRIES(ptr,CCELL_NUM_ENTS(ptr),1) = 0
CCELL_NUM_ENTS(ptr) = CCELL_NUM_ENTS(ptr) + 1
tmp = cmap[1,i] - r1
if (tmp < (A_LEN/C_LEN/2))
tmp = A_LEN/C_LEN-1 - tmp
dist = (tmp*tmp * R2FACT)
tmp = cmap[2,i] - g1
if (tmp < (A_LEN/C_LEN/2))
tmp = A_LEN/C_LEN-1 - tmp
dist = dist + (tmp*tmp * G2FACT)
tmp = cmap[3,i] - b1
if (tmp < (A_LEN/C_LEN/2))
tmp = A_LEN/C_LEN-1 - tmp
dist = dist + (tmp*tmp * B2FACT)
mindist = min (mindist, dist)
}
}
# step 3: find all points within that distance to box
for (i=1; i<=ncolor; i=i+1) {
if (cmap[1,i]/AC_SHIFT != ir ||
cmap[2,i]/AC_SHIFT != ig ||
cmap[3,i]/AC_SHIFT != ib) {
dist = 0
tmp = r1 - cmap[1,i]
if (tmp>0) {
dist = dist + (tmp*tmp * R2FACT)
} else {
tmp = cmap[1,i] - (r1 + A_LEN/C_LEN-1)
if (tmp > 0)
dist = dist + (tmp*tmp * R2FACT)
}
tmp = g1 - cmap[2,i]
if (tmp>0) {
dist = dist + (tmp*tmp * G2FACT)
} else {
tmp = cmap[2,i] - (g1 + A_LEN/C_LEN-1)
if (tmp > 0)
dist = dist + (tmp*tmp * G2FACT)
}
tmp = b1 - cmap[3,i]
if (tmp>0) {
dist = dist + (tmp*tmp * B2FACT)
} else {
tmp = cmap[3,i] - (b1 + A_LEN/C_LEN-1)
if (tmp > 0)
dist = dist + (tmp*tmp * B2FACT)
}
if (dist < mindist) {
CCELL_ENTRIES(ptr,CCELL_NUM_ENTS(ptr),0) = i - 1
CCELL_ENTRIES(ptr,CCELL_NUM_ENTS(ptr),1) = dist
CCELL_NUM_ENTS(ptr) = CCELL_NUM_ENTS(ptr) + 1
}
}
}
# sort color cells by distance, use cheap exchange sort
n = CCELL_NUM_ENTS(ptr) - 1
while (n > 0) {
next_n = 0
for (i=0; i<n; i=i+1) {
if (CCELL_ENTRIES(ptr,i,1) > CCELL_ENTRIES(ptr,i+1,1)) {
tmp = CCELL_ENTRIES(ptr,i,0)
CCELL_ENTRIES(ptr,i,0) = CCELL_ENTRIES(ptr,i+1,0)
CCELL_ENTRIES(ptr,i+1,0) = tmp
tmp = CCELL_ENTRIES(ptr,i,1)
CCELL_ENTRIES(ptr,i,1) = CCELL_ENTRIES(ptr,i+1,1)
CCELL_ENTRIES(ptr,i+1,1) = tmp
next_n = i
}
}
n = next_n
}
return (ptr)
end
# CM_QUANT_FSDITHER -- Quantized Floyd-Steinberg Dither
procedure cm_quant_fsdither (ex, z1, dz, histogram,
ColorCells, cmap, ncolor, oim)
pointer ex #I task struct pointer
real z1[3] #I Intensity mapping origins
real dz[3] #I Intensity mapping ranges
int histogram[B_LEN,B_LEN,B_LEN] #U Histogram
pointer ColorCells[C_LEN,C_LEN,C_LEN] #U Color cell data
short cmap[3,ncolor] #I Color map
int ncolor #I Number of colors
pointer oim #O Output IMIO pointer
pointer thisptr, nextptr, optr, impl2s()
pointer sp, thisline, nextline, tmpptr
int ir, ig, ib, r1, g1, b1, rcell, bcell, gcell
int i, j, nc, nl, oval
int ci, cj
long dist, d2, tmp
pointer cell
pointer cm_create_colorcell()
begin
nc = EX_OCOLS(ex)
nl = EX_OROWS(ex)
call smark (sp)
call salloc (thisline, nc * 3, TY_INT)
call salloc (nextline, nc * 3, TY_INT)
# get first line of picture
call cm_getline (ex, z1, dz, 1, nextline)
for (i=1; i<=nl; i=i+1) {
# swap thisline and nextline
tmpptr = thisline
thisline = nextline
nextline = tmpptr
# read in next line
if (i < nl)
#call cm_getline (ex, z1, dz, i, nextline, nc)
call cm_getline (ex, z1, dz, i, nextline)
# dither this line and put it into the output picture
thisptr = thisline
nextptr = nextline
optr = impl2s (oim, i)
for (j=1; j<=nc; j=j+1) {
r1 = Memi[thisptr]
