1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
|
include <imhdr.h>
include <math.h>
include <math/gsurfit.h>
include <mwset.h>
include <pkg/skywcs.h>
# CC_RPROJ -- Read the projection parameters from a file into an IRAF string
# containing the projection type followed by an MWCS WAT string, e.g
# "zpn projp1=value projp2=value" .
int procedure cc_rdproj (fd, projstr, maxch)
int fd #I the input file containing the projection parameters
char projstr[ARB] #O the output projection parameters string
int maxch #I the maximum size of the output projection string
int projection, op
pointer sp, keyword, value, param
int fscan(), nscan(), strdic(), gstrcpy()
begin
projstr[1] = EOS
if (fscan (fd) == EOF)
return (0)
call smark (sp)
call salloc (keyword, SZ_FNAME, TY_CHAR)
call salloc (value, SZ_FNAME, TY_CHAR)
call salloc (param, SZ_FNAME, TY_CHAR)
call gargwrd (Memc[keyword], SZ_FNAME)
projection = strdic (Memc[keyword], Memc[keyword], SZ_FNAME,
WTYPE_LIST)
if (projection <= 0 || projection == WTYPE_LIN || nscan() == 0) {
call sfree (sp)
return (0)
}
# Copy the projection function into the projection string.
op = 1
op = op + gstrcpy (Memc[keyword], projstr[op], maxch)
# Copy the keyword value pairs into the projection string.
while (fscan(fd) != EOF) {
call gargwrd (Memc[keyword], SZ_FNAME)
call gargwrd (Memc[value], SZ_FNAME)
if (nscan() != 2)
next
call sprintf (Memc[param], SZ_FNAME, " %s = %s")
call pargstr (Memc[keyword])
call pargstr (Memc[value])
op = op + gstrcpy (Memc[param], projstr[op], maxch - op + 1)
}
call sfree (sp)
return (projection)
end
define NEWCD Memd[ncd+(($2)-1)*ndim+($1)-1]
# CC_WCSIM -- Update the image world coordinate system.
procedure cc_wcsim (im, coo, projection, lngref, latref, sx1, sy1, transpose)
pointer im #I the pointer to the input image
pointer coo #I the pointer to the coordinate structure
char projection[ARB] #I the sky projection geometry
double lngref, latref #I the position of the reference point.
pointer sx1, sy1 #I pointer to linear surfaces
bool transpose #I transpose the wcs
int ndim, naxes, ax1, ax2, axmap, wtype
double xshift, yshift, a, b, c, d, denom, xpix, ypix, tlngref, tlatref
pointer mw, sp, str, r, w, cd, ltm, ltv, iltm, nr, ncd, axes, axno, axval
int mw_stati(), sk_stati(), strdic()
pointer mw_openim()
begin
mw = mw_openim (im)
ndim = mw_stati (mw, MW_NPHYSDIM)
# Allocate working memory for the vectors and matrices.
call smark (sp)
call salloc (str, SZ_FNAME, TY_CHAR)
call salloc (axno, IM_MAXDIM, TY_INT)
call salloc (axval, IM_MAXDIM, TY_INT)
call salloc (axes, IM_MAXDIM, TY_INT)
call salloc (r, ndim, TY_DOUBLE)
call salloc (w, ndim, TY_DOUBLE)
call salloc (cd, ndim * ndim, TY_DOUBLE)
call salloc (ltm, ndim * ndim, TY_DOUBLE)
call salloc (ltv, ndim, TY_DOUBLE)
call salloc (iltm, ndim * ndim, TY_DOUBLE)
call salloc (nr, ndim, TY_DOUBLE)
call salloc (ncd, ndim * ndim, TY_DOUBLE)
# Compute the original logical to world transformation.
call mw_gaxmap (mw, Memi[axno], Memi[axval], ndim)
call mw_gltermd (mw, Memd[ltm], Memd[ltv], ndim)
# Get the axis map.
call mw_gaxlist (mw, 03B, Memi[axes], naxes)
axmap = mw_stati (mw, MW_USEAXMAP)
ax1 = Memi[axes]
ax2 = Memi[axes+1]
# Set the system.
iferr (call mw_newsystem (mw, "image", ndim))
;
