1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <imhdr.h>
include <mwset.h>
include <math.h>
include <math/gsurfit.h>
include "geotran.h"
# T_GEOTRAN -- Geometrically transform a list of images either linearly or
# using a transformation computed by the GEOMAP task.
procedure t_geotran ()
int ncols, nlines # output picture size
real xmin, xmax, ymin, ymax # minimum and maximum ref values
real xscale, yscale # output picture scale
real xin, yin # input picture origin
real xshift, yshift # x and y shifts
real xout, yout # output picture origin
real xmag, ymag # input picture scale
real xrotation, yrotation # rotation angle
int nxblock, nyblock # block size of image to be used
bool verbose
int list1, list2, tflist, ndim, nc, nl, mode
pointer sp, imtlist1, imtlist2, database, transform, record
pointer image1, image2, imtemp, imroot, section, str
pointer geo, sx1, sy1, sx2, sy2, in, out, mw
real xs, ys, txshift, tyshift, txmag, tymag, txrot, tyrot
double oltv[2], nltv[2], oltm[2,2], nltm[2,2]
bool clgetb(), envgetb(), streq()
int imtopen(), imtlen(), clgeti(), imtgetim(), clgwrd(), btoi()
pointer immap(), mw_openim()
real clgetr()
errchk immap()
begin
# Set up the geotran structure.
call smark (sp)
call salloc (imtlist1, SZ_LINE, TY_CHAR)
call salloc (imtlist2, SZ_LINE, TY_CHAR)
call salloc (database, SZ_FNAME, TY_CHAR)
call salloc (transform, SZ_FNAME, TY_CHAR)
call salloc (record, SZ_FNAME, TY_CHAR)
call salloc (image1, SZ_FNAME, TY_CHAR)
call salloc (image2, SZ_FNAME, TY_CHAR)
call salloc (imtemp, SZ_FNAME, TY_CHAR)
call salloc (imroot, SZ_FNAME, TY_CHAR)
call salloc (section, SZ_FNAME, TY_CHAR)
call salloc (str, SZ_LINE, TY_CHAR)
call salloc (geo, LEN_GEOSTRUCT, TY_STRUCT)
# Get the input and output lists and database file.
call clgstr ("input", Memc[imtlist1], SZ_FNAME)
call clgstr ("output", Memc[imtlist2], SZ_FNAME)
call clgstr ("database", Memc[database], SZ_FNAME)
if (Memc[database] != EOS) {
call clgstr ("transforms", Memc[transform], SZ_FNAME)
tflist = imtopen (Memc[transform])
GT_GEOMODE(geo) = clgwrd ("geometry", Memc[str], SZ_LINE,
",junk,linear,distortion,geometric,")
} else {
tflist = NULL
GT_GEOMODE(geo) = GT_NONE
}
# Get the output picture format parameters.
xmin = clgetr ("xmin")
xmax = clgetr ("xmax")
ymin = clgetr ("ymin")
ymax = clgetr ("ymax")
xscale = clgetr ("xscale")
yscale = clgetr ("yscale")
ncols= clgeti ("ncols")
nlines = clgeti ("nlines")
# Get the geometric transformation parameters.
xin = clgetr ("xin")
yin = clgetr ("yin")
xshift = clgetr ("xshift")
yshift = clgetr ("yshift")
xout = clgetr ("xout")
yout = clgetr ("yout")
xmag = clgetr ("xmag")
ymag = clgetr ("ymag")
xrotation = clgetr ("xrotation")
yrotation = clgetr ("yrotation")
# Get the interpolation parameters.
call clgstr ("interpolant", GT_INTERPSTR(geo), SZ_FNAME)
#GT_INTERPOLANT(geo) = clgwrd ("interpolant", Memc[str], SZ_LINE,
#",nearest,linear,poly3,poly5,spline3,")
GT_BOUNDARY(geo) = clgwrd ("boundary", Memc[str], SZ_LINE,
",constant,nearest,reflect,wrap,")
GT_CONSTANT(geo) = clgetr ("constant")
GT_XSAMPLE(geo) = clgetr ("xsample")
GT_YSAMPLE(geo) = clgetr ("ysample")
GT_FLUXCONSERVE(geo) = btoi (clgetb("fluxconserve"))
nxblock = clgeti ("nxblock")
nyblock = clgeti ("nyblock")
verbose = clgetb ("verbose")
# Open the lists of images and check the scale lengths.
list1 = imtopen (Memc[imtlist1])
list2 = imtopen (Memc[imtlist2])
if (imtlen (list1) != imtlen (list2)) {
call imtclose (list1)
call imtclose (list2)
if (tflist != NULL)
call imtclose (tflist)
call error (0, "Input and output lists not the same length.")