g1 = Memi[thisptr+1]
b1 = Memi[thisptr+2]
thisptr = thisptr + 3
r1 = max (0, min (A_LEN-1, r1))
g1 = max (0, min (A_LEN-1, g1))
b1 = max (0, min (A_LEN-1, b1))
ir = r1 / AB_SHIFT
ig = g1 / AB_SHIFT
ib = b1 / AB_SHIFT
oval = histogram[1+ir,1+ig,1+ib]
if (oval == -1) {
rcell = 1 + ir / BC_SHIFT
gcell = 1 + ig / BC_SHIFT
bcell = 1 + ib / BC_SHIFT
cell = ColorCells[rcell, gcell, bcell]
if (cell == NULL)
cell = cm_create_colorcell (ColorCells, r1, g1, b1,
cmap, ncolor)
dist = 2000000000
for (ci=0; ci<CCELL_NUM_ENTS(cell) &&
dist>CCELL_ENTRIES(cell,ci,1); ci=ci+1) {
cj = CCELL_ENTRIES(cell,ci,0)
d2 = (cmap[1,1+cj]/AB_SHIFT) - ir
d2 = (d2*d2 * R2FACT)
tmp = (cmap[2,1+cj]/AB_SHIFT) - ig
d2 = d2 + (tmp*tmp * G2FACT)
tmp = (cmap[3,1+cj]/AB_SHIFT) - ib
d2 = d2 + (tmp*tmp * B2FACT)
if (d2<dist) {
dist = d2
oval = cj
}
}
histogram[1+ir,1+ig,1+ib] = oval
}
Mems[optr] = 1 + oval
optr = optr + 1
r1 = r1 - cmap[1,1+oval]
g1 = g1 - cmap[2,1+oval]
b1 = b1 - cmap[3,1+oval]
# don't use tables, because r1,g1,b1 could go negative
if (j < nc) {
tmpptr = thisptr
if (r1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (r1*7-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (r1*7+8)/16
tmpptr = tmpptr + 1
if (g1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (g1*7-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (g1*7+8)/16
tmpptr = tmpptr + 1
if (b1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (b1*7-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (b1*7+8)/16
}
if (i < nl) {
if (j > 1) {
tmpptr = nextptr - 3
if (r1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (r1*3-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (r1*3+8)/16
tmpptr = tmpptr + 1
if (g1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (g1*3-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (g1*3+8)/16
tmpptr = tmpptr + 1
if (b1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (b1*3-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (b1*3+8)/16
}
tmpptr = nextptr
if (r1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (r1*5-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (r1*5+8)/16
tmpptr = tmpptr + 1
if (g1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (g1*5-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (g1*5+8)/16
tmpptr = tmpptr + 1
if (b1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (b1*5-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (b1*5+8)/16
if (j < nc) {
tmpptr = nextptr + 3
if (r1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (r1-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (r1+8)/16
tmpptr = tmpptr + 1
if (g1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (g1-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (g1+8)/16
tmpptr = tmpptr + 1
if (b1 < 0)
Memi[tmpptr] = Memi[tmpptr] + (b1-8)/16
else
Memi[tmpptr] = Memi[tmpptr] + (b1+8)/16
}
nextptr = nextptr + 3
}
}
}
# Flush the pixels to the output image, otherwise we end up with an
# odd line which may or may not be actual pixels.
call imflush (oim)
call sfree (sp)
end
|