1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <imhdr.h>
include <imset.h>
include <mach.h>
include <math/gsurfit.h>
include <math/iminterp.h>
include "geotran.h"
define NMARGIN 3 # number of boundary pixels
define NMARGIN_SPLINE3 16 # number of spline boundary pixels
# GEO_TRAN -- Correct an image for geometric distortion block by block using
# fitted coordinates and image interpolation.
procedure geo_tran (input, output, geo, sx1, sy1, sx2, sy2, nxblock, nyblock)
pointer input #I pointer to input image
pointer output #I pointer to output image
pointer geo #I pointer to geotran structure
pointer sx1, sy1 #I pointers to linear surfaces
pointer sx2, sy2 #I pointers to higher order surfaces
int nxblock, nyblock #I working block size
int l1, l2, c1, c2, nincr
pointer sp, xref, yref, msi
real shift
real gsgetr()
begin
# Initialize the interpolant.
if (IM_NDIM(input) == 1) {
call asitype (GT_INTERPSTR(geo), GT_INTERPOLANT(geo), GT_NSINC(geo),
nincr, shift)
call asisinit (msi, GT_INTERPOLANT(geo), GT_NSINC(geo), nincr,
shift, 0.0)
} else {
call msitype (GT_INTERPSTR(geo), GT_INTERPOLANT(geo),
GT_NSINC(geo), nincr, shift)
call msisinit (msi, GT_INTERPOLANT(geo), GT_NSINC(geo), nincr,
nincr, shift, shift, 0.0)
}
call geo_margset (sx1, sy1, sx2, sy2, GT_XMIN(geo), GT_XMAX(geo),
GT_NCOLS(geo), GT_YMIN(geo), GT_YMAX(geo), GT_NLINES(geo),
GT_INTERPOLANT(geo), GT_NSINC(geo), GT_NXYMARGIN(geo))
# Allocate working space.
call smark (sp)
call salloc (xref, GT_NCOLS(geo), TY_REAL)
call salloc (yref, GT_NLINES(geo), TY_REAL)
# Compute the reference coordinates corresponding to the center of
# the output image pixels.
call geo_ref (geo, Memr[xref], 1, GT_NCOLS(geo), GT_NCOLS(geo),
Memr[yref], 1, GT_NLINES(geo), GT_NLINES(geo), gsgetr (sx1,
GSXMIN), gsgetr (sx1, GSXMAX), gsgetr (sx1, GSYMIN), gsgetr (sx1,
GSYMAX), GT_ONE)
# Configure the out-of-bounds pixel references for the input image.
call geo_imset (input, geo, sx1, sy1, sx2, sy2, Memr[xref],
GT_NCOLS(geo), Memr[yref], GT_NLINES(geo))
# Loop over the line blocks.
for (l1 = 1; l1 <= GT_NLINES(geo); l1 = l1 + nyblock) {
# Set line limits in the output image.
l2 = min (l1 + nyblock - 1, GT_NLINES(geo))
# Loop over the column blocks
for (c1 = 1; c1 <= GT_NCOLS(geo); c1 = c1 + nxblock) {
# Set column limits in the output image.
c2 = min (c1 + nxblock - 1, GT_NCOLS(geo))
# Interpolate
call geo_gsvector (input, output, geo, msi, Memr[xref],
c1, c2, Memr[yref], l1, l2, sx1, sy1, sx2, sy2)
}
}
# Clean up.
if (IM_NDIM(input) == 1)
call asifree (msi)
else
call msifree (msi)
call sfree (sp)
end
# GEO_STRAN -- Correct an image for geometric distortion block by block using
# interpolated coordinates and image interpolation.
procedure geo_stran (input, output, geo, sx1, sy1, sx2, sy2, nxblock, nyblock)
pointer input #I pointer to input image
pointer output #I pointer to output image
pointer geo #I pointer to geotran structure
pointer sx1, sy1 #I pointers to linear surfaces
pointer sx2, sy2 #I pointers to higher order surfaces
int nxblock, nyblock #I working block size
int nxsample, nysample, ncols, nlines, l1, l2, c1, c2
int line1, line2, llast1, llast2, nincr
pointer sp, xsample, ysample, xinterp, yinterp
pointer xmsi, ymsi, jmsi, msi, xbuf, ybuf, jbuf
real shift
real gsgetr()
begin
# Allocate working space and intialize the interpolant.
call smark (sp)
call salloc (xsample, GT_NCOLS(geo), TY_REAL)
call salloc (ysample, GT_NLINES(geo), TY_REAL)
call salloc (xinterp, GT_NCOLS(geo), TY_REAL)
call salloc (yinterp, GT_NLINES(geo), TY_REAL)
# Compute the sample size.
if (GT_NCOLS(geo) == 1)
nxsample = 1
else
nxsample = GT_NCOLS(geo) / GT_XSAMPLE(geo)
if (GT_NLINES(geo) == 1)
nysample = 1
else
nysample = GT_NLINES(geo) / GT_YSAMPLE(geo)
# Initialize interpolants.
if (IM_NDIM(input) == 1) {
call asiinit (xmsi, II_LINEAR)
call asiinit (ymsi, II_LINEAR)
call asitype (GT_INTERPSTR(geo), GT_INTERPOLANT(geo),
GT_NSINC(geo), nincr, shift)
call asisinit (msi, GT_INTERPOLANT(geo), GT_NSINC(geo), nincr,
shift, 0.0)
if (GT_FLUXCONSERVE(geo) == YES)
call asiinit (jmsi, II_LINEAR)
} else {
call msiinit (xmsi, II_BILINEAR)
call msiinit (ymsi, II_BILINEAR)
call msitype (GT_INTERPSTR(geo), GT_INTERPOLANT(geo),
GT_NSINC(geo), nincr, shift)
call msisinit (msi, GT_INTERPOLANT(geo), GT_NSINC(geo), nincr,
nincr, shift, shift, 0.0)
if (GT_FLUXCONSERVE(geo) == YES)
call msiinit (jmsi, II_BILINEAR)
}
call geo_margset (sx1, sy1, sx2, sy2, GT_XMIN(geo), GT_XMAX(geo),
GT_NCOLS(geo), GT_YMIN(geo), GT_YMAX(geo), GT_NLINES(geo),
GT_INTERPOLANT(geo), GT_NSINC(geo), GT_NXYMARGIN(geo))
# Setup input image boundary extension parameters.
call geo_ref (geo, Memr[xsample], 1, GT_NCOLS(geo), GT_NCOLS(geo),
Memr[ysample], 1, GT_NLINES(geo), GT_NLINES(geo), gsgetr (sx1,
GSXMIN), gsgetr (sx1, GSXMAX), gsgetr (sx1, GSYMIN), gsgetr (sx1,
GSYMAX), GT_ONE)
call geo_imset (input, geo, sx1, sy1, sx2, sy2, Memr[xsample],
GT_NCOLS(geo), Memr[ysample], GT_NLINES(geo))
# Calculate the sampled reference coordinates and the interpolated
# reference coordinates.
call geo_ref (geo, Memr[xsample], 1, nxsample, nxsample, Memr[ysample],
1, nysample, nysample, gsgetr (sx1, GSXMIN), gsgetr (sx1, GSXMAX),
gsgetr (sx1, GSYMIN), gsgetr (sx1, GSYMAX), GT_ONE)
call geo_sample (geo, Memr[xinterp], 1, GT_NCOLS(geo), nxsample,
Memr[yinterp], 1, GT_NLINES(geo), nysample, GT_ONE)
# Initialize the buffers.
xbuf = NULL
ybuf = NULL
jbuf = NULL
# Loop over the line blocks.
for (l1 = 1; l1 <= GT_NLINES(geo); l1 = l1 + nyblock) {
# Set line limits in the output image.
l2 = min (l1 + nyblock - 1, GT_NLINES(geo))
nlines = l2 - l1 + 1
# Line1 and line2 are the coordinates in the interpolation surface
line1 = max (1, min (nysample - 1, int (Memr[yinterp+l1-1])))
line2 = min (nysample, int (Memr[yinterp+l2-1] + 1.0))
if ((xbuf == NULL) || (ybuf == NULL) || (jbuf == NULL) ||
(line1 < llast1) || (line2 > llast2)) {
call geo_xbuffer (sx1, sx2, xmsi, Memr[xsample], Memr[ysample],
1, nxsample, line1, line2, xbuf)
call geo_ybuffer (sy1, sy2, ymsi, Memr[xsample], Memr[ysample],
1, nxsample, line1, line2, ybuf)
if (GT_FLUXCONSERVE(geo) == YES) {
if (IM_NDIM(input) == 1)
call geo_jbuffer (sx1, NULL, sx2, NULL, jmsi,
Memr[xsample], Memr[ysample], 1, nxsample,
line1, line2, jbuf)
else
call geo_jbuffer (sx1, sy1, sx2, sy2, jmsi,
Memr[xsample], Memr[ysample], 1, nxsample,
line1, line2, jbuf)