}
# Check the transform list.
if (tflist != NULL) {
if (imtlen (tflist) > 1 && imtlen (tflist) != imtlen (list1)) {
call imtclose (list1)
call imtclose (list2)
call imtclose (tflist)
call error (0, "Transform and input lists not the same length.")
}
}
# Loop over the images.
if (verbose) {
call printf ("\n")
}
while (imtgetim (list1, Memc[image1], SZ_FNAME) != EOF &&
imtgetim (list2, Memc[image2], SZ_FNAME) != EOF) {
# Print messages.
if (verbose) {
call printf ("Transforming image %s to image %s\n")
call pargstr (Memc[image1])
call pargstr (Memc[image2])
call flush (STDOUT)
}
# Open the images.
in = immap (Memc[image1], READ_ONLY, 0)
call imgimage (Memc[image1], Memc[str], SZ_FNAME)
call imgimage (Memc[image2], Memc[imroot], SZ_FNAME)
call imgsection (Memc[image2], Memc[section], SZ_FNAME)
if (streq (Memc[str], Memc[imroot])) {
call strcpy (Memc[imroot], Memc[imtemp], SZ_FNAME)
call mktemp ("tmp", Memc[image2], SZ_FNAME)
} else
call strcpy (Memc[image2], Memc[imtemp], SZ_FNAME)
ifnoerr (out = immap (Memc[image2], READ_WRITE, 0)) {
mode = READ_WRITE
nc = IM_LEN(out,1)
nl = IM_LEN(out,2)
xs = INDEF
ys = INDEF
} else if (Memc[section] != EOS) {
mode = NEW_IMAGE
out = immap (Memc[imroot], NEW_IMAGE, 0)
IM_NDIM(out) = IM_NDIM(in)
if (IS_INDEFI(ncols))
IM_LEN(out,1) = IM_LEN(in,1)
else
IM_LEN(out,1) = ncols
if (IS_INDEFI(nlines))
IM_LEN(out,2) = IM_LEN(in,2)
else
IM_LEN(out,2) = nlines
IM_PIXTYPE(out) = IM_PIXTYPE(in)
call geo_imzero (out, GT_CONSTANT(geo))
call imunmap (out)
out = immap (Memc[image2], READ_WRITE, 0)
nc = IM_LEN(out,1)
nl = IM_LEN(out,2)
xs = INDEF
ys = INDEF
} else {
mode = NEW_COPY
out = immap (Memc[image2], NEW_COPY, in)
nc = ncols
nl = nlines
xs = xscale
ys = yscale
}
# Set the geometry parameters.
call geo_set (geo, xmin, xmax, ymin, ymax, xs, ys, nc, nl, xin,
yin, xshift, yshift, xout, yout, xmag, ymag, xrotation,
yrotation)
# Get the coordinate surfaces.
if (GT_GEOMODE(geo) == GT_NONE) {
call geo_format (in, out, geo, sx1, sy1, sx2, sy2)
if (verbose) {
call geo_lcoeffr (sx1, sy1, txshift, tyshift, txmag,
tymag, txrot, tyrot)
call printf (" xshift: %.2f yshift: %.2f ")
call pargr (txshift)
call pargr (tyshift)
call printf ("xmag: %.2f ymag: %.2f ")
call pargr (txmag)
call pargr (tymag)
call printf ("xrot: %.2f yrot: %.2f\n")
call pargr (txrot)
call pargr (tyrot)
call flush (STDOUT)
}
} else {
if (imtgetim (tflist, Memc[str], SZ_FNAME) != EOF)
call strcpy (Memc[str], Memc[record], SZ_FNAME)
call geo_dformat (in, out, geo, Memc[database], Memc[record],
sx1, sy1, sx2, sy2)
if (verbose) {
call printf (" Using transform %s in database %s\n")
call pargstr (Memc[record])
call pargstr (Memc[database])
call flush (STDOUT)
