1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
|
include <imhdr.h>
include <mach.h>
include "linmatch.h"
include "lsqfit.h"
# RG_LSCALE -- Compute the scaling parameters required to match the
# intensities of an image to a reference image.
int procedure rg_lscale (imr, im1, db, dformat, ls)
pointer imr #I pointer to the reference image
pointer im1 #I pointer to the input image
pointer db #I pointer to the database file
int dformat #I write the output file in database format
pointer ls #I pointer to the linscale structure
pointer sp, image, imname
real bscale, bzero, bserr, bzerr
bool streq()
int rg_lstati(), fscan(), nscan()
#int i, nregions
#int rg_isfit ()
#pointer rg_istatp()
begin
# Allocate working space.
call smark (sp)
call salloc (image, SZ_FNAME, TY_CHAR)
call salloc (imname, SZ_FNAME, TY_CHAR)
call rg_lstats (ls, IMAGE, Memc[image], SZ_FNAME)
# Initialize.
bscale = 1.0
bzero = 0.0
# Compute the average bscale and bzero for the image either by
# reading it from a file or by computing it directly from the
# data.
if (rg_lstati(ls, BZALGORITHM) == LS_FILE && rg_lstati (ls,
BSALGORITHM) == LS_FILE) {
# Read the results of a previous run from the database file or
# a simple text file.
if (dformat == YES) {
call rg_lfile (db, ls, bscale, bzero, bserr, bzerr)
} else {
if (fscan(db) != EOF) {
call gargwrd (Memc[imname], SZ_FNAME)
call gargr (bscale)
call gargr (bzero)
call gargr (bserr)
call gargr (bzerr)
if (! streq (Memc[image], Memc[imname]) || nscan() != 5) {
bscale = 1.0
bzero = 0.0
bserr = INDEFR
bzerr = INDEFR
}
} else {
bscale = 1.0
bzero = 0.0
bserr = INDEFR
bzerr = INDEFR
}
}
# Store the values.
call rg_lsetr (ls, TBSCALE, bscale)
call rg_lsetr (ls, TBZERO, bzero)
call rg_lsetr (ls, TBSCALEERR, bserr)
call rg_lsetr (ls, TBZEROERR, bzerr)
} else {
# Write out the algorithm parameters.
if (dformat == YES)
call rg_ldbparams (db, ls)
# Compute the individual scaling factors and their errors for
# all the regions and the average scaling factors and their
# errors.
call rg_scale (imr, im1, ls, bscale, bzero, bserr, bzerr, YES)
# Write out the results for the individual regions.
if (dformat == YES)
call rg_lwreg (db, ls)
# Write out the final scaling factors
if (dformat == YES)
call rg_ldbtscale (db, ls)
else {
call fprintf (db, "%s %g %g %g %g\n")
call pargstr (Memc[image])
call pargr (bscale)
call pargr (bzero)
call pargr (bserr)
call pargr (bzerr)
}
}
call sfree (sp)
return (NO)
end
# RG_SCALE -- Compute the scaling parameters for a list of regions.
procedure rg_scale (imr, im1, ls, tbscale, tbzero, tbserr, tbzerr, refit)
pointer imr #I pointer to the reference image
pointer im1 #I pointer to the input image
pointer ls #I pointer to the intensity matching structure
real tbscale #O the average scaling parameter
real tbzero #O the average offset parameter
real tbserr #O the average error in the scaling parameter
real tbzerr #O the average error in the offset parameter
int refit #I recompute entire fit, otherwise recompute averages
int i, nregions, ngood
double sumbscale, sumbzero, sumwbscale, sumbserr, sumbzerr, sumwbzero, dw
real bscale, bzero, bserr, bzerr, avbscale, avbzero, avbserr, avbzerr
int rg_lstati(), rg_limget(), rg_lbszfit()
pointer rg_lstatp()
real rg_lstatr()
begin
# Determine the number of regions.
nregions = rg_lstati (ls, NREGIONS)