}
llast1 = line1
llast2 = line2
}
# Loop over the column blocks.
for (c1 = 1; c1 <= GT_NCOLS(geo); c1 = c1 + nxblock) {
# C1 and c2 are the column limits in the output image.
c2 = min (c1 + nxblock - 1, GT_NCOLS(geo))
ncols = c2 - c1 + 1
# Calculate the coordinates of the output pixels in the input
# image.
call geo_msivector (input, output, geo, xmsi, ymsi, jmsi, msi,
sx1, sy1, sx2, sy2, Memr[xinterp], c1, c2, nxsample,
Memr[yinterp], l1, l2, nysample, 1, line1)
}
}
# Free space.
if (IM_NDIM(input) == 1) {
call asifree (xmsi)
call asifree (ymsi)
call asifree (msi)
if (GT_FLUXCONSERVE(geo) == YES)
call asifree (jmsi)
} else {
call msifree (xmsi)
call msifree (ymsi)
call msifree (msi)
if (GT_FLUXCONSERVE(geo) == YES)
call msifree (jmsi)
}
call mfree (xbuf, TY_REAL)
call mfree (ybuf, TY_REAL)
if (GT_FLUXCONSERVE(geo) == YES)
call mfree (jbuf, TY_REAL)
call sfree (sp)
end
# GEO_REF -- Determine the x and y coordinates at which the coordinate
# surface will be subsampled.
procedure geo_ref (geo, x, c1, c2, nx, y, l1, l2, ny, xmin, xmax, ymin, ymax,
cmode)
pointer geo #I pointer to the geotran structure
real x[ARB] #O output x sample coordinates
int c1, c2, nx #I the column limits of the sampled array
real y[ARB] #O output y sample coordinates
int l1, l2, ny #I the line limits of the output coordinates
real xmin, xmax #I limits on x coordinates
real ymin, ymax #I limits on y coordinates
int cmode #I coordinate computation mode
int i
real xtempmin, xtempmax, ytempmin, ytempmax, dx, dy
begin
switch (cmode) {
case GT_FOUR:
if (nx == 1) {
xtempmin = min (xmax, max (xmin, GT_XMIN(geo)))
xtempmax = min (xmax, max (xmin, GT_XMAX(geo)))
x[1] = xtempmin
x[2] = xtempmax
x[3] = xtempmax
x[4] = xtempmin
} else if (nx == GT_NCOLS(geo)) {
if (GT_XMIN(geo) > GT_XMAX(geo))
dx = -GT_XSCALE(geo)
else
dx = GT_XSCALE(geo)
do i = c1, c2 {
xtempmin = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 1.5) * dx))
xtempmax = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 0.5) * dx))
x[4*(i-c1)+1] = xtempmin
x[4*(i-c1)+2] = xtempmax
x[4*(i-c1)+3] = xtempmax
x[4*(i-c1)+4] = xtempmin
}
} else {
if (GT_XMIN(geo) > GT_XMAX(geo))
dx = -GT_XSCALE(geo) * (GT_NCOLS(geo) - 1.0) / (nx - 1.0)
else
dx = GT_XSCALE(geo) * (GT_NCOLS(geo) - 1.0) / (nx - 1.0)
do i = c1, c2 {
xtempmin = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 1.5) * dx))
xtempmax = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 0.5) * dx))
x[4*(i-c1)+1] = xtempmin
x[4*(i-c1)+2] = xtempmax
x[4*(i-c1)+3] = xtempmax
x[4*(i-c1)+4] = xtempmin
}
}
case GT_TWO:
if (nx == 1) {
xtempmin = min (xmax, max (xmin, GT_XMIN(geo)))
xtempmax = min (xmax, max (xmin, GT_XMAX(geo)))
x[1] = xtempmin
x[2] = xtempmax
} else if (nx == GT_NCOLS(geo)) {
if (GT_XMIN(geo) > GT_XMAX(geo))
dx = -GT_XSCALE(geo)
else
dx = GT_XSCALE(geo)
do i = c1, c2 {
xtempmin = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 1.5) * dx))
xtempmax = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 0.5) * dx))
x[2*(i-c1)+1] = xtempmin
x[2*(i-c1)+2] = xtempmax
}
} else {
if (GT_XMIN(geo) > GT_XMAX(geo))
dx = -GT_XSCALE(geo) * (GT_NCOLS(geo) - 1.0) / (nx - 1.0)
else
dx = GT_XSCALE(geo) * (GT_NCOLS(geo) - 1.0) / (nx - 1.0)
do i = c1, c2 {
xtempmin = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 1.5) * dx))
xtempmax = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 0.5) * dx))
x[2*(i-c1)+1] = xtempmin
x[2*(i-c1)+2] = xtempmax
}
}
case GT_ONE:
if (nx == 1) {
x[1] = min (xmax, max (xmin,
(GT_XMIN(geo) + GT_XMAX(geo)) / 2.0))
} else if (nx == GT_NCOLS(geo)) {
if (GT_XMIN(geo) > GT_XMAX(geo))
dx = -GT_XSCALE(geo)
else
dx = GT_XSCALE(geo)
do i = c1, c2
x[i-c1+1] = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 1) * dx))
} else {
if (GT_XMIN(geo) > GT_XMAX(geo))
dx = -GT_XSCALE(geo) * (GT_NCOLS(geo) - 1.0) / (nx - 1.0)
else
dx = GT_XSCALE(geo) * (GT_NCOLS(geo) - 1.0) / (nx - 1.0)
do i = c1, c2
x[i-c1+1] = min (xmax, max (xmin, GT_XMIN(geo) +
(i - 1) * dx))
}
}
switch (cmode) {
case GT_FOUR:
if (ny == 1) {
ytempmin = min (ymax, max (ymin, GT_YMIN(geo)))
ytempmax = min (ymax, max (ymin, GT_YMAX(geo)))
y[1] = ytempmin
y[2] = ytempmin
y[3] = ytempmax
y[4] = ytempmax
} else if (ny == GT_NLINES(geo)) {
if (GT_YMIN(geo) > GT_YMAX(geo))
dy = -GT_YSCALE(geo)
else
dy = GT_YSCALE(geo)
do i = l1, l2 {
ytempmin = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 1.5) * dy))
ytempmax = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 0.5) * dy))
y[4*(i-l1)+1] = ytempmin
y[4*(i-l1)+2] = ytempmin
y[4*(i-l1)+3] = ytempmax
y[4*(i-l1)+4] = ytempmax
}
} else {
if (GT_YMIN(geo) > GT_YMAX(geo))
dy = -GT_YSCALE(geo) * (GT_NLINES(geo) - 1.0) / (ny - 1.0)
else
dy = GT_YSCALE(geo) * (GT_NLINES(geo) - 1.0) / (ny - 1.0)
do i = l1, l2 {
ytempmin = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 1.5) * dy))
ytempmax = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 0.5) * dy))
y[4*(i-l1)+1] = ytempmin
y[4*(i-l1)+2] = ytempmin
y[4*(i-l1)+3] = ytempmax
y[4*(i-l1)+4] = ytempmax
}
}
case GT_TWO:
if (ny == 1) {
ytempmin = min (ymax, max (ymin, GT_YMIN(geo)))
ytempmax = min (ymax, max (ymin, GT_YMAX(geo)))
y[1] = ytempmin
y[2] = ytempmax
} else if (ny == GT_NLINES(geo)) {
if (GT_YMIN(geo) > GT_YMAX(geo))
dy = -GT_YSCALE(geo)
else
dy = GT_YSCALE(geo)
do i = l1, l2 {
ytempmin = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 1.5) * dy))
ytempmax = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 0.5) * dy))
y[2*(i-l1)+1] = ytempmin
y[2*(i-l1)+2] = ytempmax
}
} else {
if (GT_YMIN(geo) > GT_YMAX(geo))
dy = -GT_YSCALE(geo) * (GT_NLINES(geo) - 1.0) / (ny - 1.0)
else
dy = GT_YSCALE(geo) * (GT_NLINES(geo) - 1.0) / (ny - 1.0)
do i = l1, l2 {
ytempmin = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 1.5) * dy))
ytempmax = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 0.5) * dy))
y[2*(i-l1)+1] = ytempmin
y[2*(i-l1)+2] = ytempmax
}
}
case GT_ONE:
if (ny == 1) {
y[1] = min (ymax, max (ymin,
(GT_YMIN(geo) + GT_YMAX(geo)) / 2.0))
} else if (ny == GT_NLINES(geo)) {
if (GT_YMIN(geo) > GT_YMAX(geo))
dy = -GT_YSCALE(geo)
else
dy = GT_YSCALE(geo)
do i = l1, l2
y[i-l1+1] = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 1) * dy))
} else {
if (GT_YMIN(geo) > GT_YMAX(geo))
dy = -GT_YSCALE(geo) * (GT_NLINES(geo) - 1.0) / (ny - 1.0)
else
dy = GT_YSCALE(geo) * (GT_NLINES(geo) - 1.0) / (ny - 1.0)
do i = l1, l2
y[i-l1+1] = min (ymax, max (ymin, GT_YMIN(geo) +
(i - 1) * dy))
