aboutsummaryrefslogtreecommitdiff
path: root/pkg/images/immatch/src/geometry/geotimtran.x
blob: f84a794da0bce2fb5c6010f93ebc104eb11450fa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

include <imhdr.h>
include <imset.h>
include <mach.h>
include <math/gsurfit.h>
include <math/iminterp.h>
include "geotran.h"

# GEO_IMTRAN -- Correct an entire image for geometric distortion using the
# transformed coordinates and image interpolation.

procedure geo_imtran (input, output, geo, sx1, sy1, sx2, sy2)

pointer	input			#I pointer to input image
pointer	output			#I pointer to output image
pointer	geo			#I pointer to geotran structure
pointer	sx1, sy1		#I pointers to linear surface descriptors
pointer	sx2, sy2		#I pointer to higher order surface descriptors

int	nincr
pointer	sp, xref, yref, msi
real	shift
real	gsgetr()

begin
	# Initialize the interpolant and compute the out-of-bounds pixel
	# margin required.
	if (IM_NDIM(input) == 1) {
	    call asitype (GT_INTERPSTR(geo), GT_INTERPOLANT(geo),
	        GT_NSINC(geo), nincr, shift)
	    call asisinit (msi, GT_INTERPOLANT(geo), GT_NSINC(geo),
		nincr, shift, 0.0)
	} else {
	    call msitype (GT_INTERPSTR(geo), GT_INTERPOLANT(geo),
	        GT_NSINC(geo), nincr, shift)
	    call msisinit (msi, GT_INTERPOLANT(geo), GT_NSINC(geo),
		nincr, nincr, shift, shift, 0.0)
	}
        call geo_margset (sx1, sy1, sx2, sy2, GT_XMIN(geo), GT_XMAX(geo),
            GT_NCOLS(geo), GT_YMIN(geo), GT_YMAX(geo), GT_NLINES(geo),
            GT_INTERPOLANT(geo), GT_NSINC(geo),  GT_NXYMARGIN(geo))

	# Allocate working space.
	call smark (sp)
	call salloc (xref, GT_NCOLS(geo), TY_REAL)
	call salloc (yref, GT_NLINES(geo), TY_REAL)

	# Calculate the reference coordinates of the input image pixels.
	call geo_ref (geo, Memr[xref], 1, GT_NCOLS(geo), GT_NCOLS(geo),
	    Memr[yref], 1, GT_NLINES(geo), GT_NLINES(geo), gsgetr (sx1,
	    GSXMIN), gsgetr (sx1, GSXMAX), gsgetr (sx1, GSYMIN), gsgetr (sx1,
	    GSYMAX), GT_ONE)

        # Configure the out-of-bounds pixel references for the input image.
        call geo_imset (input, geo, sx1, sy1, sx2, sy2, Memr[xref],
	    GT_NCOLS(geo), Memr[yref], GT_NLINES(geo))

	# Interpolate.
	call geo_gsvector (input, output, geo, msi, Memr[xref], 1,
	    GT_NCOLS(geo), Memr[yref], 1, GT_NLINES(geo), sx1, sy1, sx2, sy2)

	# Clean up.
	if (IM_NDIM(input) == 1)
	    call asifree (msi)
	else
	    call msifree (msi)
	call sfree (sp)
end


# GEO_SIMTRAN -- Correct an entire image for geometric distortion using 
# nterpolated coordinate surfaces to speed up computation of the transformed
# coordinates and image interpolation.

procedure geo_simtran (input, output, geo, sx1, sy1, sx2, sy2)

pointer	input			#I pointer to input image
pointer	output			#I pointer to output image
pointer	geo			#I pointer to geotran structure
pointer	sx1, sy1		#I pointer to linear surface descriptors
pointer	sx2, sy2		#I pointer to higher order surface descriptors

int	nxsample, nysample, nincr
pointer	sp, xsample, ysample, xinterp, yinterp
pointer	xmsi, ymsi, jmsi, msi, xbuf, ybuf, jbuf
real	shift
real	gsgetr()

begin
	# Allocate working space and intialize the interpolant.
	call smark (sp)
	call salloc (xsample, GT_NCOLS(geo), TY_REAL)
	call salloc (ysample, GT_NLINES(geo), TY_REAL)
	call salloc (xinterp, GT_NCOLS(geo), TY_REAL)
	call salloc (yinterp, GT_NLINES(geo), TY_REAL)

