1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
|
include <error.h>
include <mach.h>
include <imhdr.h>
include <imset.h>
include <fset.h>
include <math.h>
include "starfind.h"
# SF_FIND -- Find stars in an image using a pattern matching technique and
# a circularly symmetric Gaussian pattern.
procedure sf_find (im, out, sf, nxblock, nyblock, wcs, wxformat, wyformat,
boundary, constant, verbose)
pointer im #I pointer to the input image
int out #I the output file descriptor
pointer sf #I pointer to the apphot structure
int nxblock #I the x dimension blocking factor
int nyblock #I the y dimension blocking factor
char wcs[ARB] #I the world coordinate system
char wxformat[ARB] #I the x axis world coordinate format
char wyformat[ARB] #I the y axis world coordinate format
int boundary #I type of boundary extension
real constant #I constant for constant boundary extension
int verbose #I verbose switch
int i, j, fwidth, swidth, norm
int l1, l2, c1, c2, ncols, nlines, nxb, nyb, nstars, stid
pointer sp, gker2d, ngker2d, skip, fmtstr, twxformat, twyformat
pointer imbuf, denbuf, str, mw, ct
real sigma, nsigma, a, b, c, f, gsums[LEN_GAUSS], relerr, dmin, dmax
real maglo, maghi
bool streq()
int sf_stfind()
pointer mw_openim(), mw_sctran()
real sf_egkernel()
errchk mw_openim(), mw_sctran(), mw_gattrs()
begin
# Allocate working space.
call smark (sp)
call salloc (twxformat, SZ_FNAME, TY_CHAR)
call salloc (twyformat, SZ_FNAME, TY_CHAR)
call salloc (fmtstr, SZ_LINE, TY_CHAR)
call salloc (str, SZ_LINE, TY_CHAR)
# Compute the parameters of the Gaussian kernel.
sigma = HWHM_TO_SIGMA * SF_HWHMPSF(sf)
nsigma = SF_FRADIUS(sf) / HWHM_TO_SIGMA
call sf_egparams (sigma, 1.0, 0.0, nsigma, a, b, c, f, fwidth, fwidth)
# Compute the separation parameter
swidth = max (2, int (SF_SEPMIN(sf) * SF_HWHMPSF(sf) + 0.5))
# Compute the minimum and maximum pixel values.
if (IS_INDEFR(SF_DATAMIN(sf)) && IS_INDEFR(SF_DATAMAX(sf))) {
norm = YES
dmin = -MAX_REAL
dmax = MAX_REAL
} else {
norm = NO
if (IS_INDEFR(SF_DATAMIN(sf)))
dmin = -MAX_REAL
else
dmin = SF_DATAMIN(sf)
if (IS_INDEFR(SF_DATAMAX(sf)))
dmax = MAX_REAL
else
dmax = SF_DATAMAX(sf)
}
# Compute the magnitude limits
if (IS_INDEFR(SF_MAGLO(sf)))
maglo = -MAX_REAL
else
maglo = SF_MAGLO(sf)
if (IS_INDEFR(SF_MAGHI(sf)))
maghi = MAX_REAL
else
maghi = SF_MAGHI(sf)
# Open the image WCS.
if (wcs[1] == EOS) {
mw = NULL
ct = NULL
} else {
iferr {
mw = mw_openim (im)
} then {
call erract (EA_WARN)
mw = NULL
ct = NULL
} else {
iferr {
ct = mw_sctran (mw, "logical", wcs, 03B)
} then {
call erract (EA_WARN)
ct = NULL
call mw_close (mw)
mw = NULL
}
}
}
# Set the WCS formats.
if (ct == NULL)
call strcpy (wxformat, Memc[twxformat], SZ_FNAME)
else if (wxformat[1] == EOS) {
if (mw != NULL) {
iferr (call mw_gwattrs (mw, 1, "format", Memc[twxformat],
SZ_FNAME)) {
if (streq (wcs, "world"))
call strcpy ("%11.8g", Memc[twxformat], SZ_FNAME)
else
call strcpy ("%9.3f", Memc[twxformat], SZ_FNAME)
}
} else
call strcpy ("%9.3f", Memc[twxformat], SZ_FNAME)
} else
call strcpy (wxformat, Memc[twxformat], SZ_FNAME)
if (ct == NULL)
call strcpy (wyformat, Memc[twyformat], SZ_FNAME)
else if (wyformat[1] == EOS) {
if (mw != NULL) {
iferr (call mw_gwattrs (mw, 2, "format", Memc[twyformat],
SZ_FNAME)) {
if (streq (wcs, "world"))
call strcpy ("%11.8g", Memc[twyformat], SZ_FNAME)
else
call strcpy ("%9.3f", Memc[twyformat], SZ_FNAME)
}
} else
call strcpy ("%9.3f", Memc[twyformat], SZ_FNAME)
} else
call strcpy (wyformat, Memc[twyformat], SZ_FNAME)