}
}
end
# GEO_SAMPLE -- Calculate the sampled reference points.
procedure geo_sample (geo, xref, c1, c2, nxsample, yref, l1, l2, nysample,
cmode)
pointer geo #I pointer to geotran structure
real xref[ARB] #O x reference values
int c1, c2, nxsample #I limits and number of sample points in x
real yref[ARB] #O y reference values
int l1, l2, nysample #I limits and number of sample points in y
int cmode #I coordinate computation mode
int i
real xtempmin, xtempmax, ytempmin, ytempmax
begin
switch (cmode) {
case GT_FOUR:
if (GT_NCOLS(geo) == 1) {
xref[1] = 0.5
xref[2] = 1.5
xref[3] = 1.5
xref[4] = 0.5
} else {
do i = c1, c2 {
xtempmin = min (real (nxsample), max (1.,
real ((nxsample - 1) * (i - 0.5) + (GT_NCOLS(geo) -
nxsample)) / (GT_NCOLS(geo) - 1)))
xtempmax = min (real (nxsample), max (1.,
real ((nxsample - 1) * (i + 0.5) + (GT_NCOLS(geo) -
nxsample)) / (GT_NCOLS(geo) - 1)))
xref[4*(i-c1)+1] = xtempmin
xref[4*(i-c1)+2] = xtempmax
xref[4*(i-c1)+3] = xtempmax
xref[4*(i-c1)+4] = xtempmin
}
}
case GT_TWO:
if (GT_NCOLS(geo) == 1) {
xref[1] = 0.5
xref[2] = 1.5
} else {
do i = c1, c2 {
xtempmin = min (real (nxsample), max (1.,
real ((nxsample - 1) * (i - 0.5) + (GT_NCOLS(geo) -
nxsample)) / (GT_NCOLS(geo) - 1)))
xtempmax = min (real (nxsample), max (1.,
real ((nxsample - 1) * (i + 0.5) + (GT_NCOLS(geo) -
nxsample)) / (GT_NCOLS(geo) - 1)))
xref[2*(i-c1)+1] = xtempmin
xref[2*(i-c1)+2] = xtempmax
}
}
case GT_ONE:
if (GT_NCOLS(geo) == 1)
xref[1] = 1.0
else {
do i = c1, c2
xref[i-c1+1] = min (real (nxsample), max (1.,
real ((nxsample - 1) * i + (GT_NCOLS(geo) -
nxsample)) / (GT_NCOLS(geo) - 1)))
}
}
switch (cmode) {
case GT_FOUR:
if (GT_NLINES(geo) == 1) {
yref[1] = 0.5
yref[2] = 0.5
yref[3] = 1.5
yref[4] = 1.5
} else {
do i = l1, l2 {
ytempmin = min (real (nysample), max (1.,
real ((nysample - 1) * (i - 0.5) + (GT_NLINES(geo) -
nysample)) / (GT_NLINES(geo) - 1)))
ytempmax = min (real (nysample), max (1.,
real ((nysample - 1) * (i + 0.5) + (GT_NLINES(geo) -
nysample)) / (GT_NLINES(geo) - 1)))
yref[4*(i-l1)+1] = ytempmin
yref[4*(i-l1)+2] = ytempmin
yref[4*(i-l1)+3] = ytempmax
yref[4*(i-l1)+4] = ytempmax
}
}
case GT_TWO:
if (GT_NLINES(geo) == 1) {
yref[1] = 0.5
yref[2] = 1.5
} else {
do i = l1, l2 {
ytempmin = min (real (nysample), max (1.,
real ((nysample - 1) * (i - 0.5) + (GT_NLINES(geo) -
nysample)) / (GT_NLINES(geo) - 1)))
ytempmax = min (real (nysample), max (1.,
real ((nysample - 1) * (i + 0.5) + (GT_NLINES(geo) -
nysample)) / (GT_NLINES(geo) - 1)))
yref[2*(i-l1)+1] = ytempmin
yref[2*(i-l1)+2] = ytempmax
}
}
case GT_ONE:
if (GT_NLINES(geo) == 1)
yref[1] = 1.0
else {
do i = l1, l2
yref[i-l1+1] = min (real (nysample), max (1.,
real ((nysample - 1) * i + (GT_NLINES(geo) -
nysample)) / (GT_NLINES(geo) - 1)))
}
}
end
# GEO_XBUFFER -- Compute the x interpolant and coordinates.
procedure geo_xbuffer (s1, s2, msi, xsample, ysample, c1, c2, l1, l2, buf)
pointer s1, s2 #I pointers to the x surface
pointer msi #I interpolant
real xsample[ARB] #I sampled x reference coordinates
real ysample[ARB] #I sampled y reference coordinates
int c1, c2 #I columns of interest in sampled image
int l1, l2 #I lines of interest in the sampled image
pointer buf #I pointer to output buffer
int i, ncols, nlines, llast1, llast2, nclast, nllast
pointer sp, sf, y, z, buf1, buf2
begin
ncols = c2 - c1 + 1
nlines = l2 - l1 + 1
# Combine surfaces.
if (s2 == NULL)
call gscopy (s1, sf)
else
call gsadd (s1, s2, sf)
# Allocate working space.
call smark (sp)
call salloc (y, ncols, TY_REAL)
call salloc (z, ncols, TY_REAL)
# If buffer undefined then allocate memory for the buffer. Reallocate
# the buffer if the number of lines or columns changes.
if (buf == NULL) {
call malloc (buf, ncols * nlines, TY_REAL)
llast1 = l1 - nlines
llast2 = l2 - nlines
} else if ((nlines != nllast) || (ncols != nclast)) {
call realloc (buf, ncols * nlines, TY_REAL)
llast1 = l1 - nlines
llast2 = l2 - nlines
}
# Compute the coordinates.
if (l1 < llast1) {
do i = l2, l1, -1 {
if (i > llast1)
buf1 = buf + (i - llast1) * ncols
else {
buf1 = z
call amovkr (ysample[i], Memr[y], ncols)
call gsvector (sf, xsample[c1], Memr[y], Memr[buf1], ncols)
}
buf2 = buf + (i - l1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
} else if (l2 > llast2) {
do i = l1, l2 {
if (i < llast2)
buf1 = buf + (i - llast1) * ncols
else {
buf1 = z
call amovkr (ysample[i], Memr[y], ncols)
call gsvector (sf, xsample[c1], Memr[y], Memr[buf1], ncols)
}
buf2 = buf + (i - l1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
}
llast1 = l1
llast2 = l2
nclast = ncols
nllast = nlines
# Fit the interpolant.
if (nlines == 1)
call asifit (msi, Memr[buf], ncols)
else
call msifit (msi, Memr[buf], ncols, nlines, ncols)
call gsfree (sf)
call sfree (sp)
end
# GEO_YBUFFER -- Compute the y interpolant and coordinates.
procedure geo_ybuffer (s1, s2, msi, xsample, ysample, c1, c2, l1, l2, buf)