}
}
# Transform the image.
if (IM_LEN(out,1) <= nxblock && IM_LEN(out,2) <= nyblock) {
if (GT_XSAMPLE(geo) > 1.0 || GT_YSAMPLE(geo) > 1.0)
call geo_simtran (in, out, geo, sx1, sy1, sx2, sy2)
else
call geo_imtran (in, out, geo, sx1, sy1, sx2, sy2)
} else {
if (GT_XSAMPLE(geo) > 1.0 || GT_YSAMPLE(geo) > 1.0) {
if (IM_NDIM(out) == 1)
call geo_stran (in, out, geo, sx1, sy1, sx2, sy2,
nxblock, 1)
else
call geo_stran (in, out, geo, sx1, sy1, sx2, sy2,
nxblock, nyblock)
} else {
if (IM_NDIM(out) == 1)
call geo_tran (in, out, geo, sx1, sy1, sx2, sy2,
nxblock, 1)
else
call geo_tran (in, out, geo, sx1, sy1, sx2, sy2,
nxblock, nyblock)
}
}
# Update the linear part of the wcs.
if (!envgetb ("nomwcs") && mode == NEW_COPY) {
ndim = IM_NDIM(in)
mw = mw_openim (in)
call geo_gwcs (geo, sx1, sy1, oltm, oltv)
call mw_invertd (oltm, nltm, ndim)
call mw_vmuld (nltm, oltv, nltv, ndim)
call anegd (nltv, nltv, ndim)
call geo_swcs (mw, nltm, nltv, ndim)
call mw_saveim (mw, out)
call mw_close (mw)
}
# Free the surfaces.
call gsfree (sx1)
call gsfree (sy1)
call gsfree (sx2)
call gsfree (sy2)
# Close the images.
call imunmap (in)
call imunmap (out)
call xt_delimtemp (Memc[image2], Memc[imtemp])
}
# Clean up.
call sfree (sp)
if (tflist != NULL)
call imtclose (tflist)
call imtclose (list1)
call imtclose (list2)
end
# GEO_IMZERO -- Create a dummy output image filled with the constant boundary
# extension value.
procedure geo_imzero (im, constant)
pointer im #I pointer to the input image
real constant #I the constant value to insert in the imagw
int npix
pointer sp, v, buf
int impnls(), impnll(), impnlr(), impnld(), impnlx()
begin
# Setup start vector for sequential reads and writes.
call smark (sp)
call salloc (v, IM_MAXDIM, TY_LONG)
call amovkl (long(1), Meml[v], IM_MAXDIM)
# Initialize the image.
npix = IM_LEN(im, 1)
switch (IM_PIXTYPE(im)) {
case TY_SHORT:
while (impnls (im, buf, Meml[v]) != EOF)
call amovks (short (constant), Mems[buf], npix)
case TY_USHORT, TY_INT, TY_LONG:
while (impnll (im, buf, Meml[v]) != EOF)
call amovkl (long (constant), Meml[buf], npix)
case TY_REAL:
while (impnlr (im, buf, Meml[v]) != EOF)
call amovkr (constant, Memr[buf], npix)
case TY_DOUBLE:
while (impnld (im, buf, Meml[v]) != EOF)
call amovkd (double (constant), Memd[buf], npix)
case TY_COMPLEX:
while (impnlx (im, buf, Meml[v]) != EOF)
call amovkx (complex (constant, 0.0), Memx[buf], npix)
default:
call error (1, "Unknown pixel datatype")
}
call sfree (sp)
end
# GEO_SET -- Set the image dependent task parameters individually for each
# image.
procedure geo_set (geo, xmin, xmax, ymin, ymax, xscale, yscale, ncols, nlines,
xin, yin, xshift, yshift, xout, yout, xmag, ymag, xrotation, yrotation)