# Set the axes and projection type.
if (projection[1] == EOS) {
call mw_swtype (mw, Memi[axes], ndim, "linear", "")
} else {
call mw_swtype (mw, Memi[axes], ndim, projection,
"axis 1: axtype=ra axis 2: axtype=dec")
}
# Compute the new referemce point.
switch (sk_stati(coo, S_NLNGUNITS)) {
case SKY_DEGREES:
tlngref = lngref
case SKY_RADIANS:
tlngref = RADTODEG(lngref)
case SKY_HOURS:
tlngref = 15.0d0 * lngref
default:
tlngref = lngref
}
switch (sk_stati(coo, S_NLATUNITS)) {
case SKY_DEGREES:
tlatref = latref
case SKY_RADIANS:
tlatref = RADTODEG(latref)
case SKY_HOURS:
tlatref = 15.0d0 * latref
default:
tlatref = latref
}
if (! transpose) {
Memd[w+ax1-1] = tlngref
Memd[w+ax2-1] = tlatref
} else {
Memd[w+ax1-1] = tlatref
Memd[w+ax2-1] = tlngref
}
# Fetch the linear coefficients of the fit.
call geo_gcoeffd (sx1, sy1, xshift, yshift, a, b, c, d)
# Compute the new reference pixel.
denom = a * d - c * b
if (denom == 0.0d0)
xpix = INDEFD
else
xpix = (b * yshift - d * xshift) / denom
if (denom == 0.0d0)
ypix = INDEFD
else
ypix = (c * xshift - a * yshift) / denom
Memd[nr+ax1-1] = xpix
Memd[nr+ax2-1] = ypix
# Compute the new CD matrix.
if (! transpose) {
NEWCD(ax1,ax1) = a / 3600.0d0
NEWCD(ax1,ax2) = c / 3600.0d0
NEWCD(ax2,ax1) = b / 3600.0d0
NEWCD(ax2,ax2) = d / 3600.0d0
} else {
NEWCD(ax1,ax1) = c / 3600.0d0
NEWCD(ax1,ax2) = a / 3600.0d0
NEWCD(ax2,ax1) = d / 3600.0d0
NEWCD(ax2,ax2) = b / 3600.0d0
}
# Reset the axis map.
call mw_seti (mw, MW_USEAXMAP, axmap)
# Recompute and store the new wcs if update is enabled.
call mw_saxmap (mw, Memi[axno], Memi[axval], ndim)
if (sk_stati (coo, S_PIXTYPE) == PIXTYPE_PHYSICAL) {
call mw_swtermd (mw, Memd[nr], Memd[w], Memd[ncd], ndim)
} else {
call mwmmuld (Memd[ncd], Memd[ltm], Memd[cd], ndim)
call mwinvertd (Memd[ltm], Memd[iltm], ndim)
call asubd (Memd[nr], Memd[ltv], Memd[r], ndim)
call mwvmuld (Memd[iltm], Memd[r], Memd[nr], ndim)
call mw_swtermd (mw, Memd[nr], Memd[w], Memd[cd], ndim)
}
# Save the fit.
if (! transpose) {
call sk_seti (coo, S_PLNGAX, ax1)
call sk_seti (coo, S_PLATAX, ax2)
} else {
call sk_seti (coo, S_PLNGAX, ax2)
call sk_seti (coo, S_PLATAX, ax1)
}
call sk_saveim (coo, mw, im)
call mw_saveim (mw, im)
call mw_close (mw)
# Force the CDELT keywords to update. This will be unecessary when
# mwcs is updated to deal with non-quoted and / or non left-justified
# CTYPE keywords..
wtype = strdic (projection, Memc[str], SZ_FNAME, WTYPE_LIST)
if (wtype > 0)
call sk_seti (coo, S_WTYPE, wtype)
call sk_ctypeim (coo, im)
# Reset the fit. This will be unecessary when wcs is updated to deal
# with non-quoted and / or non left-justified CTYPE keywords.
call sk_seti (coo, S_WTYPE, 0)
call sk_seti (coo, S_PLNGAX, 0)
call sk_seti (coo, S_PLATAX, 0)
call sfree (sp)
end
# CC_NWCSIM -- Update the image world coordinate system.
procedure cc_nwcsim (im, coo, projection, lngref, latref, sx1, sy1, sx2, sy2,
transpose)
pointer im #I the pointer to the input image
pointer coo #I the pointer to the coordinate structure
char projection[ARB] #I the sky projection geometry
double lngref, latref #I the position of the reference point.