pointer s1, s2 #I pointers to the y surface
pointer msi #I interpolant
real xsample[ARB] #I sampled x reference coordinates
real ysample[ARB] #I sampled y reference coordinates
int c1, c2 #I columns of interest in sampled image
int l1, l2 #I lines of interest in the sampled image
pointer buf #I pointer to output buffer
int i, ncols, nlines, llast1, llast2, nclast, nllast
pointer sp, sf, y, z, buf1, buf2
begin
ncols = c2 - c1 + 1
nlines = l2 - l1 + 1
# Combine surfaces.
if (s2 == NULL)
call gscopy (s1, sf)
else
call gsadd (s1, s2, sf)
# Allocate working space.
call smark (sp)
call salloc (y, ncols, TY_REAL)
call salloc (z, ncols, TY_REAL)
# If buffer undefined then allocate memory for the buffer. Reallocate
# the buffer if the number of lines or columns changes.
if (buf == NULL) {
call malloc (buf, ncols * nlines, TY_REAL)
llast1 = l1 - nlines
llast2 = l2 - nlines
} else if ((nlines != nllast) || (ncols != nclast)) {
call realloc (buf, ncols * nlines, TY_REAL)
llast1 = l1 - nlines
llast2 = l2 - nlines
}
# Compute the coordinates.
if (l1 < llast1) {
do i = l2, l1, -1 {
if (i > llast1)
buf1 = buf + (i - llast1) * ncols
else {
buf1 = z
call amovkr (ysample[i], Memr[y], ncols)
call gsvector (sf, xsample[c1], Memr[y], Memr[buf1], ncols)
}
buf2 = buf + (i - l1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
} else if (l2 > llast2) {
do i = l1, l2 {
if (i < llast2)
buf1 = buf + (i - llast1) * ncols
else {
buf1 = z
call amovkr (ysample[i], Memr[y], ncols)
call gsvector (sf, xsample[c1], Memr[y], Memr[buf1], ncols)
}
buf2 = buf + (i - l1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
}
llast1 = l1
llast2 = l2
nclast = ncols
nllast = nlines
# Fit the interpolant.
if (nlines == 1)
call asifit (msi, Memr[buf], ncols)
else
call msifit (msi, Memr[buf], ncols, nlines, ncols)
call gsfree (sf)
call sfree (sp)
end
# GEO_JBUFFER -- Fit the jacobian surface.
procedure geo_jbuffer (sx1, sy1, sx2, sy2, jmsi, xsample, ysample, c1, c2, l1,
l2, jbuf)
pointer sx1, sy1 #I pointers to the linear surfaces
pointer sx2, sy2 #I pointers to the distortion surfaces
pointer jmsi #I interpolant
real xsample[ARB] #I sampled x reference coordinates
real ysample[ARB] #I sampled y reference coordinates
int c1, c2 #I columns of interest in sampled image
int l1, l2 #I lines of interest in the sampled image
pointer jbuf #I pointer to output buffer
int i, ncols, nlines, llast1, llast2, nclast, nllast
pointer sp, sx, sy, y, z, buf1, buf2
begin
ncols = c2 - c1 + 1
nlines = l2 - l1 + 1
# Combine surfaces.
if (sx2 == NULL)
call gscopy (sx1, sx)
else
call gsadd (sx1, sx2, sx)
if (sy1 == NULL)
sy = NULL
else if (sy2 == NULL)
call gscopy (sy1, sy)
else
call gsadd (sy1, sy2, sy)
call smark (sp)
call salloc (y, ncols, TY_REAL)
call salloc (z, ncols, TY_REAL)
# If buffer undefined then allocate memory for the buffer. Reallocate
# the buffer if the number of lines or columns changes.
if (jbuf == NULL) {
call malloc (jbuf, ncols * nlines, TY_REAL)
llast1 = l1 - nlines
llast2 = l2 - nlines
} else if ((nlines != nllast) || (ncols != nclast)) {
call realloc (jbuf, ncols * nlines, TY_REAL)
llast1 = l1 - nlines
llast2 = l2 - nlines
}
# Compute surface.
if (l1 < llast1) {
do i = l2, l1, -1 {
if (i > llast1)
buf1 = jbuf + (i - llast1) * ncols
else {
buf1 = z
call amovkr (ysample[i], Memr[y], ncols)
call geo_jgsvector (sx, sy, xsample[c1], Memr[y],
Memr[buf1], ncols)
}
buf2 = jbuf + (i - l1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
} else if (l2 > llast2) {
do i = l1, l2 {
if (i < llast2)
buf1 = jbuf + (i - llast1) * ncols
else {
buf1 = z
call amovkr (ysample[i], Memr[y], ncols)
call geo_jgsvector (sx, sy, xsample[c1], Memr[y],
Memr[buf1], ncols)
}
buf2 = jbuf + (i - l1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
}
# Update buffer pointers.
llast1 = l1
llast2 = l2
nclast = ncols
nllast = nlines
# Fit the interpolant.
if (nlines == 1)
call asifit (jmsi, Memr[jbuf], ncols)
else
call msifit (jmsi, Memr[jbuf], ncols, nlines, ncols)
call gsfree (sx)
call gsfree (sy)
call sfree (sp)
end
# GEO_JGSVECTOR -- Procedure to compute the Jacobian of the transformation.
procedure geo_jgsvector (sx, sy, x, y, out, ncols)
pointer sx, sy #I surface descriptors
real x[ARB] #I x values
real y[ARB] #I y values
real out[ARB] #O output values
int ncols #I number of points
pointer sp, der1, der2
begin
call smark (sp)
if (sy == NULL) {
call gsder (sx, x, y, out, ncols, 1, 0)
} else {
call salloc (der1, ncols, TY_REAL)
call salloc (der2, ncols, TY_REAL)
call gsder (sx, x, y, Memr[der1], ncols, 1, 0)
call gsder (sy, x, y, Memr[der2], ncols, 0, 1)
call amulr (Memr[der1], Memr[der2], out, ncols)
call gsder (sx, x, y, Memr[der1], ncols, 0, 1)
call gsder (sy, x, y, Memr[der2], ncols, 1, 0)
call amulr (Memr[der1], Memr[der2], Memr[der1], ncols)
call asubr (out, Memr[der1], out, ncols)
}
call sfree (sp)
end
# GEO_MSIVECTOR -- Procedure to interpolate the surface coordinates
procedure geo_msivector (in, out, geo, xmsi, ymsi, jmsi, msi, sx1, sy1, sx2,
sy2, xref, c1, c2, nxsample, yref, l1, l2, nysample, x0, y0)
pointer in #I pointer to input image
pointer out #I pointer to output image
pointer geo #I pointer to geotran structure
pointer xmsi, ymsi #I pointer to the interpolation cord surfaces
pointer jmsi #I pointer to Jacobian surface
pointer msi #I pointer to interpolation surface
pointer sx1, sy1 #I pointers to linear surfaces
pointer sx2, sy2 #I pointer to higher order surfaces
real xref[ARB] #I x reference coordinates
int c1, c2 #I column limits in output image
int nxsample #I the x sample size
real yref[ARB] #I y reference coordinates
int l1, l2 #I line limits in output image
int nysample #I the y sample size
int x0, y0 #I zero points of interpolation coordinates
int j, ncols, nlines, ncols4, nlines4
int imc1, imc2, iml1, iml2, nicols, nilines
pointer sp, txref, tyref, x, y, xin, yin, inbuf, outbuf
real xmin, xmax, ymin, ymax, factor
pointer imgs1r(), imgs2r(), imps1r(), imps2r()
real geo_jfactor()
begin
ncols = c2 - c1 + 1
nlines = l2 - l1 + 1
# Find min max of interpolation coords.
if (IM_NDIM(in) == 1)
call geo_iminmax (xref, yref, c1, c2, l1, l2, x0, 0,
xmsi, ymsi, xmin, xmax, ymin, ymax)
else
call geo_iminmax (xref, yref, c1, c2, l1, l2, x0, y0,
xmsi, ymsi, xmin, xmax, ymin, ymax)
# Get the appropriate image section and fit the interpolant.
imc1 = int(xmin) - GT_NXYMARGIN(geo)
if (imc1 <= 0)
imc1 = imc1 - 1
imc2 = nint (xmax) + GT_NXYMARGIN(geo) + 1
nicols = imc2 - imc1 + 1
if (IM_NDIM(in) == 1) {
ncols4 = 2 * ncols
nlines4 = 2 * nlines
iml1 = 1
iml2 = 1
nilines = 1
inbuf = imgs1r (in, imc1, imc2)
if (inbuf == EOF)
call error (0, "Error reading image")
call asifit (msi, Memr[inbuf], nicols)
} else {
ncols4 = 4 * ncols
nlines4 = 4 * nlines
iml1 = int(ymin) - GT_NXYMARGIN(geo)
if (iml1 <= 0)
iml1 = iml1 - 1
iml2 = nint (ymax) + GT_NXYMARGIN(geo) + 1
nilines = iml2 - iml1 + 1
inbuf = imgs2r (in, imc1, imc2, iml1, iml2)
if (inbuf == EOF)
call error (0, "Error reading image")
call msifit (msi, Memr[inbuf], nicols, nilines, nicols)