# Create the output format string.
call sprintf (Memc[fmtstr],
SZ_LINE, " %s %s %s %s %s %s %s %s %s %s %s\n")
call pargstr ("%9.3f")
call pargstr ("%9.3f")
call pargstr (Memc[twxformat])
call pargstr (Memc[twyformat])
call pargstr ("%7.2f")
call pargstr ("%6d")
call pargstr ("%6.2f")
call pargstr ("%6.3f")
call pargstr ("%6.1f")
call pargstr ("%7.3f")
call pargstr ("%6d")
# Set up the image boundary extension characteristics.
call imseti (im, IM_TYBNDRY, boundary)
call imseti (im, IM_NBNDRYPIX, 1 + fwidth / 2 + swidth)
if (boundary == BT_CONSTANT)
call imsetr (im, IM_BNDRYPIXVAL, constant)
# Set up the blocking factor.
# Compute the magnitude limits
if (IS_INDEFI(nxblock))
nxb = IM_LEN(im,1)
else
nxb = nxblock
if (IS_INDEFI(nyblock))
nyb = IM_LEN(im,2)
else
nyb = nyblock
# Print the detection criteria on the standard output.
if (verbose == YES) {
call fstats (out, F_FILENAME, Memc[str], SZ_LINE)
call printf ("\nImage: %s Output: %s\n")
call pargstr (IM_HDRFILE(im))
call pargstr (Memc[str])
call printf ("Detection Parameters\n")
call printf (
" Hwhmpsf: %0.3f (pixels) Threshold: %g (ADU) Npixmin: %d\n")
call pargr (SF_HWHMPSF(sf))
call pargr (SF_THRESHOLD(sf))
call pargi (SF_NPIXMIN(sf))
call printf (" Datamin: %g (ADU) Datamax: %g (ADU)\n")
call pargr (SF_DATAMIN(sf))
call pargr (SF_DATAMAX(sf))
call printf (" Fradius: %0.3f (HWHM) Sepmin: %0.3f (HWHM)\n\n")
call pargr (SF_FRADIUS(sf))
call pargr (SF_SEPMIN(sf))
}
if (out != NULL) {
call fstats (out, F_FILENAME, Memc[str], SZ_LINE)
call fprintf (out, "\n# Image: %s Output: %s\n")
call pargstr (IM_HDRFILE(im))
call pargstr (Memc[str])
call fprintf (out, "# Detection Parameters\n")
call fprintf (out,
"# Hwhmpsf: %0.3f (pixels) Threshold: %g (ADU) Npixmin: %d\n")
call pargr (SF_HWHMPSF(sf))
call pargr (SF_THRESHOLD(sf))
call pargi (SF_NPIXMIN(sf))
call fprintf (out, "# Datamin: %g (ADU) Datamax: %g (ADU)\n")
call pargr (SF_DATAMIN(sf))
call pargr (SF_DATAMAX(sf))
call fprintf (out, "# Fradius: %g (HWHM) Sepmin: %g (HWHM)\n")
call pargr (SF_FRADIUS(sf))
call pargr (SF_SEPMIN(sf))
call fprintf (out, "# Selection Parameters\n")
call pargi (SF_NPIXMIN(sf))
call fprintf (out, "# Maglo: %0.3f Maghi: %0.3f\n")
call pargr (SF_MAGLO(sf))
call pargr (SF_MAGHI(sf))
call fprintf (out, "# Roundlo: %0.3f Roundhi: %0.3f\n")
call pargr (SF_ROUNDLO(sf))
call pargr (SF_ROUNDHI(sf))
call fprintf (out, "# Sharplo: %0.3f Sharphi: %0.3f\n")
call pargr (SF_SHARPLO(sf))
call pargr (SF_SHARPHI(sf))
call fprintf (out, "# Columns\n")
call fprintf (out, "# 1: X 2: Y \n")
if (ct == NULL) {
call fprintf (out, "# 3: Mag 4: Area\n")
call fprintf (out, "# 5: Hwhm 6: Roundness\n")
call fprintf (out, "# 7: Pa 8: Sharpness\n\n")
} else {
call fprintf (out, "# 3: Wx 4: Wy \n")
call fprintf (out, "# 5: Mag 6: Area\n")
call fprintf (out, "# 7: Hwhm 8: Roundness\n")
call fprintf (out, "# 9: Pa 10: Sharpness\n\n")