pointer geo #I pointer to geotran structure
real xmin, xmax #I minimum and maximum reference values
real ymin, ymax #I minimum and maximum reference values
real xscale, yscale #I output picture scale
int ncols, nlines #I output picture size
real xin, yin #I input picture pixel coordinates
real xshift, yshift #I shift of origin
real xout, yout #I corresponding output picture coords
real xmag, ymag #I input picture scale
real xrotation, yrotation #I scale angle
begin
# Set the output picture format parameters.
GT_XMIN(geo) = xmin
GT_XMAX(geo) = xmax
GT_YMIN(geo) = ymin
GT_YMAX(geo) = ymax
GT_XSCALE(geo) = xscale
GT_YSCALE(geo) = yscale
GT_NCOLS(geo) = ncols
GT_NLINES(geo) = nlines
# Set the transformation parameters.
GT_XIN(geo) = xin
GT_YIN(geo) = yin
GT_XSHIFT(geo) = xshift
GT_YSHIFT(geo) = yshift
GT_XOUT(geo) = xout
GT_YOUT(geo) = yout
GT_XMAG(geo) = xmag
GT_YMAG(geo) = ymag
GT_XROTATION(geo) = xrotation
GT_YROTATION(geo) = yrotation
end
# GEO_FORMAT -- Format the output picture when there is no database file.
procedure geo_format (in, out, geo, sx1, sy1, sx2, sy2)
pointer in #I pointer to the input image
pointer out #I pointer to the ouput image
pointer geo #I pointer to the geotran structure
pointer sx1, sy1 #O pointer to linear surfaces
pointer sx2, sy2 #O pointer to distortion surfaces
real xmax, ymax
begin
# Get the scale transformation parameters.
if (IS_INDEFR(GT_XMAG(geo)))
GT_XMAG(geo) = 1.
if (IM_NDIM(in) == 1)
GT_YMAG(geo) = 1.
else if (IS_INDEFR(GT_YMAG(geo)))
GT_YMAG(geo) = 1.
# Get the rotate transformation parameters.
if (IM_NDIM(in) == 1)
GT_XROTATION(geo) = DEGTORAD(0.)
else if (IS_INDEFR(GT_XROTATION(geo)))
GT_XROTATION(geo) = DEGTORAD(0.)
else
GT_XROTATION(geo) = DEGTORAD(GT_XROTATION(geo))
if (IM_NDIM(in) == 1)
GT_YROTATION(geo) = DEGTORAD(0.)
else if (IS_INDEFR(GT_YROTATION(geo)))
GT_YROTATION(geo) = DEGTORAD(0.)
else
GT_YROTATION(geo) = DEGTORAD(GT_YROTATION(geo))
# Automatically compute the maximum extent of the image.
if (GT_XMAX(geo) <= 0.0 || GT_YMAX(geo) <= 0.0) {
# Compute the size of the output image.
xmax = abs (cos(GT_XROTATION(geo)) * IM_LEN(in,1) /
GT_XMAG(geo)) + abs(sin(GT_YROTATION(geo)) * IM_LEN(in,2) /
GT_YMAG(geo))
ymax = abs (sin(GT_XROTATION(geo)) * IM_LEN(in, 1) /
GT_XMAG(geo)) + abs (cos(GT_YROTATION(geo)) * IM_LEN(in,2) /
GT_YMAG(geo))
}
# Set up the x reference coordinate limits.
if (IS_INDEF(GT_XMIN(geo)))
GT_XMIN(geo) = 1.
else
GT_XMIN(geo) = max (1.0, GT_XMIN(geo))
if (IS_INDEF(GT_XMAX(geo)))
GT_XMAX(geo) = IM_LEN(in,1)
else if (GT_XMAX(geo) <= 0.0)
#GT_XMAX(geo) = int (xmax + 1.0)
GT_XMAX(geo) = xmax
# Set up the y reference coordinate limits.
if (IS_INDEF(GT_YMIN(geo)))
GT_YMIN(geo) = 1.
else
GT_YMIN(geo) = max (1.0, GT_YMIN(geo))
if (IS_INDEF(GT_YMAX(geo)))
GT_YMAX(geo) = IM_LEN(in, 2)
else if (GT_YMAX(geo) <= 0.0)
#GT_YMAX(geo) = int (ymax + 1.0)
GT_YMAX(geo) = ymax
# Set the number of columns and rows.
if (IS_INDEFI(GT_NCOLS(geo)))
GT_NCOLS(geo) = IM_LEN(in, 1)
if (IM_NDIM(in) == 1)
GT_NLINES(geo) = 1
else if (IS_INDEFI(GT_NLINES(geo)))
GT_NLINES(geo) = IM_LEN(in, 2)
# Set scale, overiding number of columns and rows if necessary.
if (IS_INDEFR(GT_XSCALE(geo)))
GT_XSCALE(geo) = (GT_XMAX(geo) - GT_XMIN(geo)) / (GT_NCOLS(geo) - 1)
else
GT_NCOLS(geo) = (GT_XMAX(geo) - GT_XMIN(geo)) / GT_XSCALE(geo) + 1
if (IM_NDIM(in) == 1)
GT_YSCALE(geo) = 1.0
else if (IS_INDEFR(GT_YSCALE(geo)))
GT_YSCALE(geo) = (GT_YMAX(geo) - GT_YMIN(geo)) /
(GT_NLINES(geo) - 1)
else
GT_NLINES(geo) = (GT_YMAX(geo) - GT_YMIN(geo)) / GT_YSCALE(geo) + 1
IM_LEN(out, 1) = GT_NCOLS(geo)
IM_LEN(out, 2) = GT_NLINES(geo)