}
# Allocate working space.
call smark (sp)
if (GT_INTERPOLANT(geo) == II_DRIZZLE || GT_INTERPOLANT(geo) ==
II_BIDRIZZLE) {
call salloc (txref, ncols4, TY_REAL)
call salloc (tyref, nlines4, TY_REAL)
call salloc (x, ncols4, TY_REAL)
call salloc (y, ncols4, TY_REAL)
call salloc (xin, ncols4, TY_REAL)
call salloc (yin, ncols4, TY_REAL)
if (IM_NDIM(in) == 1)
call geo_sample (geo, Memr[txref], c1, c2, nxsample,
Memr[tyref], l1, l2, nysample, GT_TWO)
else
call geo_sample (geo, Memr[txref], c1, c2, nxsample,
Memr[tyref], l1, l2, nysample, GT_FOUR)
call aaddkr (Memr[txref], real (-x0 + 1), Memr[x], ncols4)
} else {
call salloc (x, ncols, TY_REAL)
call salloc (y, ncols, TY_REAL)
call salloc (xin, ncols, TY_REAL)
call salloc (yin, ncols, TY_REAL)
call aaddkr (xref[c1], real (-x0 + 1), Memr[x], ncols)
}
# Compute the output buffer.
do j = l1, l2 {
# Write the output image.
if (IM_NDIM(in) == 1)
outbuf = imps1r (out, c1, c2)
else
outbuf = imps2r (out, c1, c2, j, j)
if (outbuf == EOF)
call error (0, "Error writing output image")
# Compute the interpolation coordinates.
if (GT_INTERPOLANT(geo) == II_DRIZZLE || GT_INTERPOLANT(geo) ==
II_BIDRIZZLE) {
if (IM_NDIM(in) == 1) {
call asivector (xmsi, Memr[x], Memr[xin], ncols4)
call amovkr (1.0, Memr[yin], ncols4)
} else {
#call amovkr (yref[j] + real (-y0 + 1), Memr[y], ncols)
call geo_repeat (Memr[tyref+4*(j-l1)], 4, Memr[y], ncols)
call aaddkr (Memr[y], real(-y0 + 1), Memr[y], ncols4)
call msivector (xmsi, Memr[x], Memr[y], Memr[xin], ncols4)
call msivector (ymsi, Memr[x], Memr[y], Memr[yin], ncols4)
}
if (imc1 != 1)
call aaddkr (Memr[xin], real (-imc1 + 1), Memr[xin], ncols4)
if (iml1 != 1)
call aaddkr (Memr[yin], real (-iml1 + 1), Memr[yin], ncols4)
} else {
if (IM_NDIM(in) == 1) {
call asivector (xmsi, Memr[x], Memr[xin], ncols)
call amovkr (1.0, Memr[yin], ncols)
} else {
call amovkr (yref[j] + real (-y0 + 1), Memr[y], ncols)
call msivector (xmsi, Memr[x], Memr[y], Memr[xin], ncols)
call msivector (ymsi, Memr[x], Memr[y], Memr[yin], ncols)
}
if (imc1 != 1)
call aaddkr (Memr[xin], real (-imc1 + 1), Memr[xin], ncols)
if (iml1 != 1)
call aaddkr (Memr[yin], real (-iml1 + 1), Memr[yin], ncols)
}
# Interpolate in the input image.
if (IM_NDIM(in) == 1)
call asivector (msi, Memr[xin], Memr[outbuf], ncols)
else
call msivector (msi, Memr[xin], Memr[yin], Memr[outbuf], ncols)
# Preserve flux in image.
if (GT_FLUXCONSERVE(geo) == YES) {
factor = GT_XSCALE(geo) * GT_YSCALE(geo)
if (GT_GEOMODE(geo) == GT_LINEAR || (sx2 == NULL && sy2 ==
NULL)) {
if (IM_NDIM(in) == 1)
call amulkr (Memr[outbuf], factor * geo_jfactor (sx1,
NULL), Memr[outbuf], ncols)
else
call amulkr (Memr[outbuf], factor * geo_jfactor (sx1,
sy1), Memr[outbuf], ncols)
} else {
if (IM_NDIM(in) == 1)
call geo_msiflux (jmsi, xref, yref, Memr[outbuf],
c1, c2, 0, x0, y0)
else
call geo_msiflux (jmsi, xref, yref, Memr[outbuf],
c1, c2, j, x0, y0)
call amulkr (Memr[outbuf], factor, Memr[outbuf], ncols)
}
}
}
call sfree (sp)
end
# GEO_GSVECTOR -- Evaluate the output image pixels using fitted coordinate
# values and image interpolation.
procedure geo_gsvector (input, output, geo, msi, xref, c1, c2, yref, l1, l2,
sx1, sy1, sx2, sy2)
pointer input #I pointer to input image
pointer output #I pointer to output image
pointer geo #I pointer to geotran structure
pointer msi #I pointer to interpolant
real xref[ARB] #I x reference array
int c1, c2 #I columns of interest in output image
real yref[ARB] #I y reference array
int l1, l2 #I lines of interest in the output image
pointer sx1, sy1 #I linear surface descriptors
pointer sx2, sy2 #I distortion surface descriptors
int j, ncols, nlines, ncols4, nlines4, nicols, nilines
int imc1, imc2, iml1, iml2
pointer sp, txref, tyref, y, xin, yin, temp, inbuf, outbuf
real xmin, xmax, ymin, ymax, factor
pointer imgs1r(), imgs2r(), imps1r(), imps2r()
real gsgetr(), geo_jfactor()
begin
# Compute the number of columns.
ncols = c2 - c1 + 1
nlines = l2 - l1 + 1
# Compute the maximum and minimum coordinates.
call geo_minmax (xref, yref, c1, c2, l1, l2, sx1, sy1, sx2, sy2,
xmin, xmax, ymin, ymax)
# Get the appropriate image section and fill the buffer.
imc1 = int(xmin) - GT_NXYMARGIN(geo)
if (imc1 <= 0)
imc1 = imc1 - 1
imc2 = nint (xmax) + GT_NXYMARGIN(geo) + 1
nicols = imc2 - imc1 + 1
if (IM_NDIM(input) == 1) {
iml1 = 1
iml2 = 1
nilines = 1
ncols4 = 2 * ncols
nlines4 = 2 * nlines
inbuf = imgs1r (input, imc1, imc2)
if (inbuf == EOF)
call error (0, "Error reading image")
call asifit (msi, Memr[inbuf], nicols)
} else {
iml1 = int(ymin) - GT_NXYMARGIN(geo)
if (iml1 <= 0)
iml1 = iml1 - 1
iml2 = nint (ymax) + GT_NXYMARGIN(geo) + 1
nilines = iml2 - iml1 + 1
ncols4 = 4 * ncols
nlines4 = 4 * nlines
inbuf = imgs2r (input, imc1, imc2, iml1, iml2)
if (inbuf == EOF)
call error (0, "Error reading image")
call msifit (msi, Memr[inbuf], nicols, nilines, nicols)
}
# Allocate working space.
call smark (sp)
if (GT_INTERPOLANT(geo) == II_DRIZZLE || GT_INTERPOLANT(geo) ==
II_BIDRIZZLE) {
call salloc (txref, ncols4, TY_REAL)
call salloc (tyref, nlines4, TY_REAL)
call salloc (y, ncols4, TY_REAL)
call salloc (xin, ncols4, TY_REAL)
call salloc (yin, ncols4, TY_REAL)
call salloc (temp, ncols4, TY_REAL)
if (IM_NDIM(input) == 1)
call geo_ref (geo, Memr[txref], c1, c2, GT_NCOLS(geo),
Memr[tyref], l1, l2, GT_NLINES(geo), gsgetr (sx1, GSXMIN),
gsgetr (sx1, GSXMAX), gsgetr (sx1, GSYMIN), gsgetr (sx1,
GSYMAX), GT_TWO)
else
call geo_ref (geo, Memr[txref], c1, c2, GT_NCOLS(geo),
Memr[tyref], l1, l2, GT_NLINES(geo), gsgetr (sx1, GSXMIN),
gsgetr (sx1, GSXMAX), gsgetr (sx1, GSYMIN), gsgetr (sx1,
GSYMAX), GT_FOUR)
} else {
call salloc (y, ncols, TY_REAL)
call salloc (xin, ncols, TY_REAL)
call salloc (yin, ncols, TY_REAL)
call salloc (temp, ncols, TY_REAL)