# Initialize the statistics
sumbscale = 0.0d0
sumbserr = 0.0d0
sumwbscale = 0.0d0
sumbzero = 0.0d0
sumbzerr = 0.0d0
sumwbzero = 0.0d0
ngood = 0
# Loop over the regions.
do i = 1, nregions {
if (refit == YES) {
# Set the current region.
call rg_lseti (ls, CNREGION, i)
# Fetch the data for the given region and estimate the mean,
# median, mode, standard deviation, and number of points in
# each region, if this is required by the algorithm.
if (imr != NULL) {
if (rg_limget (ls, imr, im1, i) == ERR) {
call rg_lgmmm (ls, i)
next
} else
call rg_lgmmm (ls, i)
}
# Compute bscale and bzero and store the results in the
# internal arrays
if (rg_lbszfit (ls, i, bscale, bzero, bserr, bzerr) == ERR)
next
} else {
bscale = Memr[rg_lstatp(ls,RBSCALE)+i-1]
bzero = Memr[rg_lstatp(ls,RBZERO)+i-1]
bserr = Memr[rg_lstatp(ls,RBSCALEERR)+i-1]
bzerr = Memr[rg_lstatp(ls,RBZEROERR)+i-1]
}
# Accumulate the weighted sums of the scaling factors.
if (Memi[rg_lstatp(ls,RDELETE)+i-1] == LS_NO &&
! IS_INDEFR(bserr) && ! IS_INDEFR(bzerr)) {
if (bserr <= 0.0)
dw = 1.0d0
else
dw = 1.0d0 / bserr ** 2
sumbscale = sumbscale + dw * bscale
sumbserr = sumbserr + dw * bscale * bscale
sumwbscale = sumwbscale + dw
if (bzerr <= 0.0)
dw = 1.0d0
else
dw = 1.0d0 / bzerr ** 2
sumbzero = sumbzero + dw * bzero
sumbzerr = sumbzerr + dw * bzero * bzero
sumwbzero = sumwbzero + dw
ngood = ngood + 1
}
}
# Compute the average scaling factors.
call rg_avstats (sumbscale, sumbzero, sumwbscale, sumwbzero, sumbserr,
sumbzerr, bserr, bserr, avbscale, avbzero, avbserr, avbzerr, ngood)
# Perform the rejection cycle.
if (ngood > 2 && rg_lstati(ls, NREJECT) > 0 &&
(! IS_INDEFR(rg_lstatr(ls,LOREJECT)) || ! IS_INDEFR(rg_lstatr(ls,
HIREJECT)))) {
call rg_ravstats (ls, sumbscale, sumbzero, sumwbscale, sumwbzero,
sumbserr, sumbzerr, bserr, bzerr, avbscale, avbzero, avbserr,
avbzerr, ngood)
}
# Compute the final scaling factors.
if (ngood > 1) {
call rg_lbszavg (ls, avbscale, avbzero, avbserr, avbzerr,
tbscale, tbzero, tbserr, tbzerr)
} else {
tbscale = avbscale
tbzero = avbzero
tbserr = avbserr
tbzerr = avbzerr
}
# Store the compute values.
call rg_lsetr (ls, TBSCALE, tbscale)
call rg_lsetr (ls, TBZERO, tbzero)
call rg_lsetr (ls, TBSCALEERR, tbserr)
call rg_lsetr (ls, TBZEROERR, tbzerr)
end
# RG_LIMGET -- Fetch the reference and input image data and compute the
# statistics for a given region.
int procedure rg_limget (ls, imr, im1, i)
pointer ls #I pointer to the intensity scaling structure
pointer imr #I pointer to reference image
pointer im1 #I pointer to image
int i #I the region id
int stat, nrimcols, nrimlines, nimcols, nimlines, nrcols, nrlines, ncols
int nlines, rc1, rc2, rl1, rl2, c1, c2, l1, l2, xstep, ystep, npts
pointer sp, str, ibuf, rbuf, prc1, prc2, prxstep, prl1, prl2, prystep
int rg_lstati(), rg_simget()
pointer rg_lstatp()
real rg_lstatr()
#int c1, c2, l1, l2
#int ncols, nlines, npts
define nextregion_ 11
begin
stat = OK
# Allocate working space.
call smark (sp)
call salloc (str, SZ_LINE, TY_CHAR)
# Delete the data of the previous region if any.
rbuf = rg_lstatp (ls, RBUF)
if (rbuf != NULL)
call mfree (rbuf, TY_REAL)
rbuf = NULL
ibuf = rg_lstatp (ls, IBUF)
if (ibuf != NULL)
call mfree (ibuf, TY_REAL)