	# Set up sampling size.
	if (GT_NCOLS(geo) == 1)
	    nxsample = 1
	else
	    nxsample = GT_NCOLS(geo) / GT_XSAMPLE(geo)
	if (GT_NLINES(geo) == 1)
	    nysample = 1
	else
	    nysample = GT_NLINES(geo) / GT_YSAMPLE(geo)

	# Initialize interpolants.
	if (IM_NDIM(input) == 1) {
	    call asiinit (xmsi, II_LINEAR)
	    call asiinit (ymsi, II_LINEAR)
	    call asitype (GT_INTERPSTR(geo), GT_INTERPOLANT(geo),
		GT_NSINC(geo), nincr, shift)
	    call asisinit (msi, GT_INTERPOLANT(geo), GT_NSINC(geo),
		nincr, shift, 0.0)
	    if (GT_FLUXCONSERVE(geo) == YES)
	        call asiinit (jmsi, II_LINEAR)
	} else {
	    call msiinit (xmsi, II_BILINEAR)
	    call msiinit (ymsi, II_BILINEAR)
	    call msitype (GT_INTERPSTR(geo), GT_INTERPOLANT(geo),
		GT_NSINC(geo), nincr, shift)
	    call msisinit (msi, GT_INTERPOLANT(geo), GT_NSINC(geo),
		nincr, nincr, shift, shift, 0.0)
	    if (GT_FLUXCONSERVE(geo) == YES)
	        call msiinit (jmsi, II_BILINEAR)
	}
        call geo_margset (sx1, sy1, sx2, sy2, GT_XMIN(geo), GT_XMAX(geo),
            GT_NCOLS(geo), GT_YMIN(geo), GT_YMAX(geo), GT_NLINES(geo),
            GT_INTERPOLANT(geo), GT_NSINC(geo),  GT_NXYMARGIN(geo))

        # Setup input image boundary extension parameters.
        call geo_ref (geo, Memr[xsample], 1, GT_NCOLS(geo), GT_NCOLS(geo),
            Memr[ysample], 1, GT_NLINES(geo), GT_NLINES(geo), gsgetr (sx1,
            GSXMIN), gsgetr (sx1, GSXMAX), gsgetr (sx1, GSYMIN), gsgetr (sx1,
            GSYMAX), GT_ONE)
        call geo_imset (input, geo, sx1, sy1, sx2, sy2, Memr[xsample],
            GT_NCOLS(geo), Memr[ysample], GT_NLINES(geo))

	# Calculate the sampled reference coordinates and the interpolated
	# reference coordinates.
	call geo_ref (geo, Memr[xsample], 1, nxsample, nxsample, Memr[ysample],
	    1, nysample, nysample, gsgetr (sx1, GSXMIN), gsgetr (sx1, GSXMAX),
	    gsgetr (sx1, GSYMIN), gsgetr (sx1, GSYMAX), GT_ONE)
	call geo_sample (geo, Memr[xinterp], 1, GT_NCOLS(geo), nxsample,
	    Memr[yinterp], 1, GT_NLINES(geo), nysample, GT_ONE)

	# Initialize the buffers
	xbuf = NULL
	ybuf = NULL
	jbuf = NULL

	# Set up interpolants
	call geo_xbuffer (sx1, sx2, xmsi, Memr[xsample], Memr[ysample], 1,
	    nxsample, 1, nysample, xbuf)
	call geo_ybuffer (sy1, sy2, ymsi, Memr[xsample], Memr[ysample], 1,
	    nxsample, 1, nysample, ybuf)
	if (GT_FLUXCONSERVE(geo) == YES && (sx2 != NULL || sy2 != NULL)) {
	    if (IM_NDIM(input) == 1)
	        call geo_jbuffer (sx1, NULL, sx2, NULL, jmsi, Memr[xsample],
	            Memr[ysample], 1, nxsample, 1, nysample, jbuf)
	    else
	        call geo_jbuffer (sx1, sy1, sx2, sy2, jmsi, Memr[xsample],
	            Memr[ysample], 1, nxsample, 1, nysample, jbuf)
	}