pointer sx1, sy1 #I pointer to linear surfaces
pointer sx2, sy2 #I pointer to distortion surfaces
bool transpose #I transpose the wcs
int l, i, ndim, naxes, ax1, ax2, axmap, wtype, szatstr
double xshift, yshift, a, b, c, d, denom, xpix, ypix, tlngref, tlatref
pointer mw, sp, r, w, cd, ltm, ltv, iltm, nr, ncd, axes, axno, axval
pointer projstr, projpars, wpars, mwnew, atstr
bool streq()
int mw_stati(), sk_stati(), strdic(), strlen(), itoc()
pointer mw_openim(), mw_open()
errchk mw_gwattrs(), mw_newsystem()
begin
# Open the image wcs and determine its size.
mw = mw_openim (im)
ndim = mw_stati (mw, MW_NPHYSDIM)
# Allocate working memory for the wcs attributes, vectors, and
# matrices.
call smark (sp)
call salloc (projstr, SZ_FNAME, TY_CHAR)
call salloc (projpars, SZ_LINE, TY_CHAR)
call salloc (wpars, SZ_LINE, TY_CHAR)
call salloc (axno, IM_MAXDIM, TY_INT)
call salloc (axval, IM_MAXDIM, TY_INT)
call salloc (axes, IM_MAXDIM, TY_INT)
call salloc (r, ndim, TY_DOUBLE)
call salloc (w, ndim, TY_DOUBLE)
call salloc (cd, ndim * ndim, TY_DOUBLE)
call salloc (ltm, ndim * ndim, TY_DOUBLE)
call salloc (ltv, ndim, TY_DOUBLE)
call salloc (iltm, ndim * ndim, TY_DOUBLE)
call salloc (nr, ndim, TY_DOUBLE)
call salloc (ncd, ndim * ndim, TY_DOUBLE)
# Open the new wcs and set the system type.
mwnew = mw_open (NULL, ndim)
call mw_gsystem (mw, Memc[projstr], SZ_FNAME)
iferr {
call mw_newsystem (mw, "image", ndim)
} then {
call mw_newsystem (mwnew, Memc[projstr], ndim)
} else {
call mw_newsystem (mwnew, "image", ndim)
}
# Set the LTERM.
call mw_gltermd (mw, Memd[ltm], Memd[ltv], ndim)
call mw_sltermd (mwnew, Memd[ltm], Memd[ltv], ndim)
# Store the old axis map for later use.
call mw_gaxmap (mw, Memi[axno], Memi[axval], ndim)
# Get the celestial coordinate axes list.
call mw_gaxlist (mw, 03B, Memi[axes], naxes)
axmap = mw_stati (mw, MW_USEAXMAP)
ax1 = Memi[axes]
ax2 = Memi[axes+1]
# Set the axes and projection type for the celestial coordinate
# axes. Don't worry about the fact that the axes may in fact be
# glon and glat, elon and elat, or slon and slat, instead of
# ra and dec. This will be fixed up later.
if (projection[1] == EOS) {
call mw_swtype (mwnew, Memi[axes], ndim, "linear", "")
} else {
call sscan (projection)
call gargwrd (Memc[projstr], SZ_FNAME)
call gargstr (Memc[projpars], SZ_LINE)
call sprintf (Memc[wpars], SZ_LINE,
"axis 1: axtype = ra %s axis 2: axtype = dec %s")
call pargstr (Memc[projpars])
call pargstr (Memc[projpars])
if (streq (Memc[projstr], "tnx") && sx2 == NULL && sy2 == NULL)
call strcpy ("tan", Memc[projstr], SZ_FNAME)
call mw_swtype (mwnew, Memi[axes], ndim, Memc[projstr], Memc[wpars])