# Set up the surfaces, distortion surfaces are NULL.
if (IM_NDIM(in) == 1) {
call gsinit (sx1, GS_POLYNOMIAL, 2, 2, GS_XNONE, GT_XMIN(geo),
GT_XMAX(geo), 0.5, 1.5)
call gsinit (sy1, GS_POLYNOMIAL, 2, 2, GS_XNONE, GT_XMIN(geo),
GT_XMAX(geo), 0.5, 1.5)
} else {
call gsinit (sx1, GS_POLYNOMIAL, 2, 2, GS_XNONE, GT_XMIN(geo),
GT_XMAX(geo), GT_YMIN(geo), GT_YMAX(geo))
call gsinit (sy1, GS_POLYNOMIAL, 2, 2, GS_XNONE, GT_XMIN(geo),
GT_XMAX(geo), GT_YMIN(geo), GT_YMAX(geo))
}
sx2 = NULL
sy2 = NULL
# Adjust rotation, x and y scale, scale angle, and flip.
call geo_rotmagr (sx1, sy1, GT_XMAG(geo), GT_YMAG(geo),
GT_XROTATION(geo), GT_YROTATION(geo))
# Adjust the shift.
call geo_shift (in, out, geo, sx1, sy1)
end
# GEO_DFORMAT -- Get the coordinate transformation from a database file.
procedure geo_dformat (in, out, geo, database, transform, sx1, sy1, sx2, sy2)
pointer in, out #I pointers to input and output images
pointer geo #I pointer to geotran structure
char database[ARB] #I name of database file
char transform[ARB] #I name of transform
pointer sx1, sy1 #O pointer to linear part of surface fit
pointer sx2, sy2 #O pointer to higher order surface
int i, dt, rec, ncoeff, junk
pointer xcoeff, ycoeff, newsx1, newsy1
int dtmap(), dtlocate(), dtgeti(), dtscan()
errchk gsrestore
begin
# Map the database and locate the transformation record.
dt = dtmap (database, READ_ONLY)
rec = dtlocate (dt, transform)
# Get the linear part of the fit.
ncoeff = dtgeti (dt, rec, "surface1")
call malloc (xcoeff, ncoeff, TY_REAL)
call malloc (ycoeff, ncoeff, TY_REAL)
do i = 1, ncoeff {
junk = dtscan (dt)
call gargr (Memr[xcoeff+i-1])
call gargr (Memr[ycoeff+i-1])
}
call gsrestore (sx1, Memr[xcoeff])
call gsrestore (sy1, Memr[ycoeff])
# Set the output image format parameters.
call geo_dout (in, out, geo, sx1, sy1)
# Adjust the linear part of the fit.
call gscopy (sx1, newsx1)
call gscopy (sy1, newsy1)
if (GT_GEOMODE(geo) == GT_DISTORT)
call geo_rotmagr (newsx1, newsy1, 1.0, 1.0, 0.0, 0.0)
else if (! IS_INDEFR(GT_XMAG(geo)) || ! IS_INDEFR(GT_YMAG(geo)) ||
! IS_INDEFR(GT_XROTATION(geo)) || ! IS_INDEFR(GT_YROTATION(geo)))
call geo_dcoeff (geo, dt, rec, newsx1, newsy1)
call geo_dshift (in, out, dt, rec, geo, newsx1, newsy1)
# Get the higher order part of the fit.
ncoeff = dtgeti (dt, rec, "surface2")
if (ncoeff > 0 && (GT_GEOMODE(geo) == GT_GEOMETRIC || GT_GEOMODE(geo) ==
GT_DISTORT)) {
# Get the distortion coefficients.
call realloc (xcoeff, ncoeff, TY_REAL)
call realloc (ycoeff, ncoeff, TY_REAL)
do i = 1, ncoeff {
junk = dtscan(dt)
call gargr (Memr[xcoeff+i-1])
call gargr (Memr[ycoeff+i-1])
}
iferr {
call gsrestore (sx2, Memr[xcoeff])
} then {
call mfree (sx2, TY_STRUCT)
sx2 = NULL
}
iferr {
call gsrestore (sy2, Memr[ycoeff])
} then {
call mfree (sy2, TY_STRUCT)