}
}
# Process the image block by block.
stid = 1
nstars = 0
do j = 1, IM_LEN(im,2), nyb {
l1 = j
l2 = min (IM_LEN(im,2), j + nyb - 1)
nlines = l2 - l1 + 1 + 2 * (fwidth / 2 + swidth)
do i = 1, IM_LEN(im,1), nxb {
# Allocate space for the convolution kernel.
call malloc (gker2d, fwidth * fwidth, TY_REAL)
call malloc (ngker2d, fwidth * fwidth, TY_REAL)
call malloc (skip, fwidth * fwidth, TY_INT)
# Allocate space for the data and the convolution.
c1 = i
c2 = min (IM_LEN(im,1), i + nxb - 1)
ncols = c2 - c1 + 1 + 2 * (fwidth / 2 + swidth)
call malloc (imbuf, ncols * nlines, TY_REAL)
call malloc (denbuf, ncols * nlines, TY_REAL)
# Compute the convolution kernels.
relerr = sf_egkernel (Memr[gker2d], Memr[ngker2d], Memi[skip],
fwidth, fwidth, gsums, a, b, c, f)
# Do the convolution.
if (norm == YES)
call sf_fconvolve (im, c1, c2, l1, l2, swidth, Memr[imbuf],
Memr[denbuf], ncols, nlines, Memr[ngker2d], Memi[skip],
fwidth, fwidth)
else
call sf_gconvolve (im, c1, c2, l1, l2, swidth, Memr[imbuf],
Memr[denbuf], ncols, nlines, Memr[gker2d], Memi[skip],
fwidth, fwidth, gsums, dmin, dmax)
# Find the stars.
nstars = sf_stfind (out, Memr[imbuf], Memr[denbuf], ncols,
nlines, c1, c2, l1, l2, swidth, Memi[skip], fwidth,
fwidth, SF_HWHMPSF(sf), SF_THRESHOLD(sf), dmin, dmax,
ct, SF_NPIXMIN(sf), maglo, maghi, SF_ROUNDLO(sf),
SF_ROUNDHI(sf), SF_SHARPLO(sf), SF_SHARPHI(sf),
Memc[fmtstr], stid, verbose)
# Increment the sequence number.
stid = stid + nstars
# Free the memory.
call mfree (imbuf, TY_REAL)
call mfree (denbuf, TY_REAL)
call mfree (gker2d, TY_REAL)
call mfree (ngker2d, TY_REAL)
call mfree (skip, TY_INT)
}
}
# Print out the selection parameters.
if (verbose == YES) {
call printf ("\nSelection Parameters\n")
call printf ( " Maglo: %0.3f Maghi: %0.3f\n")
call pargr (SF_MAGLO(sf))
call pargr (SF_MAGHI(sf))
call printf ( " Roundlo: %0.3f Roundhi: %0.3f\n")
call pargr (SF_ROUNDLO(sf))
call pargr (SF_ROUNDHI(sf))
call printf ( " Sharplo: %0.3f Sharphi: %0.3f\n")
call pargr (SF_SHARPLO(sf))
call pargr (SF_SHARPHI(sf))
}
if (mw != NULL) {
call mw_ctfree (ct)
call mw_close (mw)
}
call sfree (sp)
end
# SF_STFIND -- Detect images in the convolved image and then compute image
# characteristics using the original image.
int procedure sf_stfind (out, imbuf, denbuf, ncols, nlines, c1, c2, l1, l2,
sepmin, skip, nxk, nyk, hwhmpsf, threshold, datamin, datamax,
ct, nmin, maglo, maghi, roundlo, roundhi, sharplo, sharphi,
fmtstr, stid, verbose)
int out #I the output file descriptor
real imbuf[ncols,nlines] #I the input data buffer
real denbuf[ncols,nlines] #I the input density enhancements buffer
int ncols, nlines #I the dimensions of the input buffers
int c1, c2 #I the image columns limits
int l1, l2 #I the image lines limits
int sepmin #I the minimum object separation
int skip[nxk,ARB] #I the pixel fitting array
int nxk, nyk #I the dimensions of the fitting array
real hwhmpsf #I the HWHM of the PSF in pixels
real threshold #I the threshold for object detection
real datamin, datamax #I the minimum and maximum good data values
pointer ct #I the coordinate transformation pointer
int nmin #I the minimum number of good object pixels
real maglo,maghi #I the magnitude estimate limits
real roundlo,roundhi #I the ellipticity estimate limits
real sharplo, sharphi #I the sharpness estimate limits
char fmtstr[ARB] #I the format string
int stid #U the object sequence number
int verbose #I verbose mode
int line1, line2, inline, xmiddle, ymiddle, ntotal, nobjs, nstars
pointer sp, cols, sharp, x, y, ellip, theta, npix, mag, size
int sf_detect(), sf_test()