}
# Copy the attributes of the remaining axes to the new wcs.
szatstr = SZ_LINE
call malloc (atstr, szatstr, TY_CHAR)
do l = 1, ndim {
if (l == ax1 || l == ax2)
next
iferr {
call mw_gwattrs (mw, l, "wtype", Memc[projpars], SZ_LINE)
} then {
call mw_swtype (mwnew, l, 1, "linear", "")
} else {
call mw_swtype (mwnew, l, 1, Memc[projpars], "")
}
for (i = 1; ; i = i + 1) {
if (itoc (i, Memc[projpars], SZ_LINE) <= 0)
Memc[projpars] = EOS
repeat {
iferr (call mw_gwattrs (mw, l, Memc[projpars],
Memc[atstr], szatstr))
Memc[atstr] = EOS
if (strlen(Memc[atstr]) < szatstr)
break
szatstr = szatstr + SZ_LINE
call realloc (atstr, szatstr, TY_CHAR)
}
if (Memc[atstr] == EOS)
break
call mw_swattrs (mwnew, l, Memc[projpars], Memc[atstr])
}
}
call mfree (atstr, TY_CHAR)
# Compute the new referemce point.
switch (sk_stati(coo, S_NLNGUNITS)) {
case SKY_DEGREES:
tlngref = lngref
case SKY_RADIANS:
tlngref = RADTODEG(lngref)
case SKY_HOURS:
tlngref = 15.0d0 * lngref
default:
tlngref = lngref
}
switch (sk_stati(coo, S_NLATUNITS)) {
case SKY_DEGREES:
tlatref = latref
case SKY_RADIANS:
tlatref = RADTODEG(latref)
case SKY_HOURS:
tlatref = 15.0d0 * latref
default:
tlatref = latref
}
if (! transpose) {
Memd[w+ax1-1] = tlngref
Memd[w+ax2-1] = tlatref
} else {
Memd[w+ax1-1] = tlatref
Memd[w+ax2-1] = tlngref
}
# Fetch the linear coefficients of the fit.
call geo_gcoeffd (sx1, sy1, xshift, yshift, a, b, c, d)
# Compute the new reference pixel.
denom = a * d - c * b
if (denom == 0.0d0)
xpix = INDEFD
else
xpix = (b * yshift - d * xshift) / denom
if (denom == 0.0d0)
ypix = INDEFD
else
ypix = (c * xshift - a * yshift) / denom
Memd[nr+ax1-1] = xpix
Memd[nr+ax2-1] = ypix
# Compute the new CD matrix.
if (! transpose) {
NEWCD(ax1,ax1) = a / 3600.0d0
NEWCD(ax1,ax2) = c / 3600.0d0
NEWCD(ax2,ax1) = b / 3600.0d0
NEWCD(ax2,ax2) = d / 3600.0d0
} else {
NEWCD(ax1,ax1) = c / 3600.0d0
NEWCD(ax1,ax2) = a / 3600.0d0
NEWCD(ax2,ax1) = d / 3600.0d0
NEWCD(ax2,ax2) = b / 3600.0d0
}
# Recompute and store the new wcs.
call mw_saxmap (mwnew, Memi[axno], Memi[axval], ndim)
if (sk_stati (coo, S_PIXTYPE) == PIXTYPE_PHYSICAL) {
call mw_swtermd (mwnew, Memd[nr], Memd[w], Memd[ncd], ndim)
} else {
call mwmmuld (Memd[ncd], Memd[ltm], Memd[cd], ndim)
call mwinvertd (Memd[ltm], Memd[iltm], ndim)
call asubd (Memd[nr], Memd[ltv], Memd[r], ndim)
call mwvmuld (Memd[iltm], Memd[r], Memd[nr], ndim)
call mw_swtermd (mwnew, Memd[nr], Memd[w], Memd[cd], ndim)
}
# Add the second order terms in the form of the wcs attributes
# lngcor and latcor. These are not FITS standard and can currently
# be understood only by IRAF.
if ((streq(Memc[projstr], "zpx") || streq (Memc[projstr], "tnx")) &&
(sx2 != NULL || sy2 != NULL)) {
if (! transpose)
call cc_wcscor (im, mwnew, sx1, sx2, sy1, sy2, "lngcor",
"latcor", ax1, ax2)
else
call cc_wcscor (im, mwnew, sx1, sx2, sy1, sy2, "lngcor",
"latcor", ax2, ax1)