sy2 = NULL
}
} else {
sx2 = NULL
sy2 = NULL
}
# Redefine the surfaces.
call gsfree (sx1)
call gscopy (newsx1, sx1)
call gsfree (newsx1)
call gsfree (sy1)
call gscopy (newsy1, sy1)
call gsfree (newsy1)
# Cleanup.
call mfree (xcoeff, TY_REAL)
call mfree (ycoeff, TY_REAL)
call dtunmap (dt)
end
# GEO_DOUT -- Set the output image format using information in the database
# file.
procedure geo_dout (in, out, geo, sx1, sy1)
pointer in, out #I pointers to input and output image
pointer geo #I pointer to geotran sturcture
pointer sx1, sy1 #I pointers to linear surface descriptors
real gsgetr ()
begin
# Set the reference coordinate limits.
if (IS_INDEFR(GT_XMIN(geo)))
GT_XMIN(geo) = gsgetr (sx1, GSXMIN)
if (IS_INDEFR(GT_XMAX(geo)))
GT_XMAX(geo) = gsgetr (sx1, GSXMAX)
if (IS_INDEFR(GT_YMIN(geo)))
GT_YMIN(geo) = gsgetr (sy1, GSYMIN)
if (IS_INDEFR(GT_YMAX(geo)))
GT_YMAX(geo) = gsgetr (sy1, GSYMAX)
# Set the number of lines and columns.
if (IS_INDEFI(GT_NCOLS(geo)))
GT_NCOLS(geo) = IM_LEN(in, 1)
if (IM_NDIM(in) == 1)
GT_NLINES(geo) = 1
else if (IS_INDEFI(GT_NLINES(geo)))
GT_NLINES(geo) = IM_LEN(in, 2)
# Set scale, overiding the number of columns and rows if necessary.
if (IS_INDEFR(GT_XSCALE(geo)))
GT_XSCALE(geo) = (GT_XMAX(geo) - GT_XMIN(geo)) / (GT_NCOLS(geo) - 1)
else
GT_NCOLS(geo) = abs ((GT_XMAX(geo) - GT_XMIN(geo)) /
GT_XSCALE(geo)) + 1
if (IM_NDIM(in) == 1)
GT_YSCALE(geo) = 1.0
else if (IS_INDEFR(GT_YSCALE(geo)))
GT_YSCALE(geo) = (GT_YMAX(geo) - GT_YMIN(geo)) /
(GT_NLINES(geo) - 1)
else
GT_NLINES(geo) = abs ((GT_YMAX(geo) - GT_YMIN(geo)) /
GT_YSCALE(geo)) + 1
# Set the output image size.
IM_LEN(out,1) = GT_NCOLS(geo)
IM_LEN(out,2) = GT_NLINES(geo)
end
# GEO_DSHIFT -- Adjust the shifts using information in the database file.
procedure geo_dshift (in, out, dt, rec, geo, sx1, sy1)
pointer in, out #I pointer to input and output images
pointer dt #I pointer to database
int rec #I pointer to database record
pointer geo #I pointer to geotran structure
pointer sx1, sy1 #U pointers to linear surfaces
real gseval()
begin
# Define the output origin.
if (IS_INDEFR(GT_XOUT(geo)))
GT_XOUT(geo) = (GT_XMAX(geo) + GT_XMIN(geo)) / 2.0
if (IS_INDEFR(GT_YOUT(geo)))
GT_YOUT(geo) = (GT_YMAX(geo) + GT_YMIN(geo)) / 2.0
# Define the input image origin.
if (IS_INDEFR(GT_XIN(geo)))
GT_XIN(geo) = gseval (sx1, GT_XOUT(geo), GT_YOUT(geo))
if (IS_INDEFR(GT_YIN(geo)))
GT_YIN(geo) = gseval (sy1, GT_XOUT(geo), GT_YOUT(geo))
# Define the shifts.
if (IS_INDEFR(GT_XSHIFT(geo)))
GT_XSHIFT(geo) = GT_XIN(geo) - gseval (sx1, GT_XOUT(geo),
GT_YOUT(geo))
if (IS_INDEFR(GT_YSHIFT(geo)))
GT_YSHIFT(geo) = GT_YIN(geo) - gseval (sy1, GT_XOUT(geo),
GT_YOUT(geo))
# Correct the coefficients.
call geo_xyshiftr (sx1, sy1, GT_XSHIFT(geo), GT_YSHIFT(geo))
end
# GEO_SHIFT -- Compute the shift.
procedure geo_shift (in, out, geo, sx1, sy1)
pointer in, out #I pointer to input and output images
pointer geo #I pointer to geotran structure
pointer sx1, sy1 #I pointers to linear surfaces
real gseval()
begin
# Determine the output origin.
if (IS_INDEFR(GT_XOUT(geo)))
GT_XOUT(geo) = (GT_XMAX(geo) + GT_XMIN(geo)) / 2.0
if (IS_INDEFR(GT_YOUT(geo)))
GT_YOUT(geo) = (GT_YMAX(geo) + GT_YMIN(geo)) / 2.0
# Determine the input origin.
if (IS_INDEFR(GT_XIN(geo)))
GT_XIN(geo) = (real (IM_LEN (in, 1)) + 1.) / 2.