begin
# Set up useful line and column limits.
line1 = 1 + sepmin + nyk / 2
line2 = nlines - sepmin - nyk / 2
xmiddle = 1 + nxk / 2
ymiddle = 1 + nyk / 2
# Set up a cylindrical buffers and some working space for
# the detected images.
call smark (sp)
call salloc (cols, ncols, TY_INT)
call salloc (x, ncols, TY_REAL)
call salloc (y, ncols, TY_REAL)
call salloc (mag, ncols, TY_REAL)
call salloc (npix, ncols, TY_INT)
call salloc (size, ncols, TY_REAL)
call salloc (ellip, ncols, TY_REAL)
call salloc (theta, ncols, TY_REAL)
call salloc (sharp, ncols, TY_REAL)
# Generate the starlist line by line.
ntotal = 0
do inline = line1, line2 {
# Detect local maximum in the density enhancement buffer.
nobjs = sf_detect (denbuf[1,inline-nyk/2-sepmin], ncols, sepmin,
nxk, nyk, threshold, Memi[cols])
if (nobjs <= 0)
next
# Do not skip the middle pixel in the moments computation.
call sf_moments (imbuf[1,inline-nyk/2], denbuf[1,inline-nyk/2],
ncols, skip, nxk, nyk, Memi[cols], Memr[x], Memr[y],
Memi[npix], Memr[mag], Memr[size], Memr[ellip], Memr[theta],
Memr[sharp], nobjs, datamin, datamax, threshold, hwhmpsf,
real (-sepmin - nxk / 2 + c1 - 1), real (inline - sepmin -
nyk + l1 - 1))
# Test the image characeteristics of detected objects.
nstars = sf_test (Memi[cols], Memr[x], Memr[y], Memi[npix],
Memr[mag], Memr[size], Memr[ellip], Memr[theta], Memr[sharp],
nobjs, real (c1 - 0.5), real (c2 + 0.5), real (l1 - 0.5),
real (l2 + 0.5), nmin, maglo, maghi, roundlo, roundhi,
sharplo, sharphi)
# Print results on the standard output.
if (verbose == YES)
call sf_write (STDOUT, Memi[cols], Memr[x], Memr[y],
Memr[mag], Memi[npix], Memr[size], Memr[ellip],
Memr[theta], Memr[sharp], nstars, ct, fmtstr,
ntotal + stid)
# Save the results in the file.
call sf_write (out, Memi[cols], Memr[x], Memr[y], Memr[mag],
Memi[npix], Memr[size], Memr[ellip], Memr[theta],
Memr[sharp], nstars, ct, fmtstr, ntotal + stid)
ntotal = ntotal + nstars
}
# Free space
call sfree (sp)
return (ntotal)
end
# SF_DETECT -- Detect stellar objects in an image line. In order to be
# detected as a star the candidate object must be above threshold and have
# a maximum pixel value greater than any pixels within sepmin pixels.
int procedure sf_detect (density, ncols, sepmin, nxk, nyk, threshold, cols)