	# Transform the image.
	call geo_msivector (input, output, geo, xmsi, ymsi, jmsi, msi, 
	    sx1, sy1, sx2, sy2, Memr[xinterp], 1, GT_NCOLS(geo), nxsample,
	    Memr[yinterp], 1, GT_NLINES(geo), nysample, 1, 1)

	# Free space.
	if (IM_NDIM(input) == 1) {
	    call asifree (xmsi)
	    call asifree (ymsi)
	    call asifree (msi)
	    if (GT_FLUXCONSERVE(geo) == YES)
	        call asifree (jmsi)
	} else {
	    call msifree (xmsi)
	    call msifree (ymsi)
	    call msifree (msi)
	    if (GT_FLUXCONSERVE(geo) == YES)
	        call msifree (jmsi)
	}
	call mfree (xbuf, TY_REAL)
	call mfree (ybuf, TY_REAL)
	if (jbuf != NULL)
	    call mfree (jbuf, TY_REAL)
	call sfree (sp)
end


## GEO_IMSIVECTOR -- Evaluate the output image using interpolated surface
## coordinates.
#
#procedure geo_imsivector (in, out, geo, xmsi, ymsi, jmsi, msi, sx1, sy1, sx2,
#        sy2, xref, yref, ncols, nlines) 
#
#pointer	in			#I pointer to input image
#pointer	out			#I pointer to output image
#pointer	geo			#I pointer to geotran structure
#pointer	xmsi, ymsi		#I pointer to the interpolation xy surfaces
#pointer	jmsi			#I pointer to Jacobian surface
#pointer	msi			#I pointer to interpolation surface
#pointer	sx1, sy1		#I linear surface descriptors
#pointer	sx2, sy2		#I distortion surface pointers
#real	xref[ARB]		#I x reference coordinates
#real	yref[ARB]		#I y reference coordinates
#int	ncols, nlines		#I number of columns and rows
#
#int	j
#pointer	sp, x, y, xin, yin, xout, yout, inbuf, outbuf 
#real	factor
#pointer	imgs1r(), imgs2r(), imps1r(), imps2r()
#real	geo_jfactor()
#
#begin
#	# Allocate working space.
#	call smark (sp)
#	call salloc (x, ncols, TY_REAL)
#	call salloc (y, ncols, TY_REAL)
#	call salloc (xin, ncols, TY_REAL)
#	call salloc (yin, ncols, TY_REAL)
#	call salloc (xout, ncols, TY_REAL)
#	call salloc (yout, ncols, TY_REAL)
#
#	# Fit the interpolant
#	if (IM_NDIM(in) == 1)
#	    inbuf = imgs1r (in, 1, int (IM_LEN(in,1)))
#	else
#	    inbuf = imgs2r (in, 1, int (IM_LEN(in,1)), 1, int (IM_LEN(in,2)))
#	if (inbuf == EOF)
#	    call error (0, "Error reading image")
#	if (IM_NDIM(in) == 1)
#	    call asifit (msi, Memr[inbuf], int (IM_LEN(in,1)))
#	else
#	    call msifit (msi, Memr[inbuf], int (IM_LEN(in,1)),
#	        int (IM_LEN(in,2)), int (IM_LEN(in,1)))
#
#	# Compute the output bufferr.