if (IS_INDEFR(GT_YIN(geo)))
GT_YIN(geo) = (real (IM_LEN (in, 2)) + 1.) / 2.
# Determine the final x and y shifts.
if (! IS_INDEFR(GT_XSHIFT(geo)))
GT_XOUT(geo) = GT_XIN(geo) + GT_XSHIFT(geo)
if (! IS_INDEFR(GT_YSHIFT(geo)))
GT_YOUT(geo) = GT_YIN(geo) + GT_YSHIFT(geo)
GT_XSHIFT(geo) = GT_XIN(geo) - gseval (sx1, GT_XOUT(geo),
GT_YOUT(geo))
GT_YSHIFT(geo) = GT_YIN(geo) - gseval (sy1, GT_XOUT(geo),
GT_YOUT(geo))
# Alter coefficients.
call geo_xyshiftr (sx1, sy1, GT_XSHIFT(geo), GT_YSHIFT(geo))
end
# GEO_DCOEFF -- Alter the linear componets of the surface fit after the fact.
procedure geo_dcoeff (geo, dt, rec, sx1, sy1)
pointer geo #I pointer to geotran structure
pointer dt #I pointer to database record
int rec #I database record
pointer sx1, sy1 #U pointers to the linear surface
real dtgetr()
errchk dtgetr()
begin
# Get the transformation parameters.
if (IS_INDEFR(GT_XMAG(geo))) {
iferr (GT_XMAG(geo) = dtgetr (dt, rec, "xmag"))
GT_XMAG(geo) = dtgetr (dt, rec, "xscale")
}
if (IS_INDEFR(GT_YMAG(geo))) {
iferr (GT_YMAG(geo) = dtgetr (dt, rec, "ymag"))
GT_YMAG(geo) = dtgetr (dt, rec, "yscale")
}
if (IS_INDEFR(GT_XROTATION(geo)))
GT_XROTATION(geo) = DEGTORAD(dtgetr (dt, rec, "xrotation"))
else
GT_XROTATION(geo) = DEGTORAD(GT_XROTATION(geo))
if (IS_INDEFR(GT_YROTATION(geo)))
GT_YROTATION(geo) = DEGTORAD(dtgetr (dt, rec, "yrotation"))
else
GT_YROTATION(geo) = DEGTORAD(GT_YROTATION(geo))
call geo_rotmagr (sx1, sy1, GT_XMAG(geo), GT_YMAG(geo),
GT_XROTATION(geo), GT_YROTATION(geo))
end
# GEO_GWCS -- Compute the ltm and ltv vectors using the GEOTRAN coordinate
# surfaces.
procedure geo_gwcs (geo, sx1, sy1, ltm, ltv)
pointer geo # pointer to the geotran structure
pointer sx1 # pointer to the linear x coordinate surface
pointer sy1 # pointer to the linear y coordinate surface
double ltm[2,2] # rotation matrix
double ltv[2] # shift vector
double xscale, yscale, xmin, ymin
int ncoeff
pointer sp, xcoeff, ycoeff
real xrange, yrange
int gsgeti()
real gsgetr()
begin
# Allocate space for the coefficients.
call smark (sp)
ncoeff = max (gsgeti (sx1, GSNSAVE), gsgeti (sy1, GSNSAVE))
call salloc (xcoeff, ncoeff, TY_REAL)
call salloc (ycoeff, ncoeff, TY_REAL)
# Fetch the coefficients.
call gssave (sx1, Memr[xcoeff])
call gssave (sy1, Memr[ycoeff])