real density[ncols, ARB] #I the input density enhancements array
int ncols #I the x dimension of the input array
int sepmin #I the minimum separation in pixels
int nxk, nyk #I size of the fitting area
real threshold #I density threshold
int cols[ARB] #O column numbers of detected stars
int i, j, k, ymiddle, nxhalf, nyhalf, ny, b2, nobjs, rj2, r2
define nextpix_ 11
begin
ymiddle = 1 + nyk / 2 + sepmin
nxhalf = nxk / 2
nyhalf = nyk / 2
ny = 2 * sepmin + 1
b2 = sepmin ** 2
# Loop over all the columns in an image line.
nobjs = 0
for (i = 1 + nxhalf + sepmin; i <= ncols - nxhalf - sepmin; ) {
# Test whether the density enhancement is above threshold.
if (density[i,ymiddle] < threshold)
goto nextpix_
# Test whether a given density enhancement satisfies the
# separation criterion.
do j = 1, ny {
rj2 = (j - sepmin - 1) ** 2
do k = i - sepmin, i + sepmin {
r2 = (i - k) ** 2 + rj2
if (r2 <= b2) {
if (density[i,ymiddle] < density[k,j+nyhalf])
goto nextpix_
}
}
}
# Add the detected object to the list.
nobjs = nobjs + 1
cols[nobjs] = i
# If a local maximum is detected there can be no need to
# check pixels in this row between i and i + sepmin.
i = i + sepmin
nextpix_
# Work on the next pixel.
i = i + 1
}
return (nobjs)
end
# SF_MOMENTS -- Perform a moments analysis on the dectected objects.
procedure sf_moments (data, den, ncols, skip, nxk, nyk, cols, x, y,
npix, mag, size, ellip, theta, sharp, nobjs, datamin, datamax,
threshold, hwhmpsf, xoff, yoff)
real data[ncols,ARB] #I the input data array
real den[ncols,ARB] #I the input density enhancements array
int ncols #I the x dimension of the input buffer
int skip[nxk,ARB] #I the input fitting array
int nxk, nyk #I the dimensions of the fitting array
int cols[ARB] #I the input initial positions
real x[ARB] #O the output x coordinates
real y[ARB] #O the output y coordinates
int npix[ARB] #O the output area in number of pixels
real mag[ARB] #O the output magnitude estimates
real size[ARB] #O the output size estimates
real ellip[ARB] #O the output ellipticity estimates
real theta[ARB] #O the output position angle estimates
real sharp[ARB] #O the output sharpness estimates
int nobjs #I the number of objects
real datamin, datamax #I the minium and maximum good data values
real threshold #I threshold for moments computation
real hwhmpsf #I the HWHM of the PSF
real xoff, yoff #I the x and y coordinate offsets
int i, j, k, xmiddle, ymiddle, sumn
double pixval, sumix, sumiy, sumi, sumixx, sumixy, sumiyy, r2, dx, dy, diff
double mean
begin
# Initialize
xmiddle = 1 + nxk / 2
ymiddle = 1 + nyk / 2
# Compute the pixel sum, number of pixels, and the x and y centers.
do i = 1, nobjs {
# Estimate the background using the input data and the
# best fitting Gaussian amplitude
sumn = 0
sumi = 0.0
do j = 1, nyk {
do k = 1, nxk {
if (skip[k,j] == NO)
next
pixval = data[cols[i]-xmiddle+k,j]
if (pixval < datamin || pixval > datamax)
next
sumi = sumi + pixval
sumn = sumn + 1
}
}
if (sumn <= 0)
mean = data[cols[i],ymiddle] - den[cols[i],ymiddle]
else
mean = sumi / sumn
# Compute the first order moments.
sumi = 0.0
sumn = 0
sumix = 0.0d0
sumiy = 0.0d0
do j = 1, nyk {
do k = 1, nxk {
if (skip[k,j] == YES)
next
pixval = data[cols[i]-xmiddle+k,j]
if (pixval < datamin || pixval > datamax)
next
pixval = pixval - mean
if (pixval <= 0.0)
next
sumi = sumi + pixval
sumix = sumix + (cols[i] - xmiddle + k) * pixval
sumiy = sumiy + j * pixval
sumn = sumn + 1
}
}
# Use the first order moments to estimate the positions
# magnitude, area, and amplitude of the object.
if (sumi <= 0.0) {
x[i] = cols[i]
y[i] = (1.0 + nyk) / 2.0
mag[i] = INDEFR
npix[i] = 0
} else {
x[i] = sumix / sumi
y[i] = sumiy / sumi
mag[i] = -2.5 * log10 (sumi)
npix[i] = sumn
}
# Compute the second order central moments using the results of
# the first order moment analysis.
sumixx = 0.0d0
sumiyy = 0.0d0
sumixy = 0.0d0
do j = 1, nyk {
dy = j - y[i]
do k = 1, nxk {
if (skip[k,j] == YES)
next
pixval = data[cols[i]-xmiddle+k,j]
if (pixval < datamin || pixval > datamax)
next
pixval = pixval - mean
if (pixval <= 0.0)
next
dx = cols[i] - xmiddle + k - x[i]