}
# Save the fit.
if (! transpose) {
call sk_seti (coo, S_PLNGAX, ax1)
call sk_seti (coo, S_PLATAX, ax2)
} else {
call sk_seti (coo, S_PLNGAX, ax2)
call sk_seti (coo, S_PLATAX, ax1)
}
call sk_saveim (coo, mwnew, im)
call mw_saveim (mwnew, im)
call mw_close (mwnew)
call mw_close (mw)
# Force the CTYPE keywords to update. This will be unecessary when
# mwcs is updated to deal with non-quoted and / or non left-justified
# CTYPE keywords..
wtype = strdic (Memc[projstr], Memc[projstr], SZ_FNAME, WTYPE_LIST)
if (wtype > 0)
call sk_seti (coo, S_WTYPE, wtype)
call sk_ctypeim (coo, im)
# Reset the fit.
call sk_seti (coo, S_WTYPE, 0)
call sk_seti (coo, S_PLNGAX, 0)
call sk_seti (coo, S_PLATAX, 0)
call sfree (sp)
end
# CC_WCSCOR -- Reformulate the higher order surface fit into a correction
# term in degrees that can be written into the header as a wcs attribute.
# This attribute will be written as string containing the surface definition.
procedure cc_wcscor (im, mw, sx1, sx2, sy1, sy2, xiname, etaname, xiaxis,
etaaxis)
pointer im #I pointer to the input image
pointer mw #I pointer to the wcs structure
pointer sx1, sx2 #I pointer to the linear and distortion xi surfaces
pointer sy1, sy2 #I pointer to the linear and distortion eta surfaces
char xiname[ARB] #I the wcs xi correction attribute name
char etaname[ARB] #I the wcs eta correction attribute name
int xiaxis #I the xi axis number
int etaaxis #I the eta axis number
int i, j, function, xxorder, xyorder, xxterms, yxorder, yyorder, yxterms
int nx, ny, npix, ier
double sxmin, sxmax, symin, symax, ratio, x, y, xstep, ystep, ximin, ximax
double etamin, etamax
pointer sp, xpix, ypix, xilin, etalin, dxi, deta, wgt, nsx2, nsy2
int dgsgeti()
double dgsgetd()
begin
if (sx2 == NULL && sy2 == NULL)
return
if (dgsgeti (sx1, GSTYPE) != dgsgeti (sy1, GSTYPE))
return
# Get the function, xmin, xmax, ymin, and ymax parameters for the
# surfaces.
function = min (dgsgeti (sx1, GSTYPE), dgsgeti (sy1, GSTYPE))
sxmin = max (dgsgetd (sx1, GSXMIN), dgsgetd (sy1, GSXMIN))
sxmax = min (dgsgetd (sx1, GSXMAX), dgsgetd (sy1, GSXMAX))
symin = max (dgsgetd (sx1, GSYMIN), dgsgetd (sy1, GSYMIN))
symax = min (dgsgetd (sx1, GSYMAX), dgsgetd (sy1, GSYMAX))
# Get the order and cross-terms parameters from the higher order
# functions.
if (sx2 != NULL) {
xxorder = dgsgeti (sx2, GSXORDER)
xyorder = dgsgeti (sx2, GSYORDER)
xxterms = dgsgeti (sx2, GSXTERMS)
} else {
xxorder = dgsgeti (sx1, GSXORDER)
xyorder = dgsgeti (sx1, GSYORDER)
xxterms = dgsgeti (sx1, GSXTERMS)
}
if (sy2 != NULL) {
yxorder = dgsgeti (sy2, GSXORDER)
yyorder = dgsgeti (sy2, GSYORDER)
yxterms = dgsgeti (sy2, GSXTERMS)
} else {
yxorder = dgsgeti (sy1, GSXORDER)
yyorder = dgsgeti (sy1, GSYORDER)
yxterms = dgsgeti (sy1, GSXTERMS)
}
# Choose a reasonable coordinate grid size based on the x and y order
# of the fit and the number of rows and columns in the image.
ratio = double (IM_LEN(im,2)) / double (IM_LEN(im,1))
nx = max (xxorder + 3, yxorder + 3, 10)
ny = max (yyorder + 3, xyorder + 3, nint (ratio * 10))