}
# Compute the pixels.
do j = l1, l2 {
# Get output image buffer.
if (IM_NDIM(input) == 1)
outbuf = imps1r (output, c1, c2)
else
outbuf = imps2r (output, c1, c2, j, j)
if (output == EOF)
call error (0, "Error writing output image")
# Compute the interpolation coordinates.
if (GT_INTERPOLANT(geo) == II_DRIZZLE || GT_INTERPOLANT(geo) ==
II_BIDRIZZLE) {
# Set the y coordinate.
if (IM_NDIM(input) == 1)
call geo_repeat (Memr[tyref+2*(j-l1)], 2, Memr[y], ncols)
else
call geo_repeat (Memr[tyref+4*(j-l1)], 4, Memr[y], ncols)
# Fit x coords.
call gsvector (sx1, Memr[txref], Memr[y], Memr[xin], ncols4)
if (sx2 != NULL) {
call gsvector (sx2, Memr[txref], Memr[y], Memr[temp],
ncols4)
call aaddr (Memr[xin], Memr[temp], Memr[xin], ncols4)
}
if (imc1 != 1)
call aaddkr (Memr[xin], real (-imc1 + 1), Memr[xin], ncols4)
# Fit y coords.
call gsvector (sy1, Memr[txref], Memr[y], Memr[yin], ncols4)
if (sy2 != NULL) {
call gsvector (sy2, Memr[txref], Memr[y], Memr[temp],
ncols4)
call aaddr (Memr[yin], Memr[temp], Memr[yin], ncols4)
}
if (iml1 != 1)
call aaddkr (Memr[yin], real (-iml1 + 1), Memr[yin], ncols4)
} else {
# Set the y coordinate.
call amovkr (yref[j], Memr[y], ncols)
# Fit x coords.
call gsvector (sx1, xref[c1], Memr[y], Memr[xin], ncols)
if (sx2 != NULL) {
call gsvector (sx2, xref[c1], Memr[y], Memr[temp], ncols)
call aaddr (Memr[xin], Memr[temp], Memr[xin], ncols)
}
if (imc1 != 1)
call aaddkr (Memr[xin], real (-imc1 + 1), Memr[xin], ncols)
# Fit y coords.
call gsvector (sy1, xref[c1], Memr[y], Memr[yin], ncols)
if (sy2 != NULL) {
call gsvector (sy2, xref[c1], Memr[y], Memr[temp], ncols)
call aaddr (Memr[yin], Memr[temp], Memr[yin], ncols)
}
if (iml1 != 1)
call aaddkr (Memr[yin], real (-iml1 + 1), Memr[yin], ncols)
}
# Interpolate in input image.
if (IM_NDIM(input) == 1)
call asivector (msi, Memr[xin], Memr[outbuf], ncols)
else
call msivector (msi, Memr[xin], Memr[yin], Memr[outbuf], ncols)
# Preserve flux in image.
if (GT_FLUXCONSERVE(geo) == YES) {
factor = GT_XSCALE(geo) * GT_YSCALE(geo)
if (GT_GEOMODE(geo) == GT_LINEAR || (sx2 == NULL && sy2 ==
NULL)) {
if (IM_NDIM(input) == 1)
call amulkr (Memr[outbuf], factor * geo_jfactor (sx1,
NULL), Memr[outbuf], ncols)
else
call amulkr (Memr[outbuf], factor * geo_jfactor (sx1,
sy1), Memr[outbuf], ncols)
} else {
if (IM_NDIM(input) == 1)
call geo_gsflux (xref, yref, Memr[outbuf], c1, c2, j,
sx1, NULL, sx2, NULL)
else
call geo_gsflux (xref, yref, Memr[outbuf], c1, c2, j,
sx1, sy1, sx2, sy2)
call amulkr (Memr[outbuf], factor, Memr[outbuf], ncols)
}
}
}
call sfree (sp)
end
# GEO_IMINMAX -- Find minimum and maximum interpolation coordinates.
procedure geo_iminmax (xref, yref, c1, c2, l1, l2, x0, y0, xmsi, ymsi, xmin,
xmax, ymin, ymax)
real xref[ARB] #I x reference coords
real yref[ARB] #I y reference coords
int c1, c2 #I columns limits
int l1, l2 #I line limits
int x0, y0 #I interpolation coord zero points
pointer xmsi, ymsi #I coord surfaces
real xmin, xmax #O output xmin and xmax
real ymin, ymax #O output ymin and ymax
int j, ncols
pointer sp, x, y, xin, yin
real mintemp, maxtemp, x1, x2, y1, y2
real asieval(), msieval()
begin
call smark (sp)
ncols = c2 - c1 + 1
call salloc (x, ncols, TY_REAL)
call salloc (y, ncols, TY_REAL)
call salloc (xin, ncols, TY_REAL)
call salloc (yin, ncols, TY_REAL)
xmin = MAX_REAL
xmax = -MAX_REAL
ymin = MAX_REAL
ymax = -MAX_REAL
# find the minimum and maximum
do j = l1, l2 {
if (j == l1 || j == l2) {
call aaddkr (xref[c1], real (-x0 + 1), Memr[x], ncols)
if (y0 <= 0) {
call asivector (xmsi, Memr[x], Memr[xin], ncols)
ymin = 1.0
ymax = 1.0
} else {
call amovkr (yref[j] + real (-y0 + 1), Memr[y], ncols)
call msivector (xmsi, Memr[x], Memr[y], Memr[xin], ncols)
call msivector (ymsi, Memr[x], Memr[y], Memr[yin], ncols)
call alimr (Memr[yin], ncols, mintemp, maxtemp)
ymin = min (ymin, mintemp)
ymax = max (ymax, maxtemp)
}
call alimr (Memr[xin], ncols, mintemp, maxtemp)
xmin = min (xmin, mintemp)
xmax = max (xmax, maxtemp)
} else {
if (y0 <= 0) {
x1 = asieval (xmsi, xref[c1] + real (-x0 + 1))
x2 = asieval (xmsi, xref[c1+ncols-1] + real (-x0 + 1))
ymin = 1.0
ymax = 1.0
} else {
x1 = msieval (xmsi, xref[c1] + real (-x0 + 1),
yref[j] + real (-y0 + 1))
x2 = msieval (xmsi, xref[c1+ncols-1] + real (-x0 + 1),
yref[j] + real (-y0 + 1))
y1 = msieval (ymsi, xref[c1] + real (-x0 + 1),
yref[j] + real (-y0 + 1))
y2 = msieval (ymsi, xref[c1+ncols-1] + real (-x0 + 1),
yref[j] + real (-y0 + 1))
ymin = min (ymin, y1, y2)
ymax = max (ymax, y1, y2)
}
xmin = min (xmin, x1, x2)
xmax = max (xmax, x1, x2)
}
}
call sfree (sp)
end
# GEO_MINMAX -- Compute the minimum and maximum fitted coordinates.
procedure geo_minmax (xref, yref, c1, c2, l1, l2, sx1, sy1, sx2, sy2,
xmin, xmax, ymin, ymax)
real xref[ARB] #I x reference coords
real yref[ARB] #I y reference coords
int c1, c2 #I columns limits
int l1, l2 #I line limits
pointer sx1, sy1 #I linear surface descriptors
pointer sx2, sy2 #I distortion surface descriptors
real xmin, xmax #O output xmin and xmax
real ymin, ymax #O output ymin and ymax
int j, ncols
pointer sp, y, xin, yin, temp
real x1, x2, y1, y2, mintemp, maxtemp
real gseval()
begin
call smark (sp)
ncols = c2 - c1 + 1
call salloc (y, ncols, TY_REAL)
call salloc (xin, ncols, TY_REAL)
call salloc (yin, ncols, TY_REAL)
call salloc (temp, ncols, TY_REAL)