sumixx = sumixx + pixval * dx ** 2
sumixy = sumixy + pixval * dx * dy
sumiyy = sumiyy + pixval * dy ** 2
}
}
# Use the second order central moments to estimate the size,
# ellipticity, position angle, and sharpness of the objects.
if (sumi <= 0.0) {
size[i] = 0.0
ellip[i] = 0.0
theta[i] = 0.0
sharp[i] = INDEFR
} else {
sumixx = sumixx / sumi
sumixy = sumixy / sumi
sumiyy = sumiyy / sumi
r2 = sumixx + sumiyy
if (r2 <= 0.0) {
size[i] = 0.0
ellip[i] = 0.0
theta[i] = 0.0
sharp[i] = INDEFR
} else {
size[i] = sqrt (LN_2 * r2)
sharp[i] = size[i] / hwhmpsf
diff = sumixx - sumiyy
ellip[i] = sqrt (diff ** 2 + 4.0d0 * sumixy ** 2) / r2
if (diff == 0.0d0 && sumixy == 0.0d0)
theta[i] = 0.0
else
theta[i] = RADTODEG (0.5d0 * atan2 (2.0d0 * sumixy,
diff))
if (theta[i] < 0.0)
theta[i] = theta[i] + 180.0
}
}
# Convert the computed coordinates to the image system.
x[i] = x[i] + xoff
y[i] = y[i] + yoff
}
end
# SF_TEST -- Check that the detected objects are in the image, contain
# enough pixels above background to be measurable objects, and are within
# the specified magnitude, roundness and sharpness range.
int procedure sf_test (cols, x, y, npix, mag, size, ellip, theta, sharps,
nobjs, c1, c2, l1, l2, nmin, maglo, maghi, roundlo, roundhi,
sharplo, sharphi)
int cols[ARB] #U the column ids of detected object
real x[ARB] #U the x position estimates
real y[ARB] #U the y positions estimates
int npix[ARB] #U the area estimates
real mag[ARB] #U the magnitude estimates
real size[ARB] #U the size estimates
real ellip[ARB] #U the ellipticity estimates
real theta[ARB] #U the position angle estimates
real sharps[ARB] #U sharpness estimates
int nobjs #I the number of detected objects
real c1, c2 #I the image column limits
real l1, l2 #I the image line limits
int nmin #I the minimum area
real maglo, maghi #I the magnitude limits
real roundlo, roundhi #I the roundness limits
real sharplo, sharphi #I the sharpness limits
int i, nstars
begin
# Loop over the detected objects.
nstars = 0
do i = 1, nobjs {
if (x[i] < c1 || x[i] > c2)
next
if (y[i] < l1 || y[i] > l2)
next
if (npix[i] < nmin)
next
if (mag[i] < maglo || mag[i] > maghi)
next
if (ellip[i] < roundlo || ellip[i] > roundhi)
next
if (! IS_INDEFR(sharps[i]) && (sharps[i] < sharplo ||
sharps[i] > sharphi))
next
# Add object to the list.
nstars = nstars + 1
cols[nstars] = cols[i]
x[nstars] = x[i]
y[nstars] = y[i]
mag[nstars] = mag[i]
npix[nstars] = npix[i]
size[nstars] = size[i]
ellip[nstars] = ellip[i]
theta[nstars] = theta[i]
sharps[nstars] = sharps[i]
}
return (nstars)
end
# SF_WRITE -- Write the results to the output file.
procedure sf_write (fd, cols, x, y, mag, npix, size, ellip, theta, sharp,
nstars, ct, fmtstr, stid)
int fd #I the output file descriptor
int cols[ARB] #I column numbers
real x[ARB] #I xcoords
real y[ARB] #I y coords
real mag[ARB] #I magnitudes
int npix[ARB] #I number of pixels
real size[ARB] #I object sizes
real ellip[ARB] #I ellipticities
real theta[ARB] #I position angles
real sharp[ARB] #I sharpnesses
int nstars #I number of detected stars in the line
pointer ct #I coordinate transformation
char fmtstr[ARB] #I the output format string
int stid #I output file sequence number
double lx, ly, wx, wy
int i
begin
if (fd == NULL)
return
do i = 1, nstars {
call fprintf (fd, fmtstr)
call pargr (x[i])
call pargr (y[i])
if (ct != NULL) {
lx = x[i]
ly = y[i]
call mw_c2trand (ct, lx, ly, wx, wy)
call pargd (wx)
call pargd (wy)
}
call pargr (mag[i])
call pargi (npix[i])
call pargr (size[i])
call pargr (ellip[i])
call pargr (theta[i])
call pargr (sharp[i])
call pargi (stid + i - 1)
}
end
|