ibuf = NULL
# Check for number of regions.
if (i < 1 || i > rg_lstati (ls, NREGIONS)) {
stat = ERR
goto nextregion_
}
# Get the reference and input image sizes.
nrimcols = IM_LEN(imr,1)
if (IM_NDIM(imr) == 1)
nrimlines = 1
else
nrimlines = IM_LEN(imr,2)
nimcols = IM_LEN(im1,1)
if (IM_NDIM(im1) == 1)
nimlines = 1
else
nimlines = IM_LEN(im1,2)
# Get the reference region pointers.
prc1 = rg_lstatp (ls, RC1)
prc2 = rg_lstatp (ls, RC2)
prl1 = rg_lstatp (ls, RL1)
prl2 = rg_lstatp (ls, RL2)
prxstep = rg_lstatp (ls, RXSTEP)
prystep = rg_lstatp (ls, RYSTEP)
# Get the reference subraster regions.
rc1 = Memi[prc1+i-1]
rc2 = Memi[prc2+i-1]
rl1 = Memi[prl1+i-1]
rl2 = Memi[prl2+i-1]
xstep = Memi[prxstep+i-1]
ystep = Memi[prystep+i-1]
nrcols = (rc2 - rc1) / xstep + 1
nrlines = (rl2 - rl1) / ystep + 1
# Move to the next region if current reference region is off the image.
if (rc1 < 1 || rc1 > nrimcols || rc2 < 1 || rc2 > nrimcols ||
rl1 > nrimlines || rl1 < 1 || rl2 < 1 || rl2 > nrimlines) {
call rg_lstats (ls, REFIMAGE, Memc[str], SZ_LINE)
call eprintf (
"Reference region %d: %s[%d:%d:%d,%d:%d:%d] is off image.\n")
call pargi (i)
call pargstr (Memc[str])
call pargi (rc1)
call pargi (rc2)
call pargi (xstep)
call pargi (rl1)
call pargi (rl2)
call pargi (ystep)
stat = ERR
goto nextregion_
}
# Move to next region if current reference region is too small.
if (nrcols < 3 || (IM_NDIM(imr) == 2 && nrlines < 3)) {
call rg_lstats (ls, REFIMAGE, Memc[str], SZ_LINE)
call eprintf (
"Reference region %d: %s[%d:%d:%d,%d:%d:%d] has too few points.\n")
call pargi (i)
call pargstr (Memc[str])
call pargi (rc1)
call pargi (rc2)
call pargi (xstep)
call pargi (rl1)
call pargi (rl2)
call pargi (ystep)
stat = ERR
goto nextregion_
}
# Get the reference image data.
npts = rg_simget (imr, rc1, rc2, xstep, rl1, rl2, ystep, rbuf)
if (npts < 9) {
stat = ERR
go to nextregion_
}
call rg_lsetp (ls, RBUF, rbuf)
Memi[rg_lstatp(ls,RNPTS)+i-1] = npts
# Get the input image subraster regions.
c1 = rc1 + rg_lstatr (ls, SXSHIFT)
c2 = rc2 + rg_lstatr (ls, SXSHIFT)
l1 = rl1 + rg_lstatr (ls, SYSHIFT)
l2 = rl2 + rg_lstatr (ls, SYSHIFT)
#c1 = max (1, min (nimcols, c1))
#c2 = min (nimcols, max (1, c2))
#l1 = max (1, min (nimlines, l1))
#l2 = min (nimlines, max (1, l2))
ncols = (c2 - c1) / xstep + 1
nlines = (l2 - l1) / ystep + 1
# Move to the next region if current input region is off the image.
if (c1 < 1 || c1 > nimcols || c2 > nimcols || c2 < 1 ||
l1 > nimlines || l1 < 1 || l2 < 1 || l2 > nimlines) {
call rg_lstats (ls, IMAGE, Memc[str], SZ_LINE)
call eprintf (
"Input region %d: %s[%d:%d:%d,%d:%d:%d] is off image.\n")
call pargi (i)
call pargstr (Memc[str])
call pargi (c1)
call pargi (c2)
call pargi (xstep)
call pargi (l1)
call pargi (l2)
call pargi (ystep)