# Denormalize the coefficients for non-polynomial functions.
xrange = gsgetr (sx1, GSXMAX) - gsgetr (sx1, GSXMIN)
yrange = gsgetr (sy1, GSYMAX) - gsgetr (sy1, GSYMIN)
if (gsgeti (sx1, GSTYPE) != GS_POLYNOMIAL) {
Memr[xcoeff+GS_SAVECOEFF+1] = Memr[xcoeff+GS_SAVECOEFF+1] * 2. /
xrange
Memr[xcoeff+GS_SAVECOEFF+2] = Memr[xcoeff+GS_SAVECOEFF+2] * 2. /
yrange
}
if (gsgeti (sy1, GSTYPE) != GS_POLYNOMIAL) {
Memr[ycoeff+GS_SAVECOEFF+1] = Memr[ycoeff+GS_SAVECOEFF+1] * 2. /
xrange
Memr[ycoeff+GS_SAVECOEFF+2] = Memr[ycoeff+GS_SAVECOEFF+2] * 2. /
yrange
}
# Set the shift vector.
ltv[1] = Memr[xcoeff+GS_SAVECOEFF]
ltv[2] = Memr[ycoeff+GS_SAVECOEFF]
# Set the rotation vector.
ltm[1,1] = Memr[xcoeff+GS_SAVECOEFF+1]
ltm[2,1] = Memr[xcoeff+GS_SAVECOEFF+2]
ltm[1,2] = Memr[ycoeff+GS_SAVECOEFF+1]
ltm[2,2] = Memr[ycoeff+GS_SAVECOEFF+2]
# Get the sign of the scale vector which is always +ve.
xmin = GT_XMIN(geo)
ymin = GT_YMIN(geo)
if (GT_XMIN(geo) > GT_XMAX(geo))
xscale = -GT_XSCALE(geo)
else
xscale = GT_XSCALE(geo)
if (GT_YMIN(geo) > GT_YMAX(geo))
yscale = -GT_YSCALE(geo)
else
yscale = GT_YSCALE(geo)
# Correct for reference units that are not in pixels.
ltv[1] = ltv[1] + ltm[1,1] * xmin + ltm[2,1] * ymin - ltm[1,1] *
xscale - ltm[2,1] * yscale
ltv[2] = ltv[2] + ltm[1,2] * xmin + ltm[2,2] * ymin - ltm[1,2] *
xscale - ltm[2,2] * yscale
ltm[1,1] = ltm[1,1] * xscale
ltm[2,1] = ltm[2,1] * yscale
ltm[1,2] = ltm[1,2] * xscale
ltm[2,2] = ltm[2,2] * yscale
call sfree (sp)
end
define LTM Memd[ltm+(($2)-1)*pdim+($1)-1]
# GEO_SWCS -- Update the wcs and write it to the image header.
procedure geo_swcs (mw, gltm, gltv, ldim)
pointer mw # the mwcs descriptor
double gltm[ldim,ldim] # the input cd matrix from geotran
double gltv[ldim] # the input shift vector from geotran
int ldim # number of logical dimensions
int axes[IM_MAXDIM], naxes, pdim, nelem, axmap, ax1, ax2
pointer sp, ltm, ltv_1, ltv_2
int mw_stati()
begin
# Convert axis bitflags to the axis lists.
if (ldim == 1) {
call mw_gaxlist (mw, 01B, axes, naxes)
if (naxes < 1)
return
} else {
call mw_gaxlist (mw, 03B, axes, naxes)
if (naxes < 2)
return
}
# Initialize the parameters.
pdim = mw_stati (mw, MW_NDIM)
nelem = pdim * pdim
axmap = mw_stati (mw, MW_USEAXMAP)
call mw_seti (mw, MW_USEAXMAP, NO)
# Allocate working space.
call smark (sp)
call salloc (ltm, nelem, TY_DOUBLE)
call salloc (ltv_1, pdim, TY_DOUBLE)
call salloc (ltv_2, pdim, TY_DOUBLE)
# Initialize the vectors and matrices.
call mw_mkidmd (Memd[ltm], pdim)
call aclrd (Memd[ltv_1], pdim)
call aclrd (Memd[ltv_2], pdim)
# Enter the linear operation.
ax1 = axes[1]
Memd[ltv_2+ax1-1] = gltv[1]
LTM(ax1,ax1) = gltm[1,1]
if (ldim == 2) {
ax2 = axes[2]
Memd[ltv_2+ax2-1] = gltv[2]
LTM(ax2,ax1) = gltm[2,1]
LTM(ax1,ax2) = gltm[1,2]
LTM(ax2,ax2) = gltm[2,2]
}
# Perform the translation.
call mw_translated (mw, Memd[ltv_1], Memd[ltm], Memd[ltv_2], pdim)
call sfree (sp)
call mw_seti (mw, MW_USEAXMAP, axmap)
end
|