npix = nx * ny
# Allocate some working space.
call smark (sp)
call salloc (xpix, npix, TY_DOUBLE)
call salloc (ypix, npix, TY_DOUBLE)
call salloc (xilin, npix, TY_DOUBLE)
call salloc (etalin, npix, TY_DOUBLE)
call salloc (dxi, npix, TY_DOUBLE)
call salloc (deta, npix, TY_DOUBLE)
call salloc (wgt, npix, TY_DOUBLE)
# Compute the grid of x and y points.
xstep = (sxmax - sxmin) / (nx - 1)
ystep = (symax - symin) / (ny - 1)
y = symin
npix = 0
do j = 1, ny {
x = sxmin
do i = 1, nx {
Memd[xpix+npix] = x
Memd[ypix+npix] = y
x = x + xstep
npix = npix + 1
}
y = y + ystep
}
# Compute the weights
call amovkd (1.0d0, Memd[wgt], npix)
# Evalute the linear surfaces and convert the results from arcseconds
# to degrees.
call dgsvector (sx1, Memd[xpix], Memd[ypix], Memd[xilin], npix)
call adivkd (Memd[xilin], 3600.0d0, Memd[xilin], npix)
call alimd (Memd[xilin], npix, ximin, ximax)
call dgsvector (sy1, Memd[xpix], Memd[ypix], Memd[etalin], npix)
call adivkd (Memd[etalin], 3600.0d0, Memd[etalin], npix)
call alimd (Memd[etalin], npix, etamin, etamax)
# Evalute the distortion surfaces, convert the results from arcseconds
# to degrees, and compute new distortion surfaces.
if (sx2 != NULL) {
call dgsvector (sx2, Memd[xpix], Memd[ypix], Memd[dxi], npix)
call adivkd (Memd[dxi], 3600.0d0, Memd[dxi], npix)
call dgsinit (nsx2, function, xxorder, xyorder, xxterms,
ximin, ximax, etamin, etamax)
call dgsfit (nsx2, Memd[xilin], Memd[etalin], Memd[dxi],
Memd[wgt], npix, WTS_UNIFORM, ier)
call cc_gsencode (mw, nsx2, xiname, xiaxis)
} else
nsx2 = NULL
if (sy2 != NULL) {
call dgsvector (sy2, Memd[xpix], Memd[ypix], Memd[deta], npix)
call adivkd (Memd[deta], 3600.0d0, Memd[deta], npix)
call dgsinit (nsy2, function, yxorder, yyorder, yxterms,
ximin, ximax, etamin, etamax)
call dgsfit (nsy2, Memd[xilin], Memd[etalin], Memd[deta],
Memd[wgt], npix, WTS_UNIFORM, ier)
call cc_gsencode (mw, nsy2, etaname, etaaxis)
} else
nsy2 = NULL
# Store the string in the mcs structure in the format of a wcs
# attribute.
# Free the new surfaces.
if (nsx2 != NULL)
call dgsfree (nsx2)
if (nsy2 != NULL)
call dgsfree (nsy2)
call sfree (sp)
end
# CC_GSENCODE -- Encode the surface in an mwcs attribute.
procedure cc_gsencode (mw, gs, atname, axis)
pointer mw #I pointer to the mwcs structure
pointer gs #I pointer to the surface to be encoded
char atname[ARB] #I attribute name for the encoded surface
int axis #I axis for which the encode surface is encoded
int i, op, nsave, szatstr, szpar
pointer sp, coeff, par, atstr
int dgsgeti(), strlen(), gstrcpy()
begin
nsave = dgsgeti (gs, GSNSAVE)
call smark (sp)
call salloc (coeff, nsave, TY_DOUBLE)
call salloc (par, SZ_LINE, TY_CHAR)
call dgssave (gs, Memd[coeff])
szatstr = SZ_LINE
call malloc (atstr, szatstr, TY_CHAR)
op = 0
do i = 1, nsave {
call sprintf (Memc[par], SZ_LINE, "%g ")
call pargd (Memd[coeff+i-1])
szpar = strlen (Memc[par])
if (szpar > (szatstr - op)) {
szatstr = szatstr + SZ_LINE
call realloc (atstr, szatstr, TY_CHAR)
}
op = op + gstrcpy (Memc[par], Memc[atstr+op], SZ_LINE)
}
call mw_swattrs (mw, axis, atname, Memc[atstr])
call mfree (atstr, TY_CHAR)
call sfree (sp)
end
|