stat = ERR
goto nextregion_
}
# Move to the next region if current input region is too small.
if (ncols < 3 || (IM_NDIM(im1) == 2 && nlines < 3)) {
call rg_lstats (ls, IMAGE, Memc[str], SZ_LINE)
call eprintf (
"Input regions %d: %s[%d:%d:%d,%d:%d:%d] has too few points.\n")
call pargi (i)
call pargstr (Memc[str])
call pargi (c1)
call pargi (c2)
call pargi (xstep)
call pargi (l1)
call pargi (l2)
call pargi (ystep)
stat = ERR
goto nextregion_
}
# Get the image data.
npts = rg_simget (im1, c1, c2, xstep, l1, l2, ystep, ibuf)
if (npts < 9) {
stat = ERR
go to nextregion_
}
call rg_lsetp (ls, IBUF, ibuf)
Memi[rg_lstatp(ls,INPTS)+i-1] = npts
nextregion_
call sfree (sp)
if (stat == ERR) {
call rg_lsetp (ls, RBUF, rbuf)
if (ibuf != NULL)
call mfree (ibuf, TY_REAL)
call rg_lsetp (ls, IBUF, NULL)
call rg_lseti (ls, CNREGION, i)
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADREGION
return (ERR)
} else {
call rg_lsetp (ls, RBUF, rbuf)
call rg_lsetp (ls, IBUF, ibuf)
call rg_lseti (ls, CNREGION, i)
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_NO
return (OK)
}
end
# RG_LGMMM -- Compute the mean, median and mode of a data region
procedure rg_lgmmm (ls, i)
pointer ls #I pointer to the intensity scaling structure
int i #I the current region
int npts
pointer rbuf, ibuf, buf
real sigma, dmin, dmax
int rg_lstati()
pointer rg_lstatp()
real rg_lmode(), rg_lstatr()
begin
# Test that the data buffers exist and contain data.
rbuf = rg_lstatp (ls, RBUF)
ibuf = rg_lstatp (ls, IBUF)
npts = Memi[rg_lstatp (ls, RNPTS)+i-1]
if (rbuf == NULL || npts <= 0) {
Memr[rg_lstatp(ls,RMEAN)+i-1] = 0.0
Memr[rg_lstatp(ls,RMEDIAN)+i-1] = 0.0
Memr[rg_lstatp(ls,RMODE)+i-1] = 0.0
Memr[rg_lstatp(ls,RSIGMA)+i-1] = 0.0
Memr[rg_lstatp(ls,IMEAN)+i-1] = 0.0
Memr[rg_lstatp(ls,IMEDIAN)+i-1] = 0.0
Memr[rg_lstatp(ls,IMODE)+i-1] = 0.0
Memr[rg_lstatp(ls,ISIGMA)+i-1] = 0.0
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADREGION
return
}
call malloc (buf, npts, TY_REAL)
# Compute the mean, median, and mode of the reference region but
# don't recompute the reference region statistics needlessly.
if ((!IS_INDEFR(rg_lstatr(ls,DATAMIN)) || !IS_INDEFR(rg_lstatr(ls,
DATAMAX))) && (rg_lstati(ls,BSALGORITHM) != LS_FIT ||
rg_lstati(ls,BZALGORITHM) != LS_FIT)) {
call alimr (Memr[rbuf], npts, dmin, dmax)
if (!IS_INDEFR(rg_lstatr(ls,DATAMIN))) {
if (dmin < rg_lstatr(ls,DATAMIN)) {
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADREGION
call eprintf (
"Reference region %d contains data < datamin\n")
call pargi (i)
}
}
if (!IS_INDEFR(rg_lstatr(ls,DATAMAX))) {
if (dmax > rg_lstatr(ls,DATAMAX)) {
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADREGION
call eprintf (
"Reference region %d contains data > datamax\n")
call pargi (i)
}
}
}
call aavgr (Memr[rbuf], npts, Memr[rg_lstatp(ls,RMEAN)+i-1], sigma)