xmin = MAX_REAL
xmax = -MAX_REAL
ymin = MAX_REAL
ymax = -MAX_REAL
# Find the maximum and minimum coordinates.
do j = l1, l2 {
if (j == l1 || j == l2) {
call amovkr (yref[j], Memr[y], ncols)
call gsvector (sx1, xref[c1], Memr[y], Memr[xin], ncols)
if (sx2 != NULL) {
call gsvector (sx2, xref[c1], Memr[y], Memr[temp], ncols)
call aaddr (Memr[xin], Memr[temp], Memr[xin], ncols)
}
call gsvector (sy1, xref[c1], Memr[y], Memr[yin], ncols)
if (sy2 != NULL) {
call gsvector (sy2, xref[c1], Memr[y], Memr[temp], ncols)
call aaddr (Memr[yin], Memr[temp], Memr[yin], ncols)
}
call alimr (Memr[xin], ncols, mintemp, maxtemp)
xmin = min (xmin, mintemp)
xmax = max (xmax, maxtemp)
call alimr (Memr[yin], ncols, mintemp, maxtemp)
ymin = min (ymin, mintemp)
ymax = max (ymax, maxtemp)
} else {
x1 = gseval (sx1, xref[c1], yref[j])
x2 = gseval (sx1, xref[c1+ncols-1], yref[j])
if (sx2 != NULL) {
x1 = x1 + gseval (sx2, xref[c1], yref[j])
x2 = x2 + gseval (sx2, xref[c1+ncols-1], yref[j])
}
xmin = min (xmin, x1, x2)
xmax = max (xmax, x1, x2)
y1 = gseval (sy1, xref[c1], yref[j])
y2 = gseval (sy1, xref[c1+ncols-1], yref[j])
if (sy2 != NULL) {
y1 = y1 + gseval (sy2, xref[c1], yref[j])
y2 = y2 + gseval (sy2, xref[c1+ncols-1], yref[j])
}
ymin = min (ymin, y1, y2)
ymax = max (ymax, y1, y2)
}
}
call sfree (sp)
end
# GEO_MARGSET -- Set up interpolation margin
procedure geo_margset (sx1, sy1, sx2, sy2, xmin, xmax, ncols, ymin, ymax,
nlines, interpolant, nsinc, nxymargin)
pointer sx1, sy1 #I linear surface descriptors
pointer sx2, sy2 #I distortion surface descriptors
real xmin, xmax #I the reference coordinate x limits
int ncols #I the number of output image columns
real ymin, ymax #I the reference coordinate y limits
int nlines #I the number of output image lines
int interpolant #I the interpolant type
int nsinc #I the sinc width
int nxymargin #O the interpolation margin
int dist1, dist2, dist3, dist4, dist5, dist6
pointer newsx, newsy
real x1, y1, x2, y2
real gseval()
begin
if (interpolant == II_SPLINE3 || interpolant == II_BISPLINE3) {
nxymargin = NMARGIN_SPLINE3
} else if (interpolant == II_LSINC || interpolant == II_BILSINC) {
nxymargin = nsinc
} else if (interpolant == II_SINC || interpolant == II_BISINC) {
nxymargin = nsinc
} else if (interpolant == II_DRIZZLE || interpolant == II_BIDRIZZLE) {
if (sx2 == NULL)
call gscopy (sx1, newsx)
else
call gsadd (sx1, sx2, newsx)
if (sy2 == NULL)
call gscopy (sy1, newsy)
else
call gsadd (sy1, sy2, newsy)
x1 = gseval (newsx, xmin, ymin)
y1 = gseval (newsy, xmin, ymin)
x2 = gseval (newsx, xmax, ymin)
y2 = gseval (newsy, xmax, ymin)
dist1 = sqrt ((x1 - x2) ** 2 + (y1 - y2) ** 2) / ncols
x1 = gseval (newsx, xmax, ymax)
y1 = gseval (newsy, xmax, ymax)
dist2 = sqrt ((x1 - x2) ** 2 + (y1 - y2) ** 2) / nlines
x2 = gseval (newsx, xmin, ymax)
y2 = gseval (newsy, xmin, ymax)
dist3 = sqrt ((x1 - x2) ** 2 + (y1 - y2) ** 2) / ncols
x1 = gseval (newsx, xmin, ymin)
y1 = gseval (newsy, xmin, ymin)
dist4 = sqrt ((x1 - x2) ** 2 + (y1 - y2) ** 2) / nlines
x1 = gseval (newsx, xmin, (ymin + ymax) / 2.0)
y1 = gseval (newsy, xmin, (ymin + ymax) / 2.0)
x2 = gseval (newsx, xmax, (ymin + ymax) / 2.0)
y2 = gseval (newsy, xmax, (ymin + ymax) / 2.0)
dist5 = sqrt ((x1 - x2) ** 2 + (y1 - y2) ** 2) / ncols
x1 = gseval (newsx, (xmin + xmax) / 2.0, ymin)
y1 = gseval (newsy, (xmin + xmax) / 2.0, ymin)
x2 = gseval (newsx, (xmin + xmax) / 2.0, ymax)
y2 = gseval (newsy, (xmin + xmax) / 2.0, ymax)
dist6 = sqrt ((x1 - x2) ** 2 + (y1 - y2) ** 2) / nlines
nxymargin = max (NMARGIN, dist1, dist2, dist3, dist4,
dist5, dist6)
call gsfree (newsx)
call gsfree (newsy)
} else {
nxymargin = NMARGIN
}
end
# GEO_IMSET -- Set up input image boundary conditions.
procedure geo_imset (im, geo, sx1, sy1, sx2, sy2, xref, nx, yref, ny)
pointer im #I pointer to image
pointer geo #I pointer to geotran structure
pointer sx1, sy1 #I linear surface descriptors
pointer sx2, sy2 #I distortion surface descriptors
real xref[ARB] #I x reference coordinates
int nx #I number of x reference coordinates
real yref[ARB] #I y reference coordinates
int ny #I number of y reference coordinates
int bndry, npts
pointer sp, x1, x2, y1, y2, xtemp, ytemp
real xn1, xn2, xn3, xn4, yn1, yn2, yn3, yn4, xmin, xmax, ymin, ymax
real gseval()
begin
npts = max (nx, ny)
xn1 = gseval (sx1, GT_XMIN(geo), GT_YMIN(geo))
xn2 = gseval (sx1, GT_XMAX(geo), GT_YMIN(geo))
xn3 = gseval (sx1, GT_XMAX(geo), GT_YMAX(geo))
xn4 = gseval (sx1, GT_XMIN(geo), GT_YMAX(geo))
yn1 = gseval (sy1, GT_XMIN(geo), GT_YMIN(geo))
yn2 = gseval (sy1, GT_XMAX(geo), GT_YMIN(geo))
yn3 = gseval (sy1, GT_XMAX(geo), GT_YMAX(geo))
yn4 = gseval (sy1, GT_XMIN(geo), GT_YMAX(geo))
xmin = min (xn1, xn2, xn3, xn4)
ymin = min (yn1, yn2, yn3, yn4)
xmax = max (xn1, xn2, xn3, xn4)
ymax = max (yn1, yn2, yn3, yn4)
if (sx2 != NULL) {
call smark (sp)
call salloc (x1, npts, TY_REAL)
call salloc (x2, npts, TY_REAL)
call salloc (xtemp, npts, TY_REAL)
call salloc (ytemp, npts, TY_REAL)
call amovkr (GT_YMIN(geo), Memr[ytemp], nx)
call gsvector (sx1, xref, Memr[ytemp], Memr[x1], nx)
call gsvector (sx2, xref, Memr[ytemp], Memr[x2], nx)
call aaddr (Memr[x1], Memr[x2], Memr[x1], nx)
call alimr (Memr[x1], nx, xn1, yn1)
call amovkr (GT_XMAX(geo), Memr[xtemp], ny)
call gsvector (sx1, Memr[xtemp], yref, Memr[x1], ny)
call gsvector (sx2, Memr[xtemp], yref, Memr[x2], ny)
call aaddr (Memr[x1], Memr[x2], Memr[x1], ny)
call alimr (Memr[x1], ny, xn2, yn2)
call amovkr (GT_YMAX(geo), Memr[ytemp], nx)
call gsvector (sx1, xref, Memr[ytemp], Memr[x1], nx)
call gsvector (sx2, xref, Memr[ytemp], Memr[x2], nx)
call aaddr (Memr[x1], Memr[x2], Memr[x1], nx)
call alimr (Memr[x1], nx, xn3, yn3)
call amovkr (GT_XMIN(geo), Memr[xtemp], ny)
call gsvector (sx1, Memr[xtemp], yref, Memr[x1], ny)
call gsvector (sx2, Memr[xtemp], yref, Memr[x2], ny)
call aaddr (Memr[x1], Memr[x2], Memr[x1], ny)
call alimr (Memr[x1], ny, xn4, yn4)
xmin = min (xn1, xn2, xn3, xn4)
xmax = max (yn1, yn2, yn3, yn4)
call sfree (sp)
}
if (sy2 != NULL) {
call smark (sp)
call salloc (y1, npts, TY_REAL)
call salloc (y2, npts, TY_REAL)
call salloc (xtemp, npts, TY_REAL)
call salloc (ytemp, npts, TY_REAL)
call amovkr (GT_YMIN(geo), Memr[ytemp], nx)
call gsvector (sy1, xref, Memr[ytemp], Memr[y1], nx)
call gsvector (sy2, xref, Memr[ytemp], Memr[y2], nx)
call aaddr (Memr[y1], Memr[y2], Memr[y1], nx)
call alimr (Memr[y1], nx, xn1, yn1)
call amovkr (GT_XMAX(geo), Memr[xtemp], ny)
call gsvector (sy1, Memr[xtemp], yref, Memr[y1], ny)
call gsvector (sy2, Memr[xtemp], yref, Memr[y2], ny)
call aaddr (Memr[y1], Memr[y2], Memr[y1], ny)
call alimr (Memr[y1], ny, xn2, yn2)
call amovkr (GT_YMAX(geo), Memr[ytemp], nx)
call gsvector (sy1, xref, Memr[ytemp], Memr[y1], nx)
call gsvector (sy2, xref, Memr[ytemp], Memr[y2], nx)
call aaddr (Memr[y1], Memr[y2], Memr[y1], nx)
call alimr (Memr[y1], nx, xn3, yn3)
call amovkr (GT_XMIN(geo), Memr[xtemp], ny)
call gsvector (sy1, Memr[xtemp], yref, Memr[y1], ny)
call gsvector (sy2, Memr[xtemp], yref, Memr[y2], ny)
call aaddr (Memr[y1], Memr[y2], Memr[y1], ny)
call alimr (Memr[y1], ny, xn4, yn4)
ymin = min (xn1, xn2, xn3, xn4)
ymax = max (yn1, yn2, yn3, yn4)
call sfree (sp)