#	do j = 1, nlines {
#
#	    # Compute coordinates.
#	    call amovkr (yref[j], Memr[y], ncols)
#	    if (IM_NDIM(in) == 1) {
#	        call asivector (xmsi, xref, Memr[xin], ncols)
#	        call asivector (ymsi, xref, Memr[yin], ncols)
#	    } else {
#	        call msivector (xmsi, xref, Memr[y], Memr[xin], ncols)
#	        call msivector (ymsi, xref, Memr[y], Memr[yin], ncols)
#	    }
#
#	    # Correct for out-of-bounds pixels.
#	    call geo_btran (in, geo, Memr[xin], Memr[yin], Memr[xout],
#	        Memr[yout], ncols)
#
#	    # Write to output image.
#	    if (IM_NDIM(in) == 1)
#	        outbuf = imps1r (out, 1, ncols)
#	    else
#	        outbuf = imps2r (out, 1, ncols, j, j)
#	    if (outbuf == EOF)
#		call error (0, "Error writing output image")
#	    if (IM_NDIM(in) == 1)
#	        call asivector (msi, Memr[xout], Memr[outbuf], ncols)
#	    else
#	        call msivector (msi, Memr[xout], Memr[yout], Memr[outbuf],
#		    ncols)
#
#	    # Perform constant boundary extension.
#	    if (GT_BOUNDARY(geo) == BT_CONSTANT)
#		call geo_bconstant (in, geo, Memr[xin], Memr[yin],
#		    Memr[outbuf], Memr[outbuf], ncols)
#
#	    # Preserve flux in image.
#	    if (GT_FLUXCONSERVE(geo) == YES) {
#		factor = GT_XSCALE(geo) * GT_YSCALE(geo)
#		if (GT_GEOMODE(geo) == GT_LINEAR || (sx2 == NULL && sy2 ==
#		    NULL)) {
#		    if (IM_NDIM(in) == 1)
#		        call amulkr (Memr[outbuf], factor * geo_jfactor (sx1,
#			    NULL), Memr[outbuf], ncols)
#		    else
#		        call amulkr (Memr[outbuf], factor * geo_jfactor (sx1,
#			    sy1), Memr[outbuf], ncols)
#		} else {
#		    if (IM_NDIM(in) == 1)
#		        call geo_msiflux (jmsi, xref, yref, Memr[outbuf],
#			    1, ncols, 0, 1, 1)
#		    else
#		        call geo_msiflux (jmsi, xref, yref, Memr[outbuf],
#			    1, ncols, j, 1, 1)
#		    call amulkr (Memr[outbuf], factor, Memr[outbuf], ncols)
#		}
#	    }
#	}
#
#	call sfree (sp)
#end


## GEO_IGSVECTOR -- Evaluate the output image using fitted coordinates.
#
#procedure geo_igsvector (input, output, geo, msi, xref, yref, ncols, nlines,
#        sx1, sy1, sx2, sy2)
#
#pointer	input			#I pointer to input image
#pointer	output			#I pointer to output image
#pointer	geo			#I pointer to geotran structure
#pointer	msi			#I pointer to interpolant
#real	xref[ARB]		#I x reference array
#real	yref[ARB]		#I y reference array
#int	ncols, nlines		#I number of columns and lines
#pointer	sx1, sy1		#I pointer to linear surface
#pointer	sx2, sy2		#I pointer to distortion surface
#
#int	j
#pointer	sp, y, xin, yin, xout, yout, temp, inbuf, outbuf
#real	factor
#pointer	imgs1r(), imgs2r(), imps1r(), imps2r()
#real	geo_jfactor()
#
#begin
#	# Allocate working space.
#	call smark (sp)
#	call salloc (y, ncols, TY_REAL)
#	call salloc (xin, ncols, TY_REAL)
#	call salloc (yin, ncols, TY_REAL)
#	call salloc (xout, ncols, TY_REAL)
#	call salloc (yout, ncols, TY_REAL)
#	call salloc (temp, ncols, TY_REAL)
#
#	# Fill image buffer.
#	if (IM_NDIM(input) == 1)
#	    inbuf = imgs1r (input, 1, int (IM_LEN(input,1)))
#	else
#	    inbuf = imgs2r (input, 1, int (IM_LEN(input,1)), 1,
#	        int (IM_LEN(input,2)))
#	if (inbuf == EOF)
#	    call error (0, "Error reading image")
#
#	# Fit the interpolant.
#	if (IM_NDIM(input) == 1)
#	    call asifit (msi, Memr[inbuf], int (IM_LEN(input,1)))
#	else
#	    call msifit (msi, Memr[inbuf], int (IM_LEN(input,1)),
#	        int (IM_LEN(input,2)), int (IM_LEN(input,1)))
#
#	# Calculate the  x and y input image coordinates.
#	do j = 1, nlines {
#
#	    # Get output image buffer.
#	    if (IM_NDIM(input) == 1)
#	        outbuf = imps1r (output, 1, ncols)
#	    else
#	        outbuf = imps2r (output, 1, ncols, j, j)
#	    if (output == EOF)
#		call error (0, "Error writing output image")
#
#	    # Fit x coords.
#	    call amovkr (yref[j], Memr[y], ncols)
#	    call gsvector (sx1, xref, Memr[y], Memr[xin], ncols)
#	    if (sx2 != NULL) {
#		call gsvector (sx2, xref, Memr[y], Memr[temp], ncols)
#		call aaddr (Memr[xin], Memr[temp], Memr[xin], ncols)
#	    }
#
#	    # Fit y coords.
#	    call gsvector (sy1, xref, Memr[y], Memr[yin], ncols)
#	    if (sy2 != NULL) {
#		call gsvector (sy2, xref, Memr[y], Memr[temp], ncols)
#		call aaddr (Memr[yin], Memr[temp], Memr[yin], ncols)
#	    }
#
#	    # Compute of of bounds pixels.
#	    call geo_btran (input, geo, Memr[xin], Memr[yin], Memr[xout], 
#	        Memr[yout], ncols)
#
#	    # Interpolate in input image.
#	    if (IM_NDIM(input) == 1)
#	        call asivector (msi, Memr[xout], Memr[outbuf], ncols)
#	    else
#	        call msivector (msi, Memr[xout], Memr[yout], Memr[outbuf],
#		    ncols)
#
#	    # Correct for constant boundary extension.
#	    if (GT_BOUNDARY(geo) == BT_CONSTANT)
#		call geo_bconstant (input, geo, Memr[xin], Memr[yin],
#		    Memr[outbuf], Memr[outbuf], ncols)
#
#	    # Preserve flux in image.
#	    if (GT_FLUXCONSERVE(geo) == YES) {
#		factor = GT_XSCALE(geo) * GT_YSCALE(geo)
#		if (GT_GEOMODE(geo) == GT_LINEAR || (sx2 == NULL && sy2 ==
#		        NULL)) {
#		    if (IM_NDIM(input) == 1)
#		        call amulkr (Memr[outbuf], factor * geo_jfactor (sx1,
#			    NULL), Memr[outbuf], ncols)
#		    else
#		        call amulkr (Memr[outbuf], factor * geo_jfactor (sx1,
#			    sy1), Memr[outbuf], ncols)
#		} else {
#		    if (IM_NDIM(input) == 1)
#		        call geo_gsflux (xref, yref, Memr[outbuf], 1, ncols, j,
#		            sx1, NULL, sx2, NULL)
#		    else
#		        call geo_gsflux (xref, yref, Memr[outbuf], 1, ncols, j,
#		            sx1, sy1, sx2, sy2)
#		    call amulkr (Memr[outbuf], factor, Memr[outbuf], ncols)
#		}
#	    }
#	}
#
#	call sfree (sp)
#end