}
# Compute the out-of-bounds limit.
if (IM_NDIM(im) == 1) {
if (xmin < 1.0 || xmax > real (IM_LEN(im,1)))
bndry = max (1.0 - xmin, xmax - IM_LEN(im,1)) + 1
else
bndry = 1
} else {
if (xmin < 1.0 || ymin < 1.0 || xmax > real (IM_LEN(im,1)) ||
ymax > real (IM_LEN(im,2)))
bndry = max (1.0 - xmin, 1.0 - ymin, xmax - IM_LEN(im,1),
ymax - IM_LEN(im,2)) + 1
else
bndry = 1
}
call imseti (im, IM_NBNDRYPIX, bndry + GT_NXYMARGIN(geo) + 1)
call imseti (im, IM_TYBNDRY, GT_BOUNDARY(geo))
call imsetr (im, IM_BNDRYPIXVAL, GT_CONSTANT(geo))
end
# GEO_GSFLUX -- Preserve the image flux after a transformation.
procedure geo_gsflux (xref, yref, buf, c1, c2, line, sx1, sy1, sx2, sy2)
real xref[ARB] #I x reference coordinates
real yref[ARB] #I y reference coordinates
real buf[ARB] #O output image buffer
int c1, c2 #I column limits in the output image
int line #I line in the output image
pointer sx1, sy1 #I linear surface descriptors
pointer sx2, sy2 #I distortion surface descriptors
int ncols
pointer sp, y, der1, der2, jacob, sx, sy
begin
ncols = c2 - c1 + 1
# Get the reference coordinates.
call smark (sp)
call salloc (y, ncols, TY_REAL)
call salloc (jacob, ncols, TY_REAL)
# Add the two surfaces together for efficiency.
if (sx2 != NULL)
call gsadd (sx1, sx2, sx)
else
call gscopy (sx1, sx)
if (sy1 == NULL)
sy = NULL
else if (sy2 != NULL)
call gsadd (sy1, sy2, sy)
else
call gscopy (sy1, sy)
# Multiply the output buffer by the Jacobian.
call amovkr (yref[line], Memr[y], ncols)
if (sy == NULL)
call gsder (sx, xref[c1], Memr[y], Memr[jacob], ncols, 1, 0)
else {
call salloc (der1, ncols, TY_REAL)
call salloc (der2, ncols, TY_REAL)
call gsder (sx, xref[c1], Memr[y], Memr[der1], ncols, 1, 0)
call gsder (sy, xref[c1], Memr[y], Memr[der2], ncols, 0, 1)
call amulr (Memr[der1], Memr[der2], Memr[jacob], ncols)
call gsder (sx, xref[c1], Memr[y], Memr[der1], ncols, 0, 1)
call gsder (sy, xref[c1], Memr[y], Memr[der2], ncols, 1, 0)
call amulr (Memr[der1], Memr[der2], Memr[der1], ncols)
call asubr (Memr[jacob], Memr[der1], Memr[jacob], ncols)
}
call aabsr (Memr[jacob], Memr[jacob], ncols)
call amulr (buf, Memr[jacob], buf, ncols)
# Clean up.
call gsfree (sx)
if (sy != NULL)
call gsfree (sy)
call sfree (sp)
end
# GEO_MSIFLUX -- Procedure to interpolate the surface coordinates
procedure geo_msiflux (jmsi, xinterp, yinterp, outdata, c1, c2, line, x0, y0)
pointer jmsi #I pointer to the jacobian interpolant
real xinterp[ARB] #I x reference coordinates
real yinterp[ARB] #I y reference coordinates
real outdata[ARB] #O output data
int c1, c2 #I column limits in output image
int line #I line to be flux corrected
int x0, y0 #I zero points of interpolation coordinates
int ncols
pointer sp, x, y, jacob
begin
# Allocate tempoaray space.
call smark (sp)
ncols = c2 - c1 + 1
call salloc (x, ncols, TY_REAL)
call salloc (jacob, ncols, TY_REAL)
# Calculate the x points.
if (x0 == 1)
call amovr (xinterp[c1], Memr[x], ncols)
else
call aaddkr (xinterp[c1], real (-x0 + 1), Memr[x], ncols)
# Multiply the data by the Jacobian.
if (line == 0) {
call asivector (jmsi, Memr[x], Memr[jacob], ncols)
} else {
call salloc (y, ncols, TY_REAL)
call amovkr ((yinterp[line] + real (-y0 + 1)), Memr[y], ncols)
call msivector (jmsi, Memr[x], Memr[y], Memr[jacob], ncols)
}
call aabsr (Memr[jacob], Memr[jacob], ncols)
call amulr (outdata, Memr[jacob], outdata, ncols)
call sfree (sp)
end
# GEO_JFACTOR -- Compute the Jacobian of a linear transformation.
real procedure geo_jfactor (sx1, sy1)
pointer sx1 #I pointer to x surface
pointer sy1 #I pointer to y surface
real xval, yval, xx, xy, yx, yy
real gsgetr()
begin
xval = (gsgetr (sx1, GSXMIN) + gsgetr (sx1, GSXMAX)) / 2.0
if (sy1 == NULL)
yval = 1.0
else
yval = (gsgetr (sy1, GSYMIN) + gsgetr (sy1, GSYMIN)) / 2.0
call gsder (sx1, xval, yval, xx, 1, 1, 0)
if (sy1 == NULL) {
xy = 0.0
yy = 1.0
yx = 0.0
} else {
call gsder (sx1, xval, yval, xy, 1, 0, 1)
call gsder (sy1, xval, yval, yx, 1, 1, 0)
call gsder (sy1, xval, yval, yy, 1, 0, 1)
}
return (abs (xx * yy - xy * yx))
end
# GEO_REPEAT -- Copy a small repeated pattern into the output buffer.
procedure geo_repeat (pat, npat, output, ntimes)
real pat[ARB] #I the input pattern to be repeated
int npat #I the size of the pattern
real output[ARB] #O the output array
int ntimes #I the number of times the pattern is to be repeated
int j, i, offset
begin
do j = 1, ntimes {
offset = npat * j - npat
do i = 1, npat
output[offset+i] = pat[i]
}
end
|