## GEO_BTRAN -- Map out-of-bounds pixel into the input image.
#
#procedure geo_btran (input, geo, xin, yin, xout, yout, ncols)
#
#pointer	input			#I pointer to the input image
#pointer	geo			#I pointer to geotran strcuture
#real	xin[ARB]		#I x input coords
#real	yin[ARB]		#I y input coords
#real	xout[ARB]		#O x output coords
#real	yout[ARB]		#O y output coords
#int	ncols			#I number of columns
#
#int	i
#real	xmax, ymax, xtemp, ytemp
#
#begin
#	xmax = IM_LEN(input,1)
#	if (IM_NDIM(input) == 1)
#	    ymax = 1.0
#	else
#	    ymax = IM_LEN(input,2)
#
#	switch (GT_BOUNDARY(geo)) {
#	case BT_CONSTANT, BT_NEAREST:
#	    do i = 1, ncols {
#		if (xin[i] < 1.0)
#		    xout[i] = 1.0
#		else if (xin[i] > xmax)
#		    xout[i] = xmax
#		else
#		    xout[i] = xin[i]
#		if (yin[i] < 1.0)
#		    yout[i] = 1.0
#		else if (yin[i] > ymax)
#		    yout[i] = ymax
#		else
#		    yout[i] = yin[i]
#	    }
#	case BT_REFLECT:
#	    do i = 1, ncols {
#		if (xin[i] < 1.0)
#		    xout[i] = 1.0 + (1.0 - xin[i])
#		else if (xin[i] > xmax)
#		    xout[i] = xmax - (xin[i] - xmax)
#		else
#		    xout[i] = xin[i]
#		if (yin[i] < 1.0)
#		    yout[i] = 1.0 + (1.0 - yin[i])
#		else if (yin[i] > ymax)
#		    yout[i] = ymax - (yin[i] - ymax)
#		else
#		    yout[i] = yin[i]
#	    }
#	case BT_WRAP:
#	    do i = 1, ncols {
#		xtemp = xin[i]
#		ytemp = yin[i]
#
#		if (xtemp < 1.0) {
#		    while (xtemp < 1.0)
#		        xtemp = xtemp + xmax
#		    if (xtemp < 1.0)
#			xtemp = xmax - xtemp
#		    else if (xtemp > xmax)
#			xtemp = 2.0 + xmax - xtemp
#		} else if (xtemp > xmax) {
#		    while (xtemp > xmax)
#		        xtemp = xtemp - xmax
#		    if (xtemp < 1.0)
#			xtemp = xmax - xtemp
#		    else if (xtemp > xmax)
#			xtemp = 2.0 + xmax - xtemp
#		}
#		xout[i] = xtemp
#
#		if (ytemp < 1.0) {
#		    while (ytemp < 1.0)
#		        ytemp = ytemp + ymax
#		    if (ytemp < 1.0)
#			ytemp = ymax - ytemp
#		    else if (ytemp > ymax)
#			ytemp = 2.0 + ymax - ytemp
#		} else if (ytemp > ymax) {
#		    while (ytemp > ymax)
#		        ytemp = ytemp - ymax
#		    if (ytemp < 1.0)
#			ytemp = ymax - ytemp
#		    else if (ytemp > ymax)
#			ytemp = 2.0 + ymax - ytemp
#		}
#		yout[i] = ytemp
#	    }
#	}
#end


## GEO_BCONSTANT -- Map constant out-of-bounds pixels into the input image.
#
#procedure geo_bconstant (input, geo, xin, yin, inbuf, outbuf, ncols)
#
#pointer	input			#I pointer to the input image
#pointer	geo			#I pointer to geotran structure
#real	xin[ARB]		#I x input coords
#real	yin[ARB]		#I y input coords
#real	inbuf[ARB]		#I input buffer
#real	outbuf[ARB]		#O output buffer
#int	ncols			#I number of columns
#
#int	i
#real	xmax, ymax, constant
#
#begin
#	xmax = IM_LEN(input,1)
#	if (IM_NDIM(input) == 1)
#	    ymax = 1.0
#	else
#	    ymax = IM_LEN(input,2)
#	constant = GT_CONSTANT(geo)
#	do i = 1, ncols {
#	    if (xin[i] < 1.0 || xin[i] > xmax || yin[i] < 1.0 || yin[i] > ymax)
#		outbuf[i] = constant
#	    else
#		outbuf[i] = inbuf[i]
#	}
#end