Memr[rg_lstatp(ls,RSIGMA)+i-1] = sigma / sqrt (real(npts))
call asrtr (Memr[rbuf], Memr[buf], npts)
if (mod (npts,2) == 1)
Memr[rg_lstatp(ls,RMEDIAN)+i-1] = Memr[buf+npts/2]
else
Memr[rg_lstatp(ls,RMEDIAN)+i-1] = (Memr[buf+npts/2-1] +
Memr[buf+npts/2]) / 2.0
Memr[rg_lstatp(ls,RMODE)+i-1] = rg_lmode (Memr[buf], npts,
LMODE_NMIN, LMODE_ZRANGE, LMODE_ZBIN, LMODE_ZSTEP)
sigma = sqrt ((max (Memr[rg_lstatp(ls,RMEAN)+i-1], 0.0) /
rg_lstatr(ls,RGAIN) + (rg_lstatr(ls,RREADNOISE) /
rg_lstatr (ls,RGAIN)) ** 2) / npts)
Memr[rg_lstatp(ls,RSIGMA)+i-1] =
min (Memr[rg_lstatp(ls,RSIGMA)+i-1], sigma)
if (ibuf == NULL) {
Memr[rg_lstatp(ls,IMEAN)+i-1] = Memr[rg_lstatp(ls,RMEAN)+i-1]
Memr[rg_lstatp(ls,IMEDIAN)+i-1] = Memr[rg_lstatp(ls,RMEDIAN)+i-1]
Memr[rg_lstatp(ls,IMODE)+i-1] = Memr[rg_lstatp(ls,RMODE)+i-1]
Memr[rg_lstatp(ls,ISIGMA)+i-1] = Memr[rg_lstatp(ls,RSIGMA)+i-1]
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADREGION
call mfree (buf, TY_REAL)
return
}
# Compute the mean, median, and mode of the input region.
if ((!IS_INDEFR(rg_lstatr(ls,DATAMIN)) || !IS_INDEFR(rg_lstatr(ls,
DATAMAX))) && (rg_lstati(ls,BSALGORITHM) != LS_FIT ||
rg_lstati(ls,BZALGORITHM) != LS_FIT)) {
call alimr (Memr[ibuf], npts, dmin, dmax)
if (!IS_INDEFR(rg_lstatr(ls,DATAMIN))) {
if (dmin < rg_lstatr(ls,DATAMIN)) {
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADREGION
call eprintf ("Input region %d contains data < datamin\n")
call pargi (i)
}
}
if (!IS_INDEFR(rg_lstatr(ls,DATAMAX))) {
if (dmax > rg_lstatr(ls,DATAMAX)) {
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADREGION
call eprintf ("Input region %d contains data > datamax\n")
call pargi (i)
}
}
}
call aavgr (Memr[ibuf], npts, Memr[rg_lstatp(ls,IMEAN)+i-1], sigma)
Memr[rg_lstatp(ls,ISIGMA)+i-1] = sigma / sqrt (real(npts))
call asrtr (Memr[ibuf], Memr[buf], npts)
if (mod (npts,2) == 1)
Memr[rg_lstatp(ls,IMEDIAN)+i-1] = Memr[buf+npts/2]
else
Memr[rg_lstatp(ls,IMEDIAN)+i-1] = (Memr[buf+npts/2-1] +
Memr[buf+npts/2]) / 2.0
Memr[rg_lstatp(ls,IMODE)+i-1] = rg_lmode (Memr[buf], npts, LMODE_NMIN,
LMODE_ZRANGE, LMODE_ZBIN, LMODE_ZSTEP)
sigma = sqrt ((max (Memr[rg_lstatp(ls,IMEAN)+i-1], 0.0) /
rg_lstatr(ls,IGAIN) + (rg_lstatr(ls,IREADNOISE) /
rg_lstatr (ls,IGAIN)) ** 2) / npts)
Memr[rg_lstatp(ls,ISIGMA)+i-1] =
min (Memr[rg_lstatp(ls,ISIGMA)+i-1], sigma)
call mfree (buf, TY_REAL)
end
# RG_LBSZFIT -- Compute the bscale and bzero factor for a single region.
int procedure rg_lbszfit (ls, i, bscale, bzero, bserr, bzerr)
pointer ls #I pointer to the intensity scaling strucuture
int i #I the number of the current region
real bscale #O the computed bscale factor
real bzero #O the computed bzero factor
real bserr #O the computed error in bscale
real bzerr #O the computed error in bzero
int stat
real bjunk, chi
bool fp_equalr()
int rg_lstati()
pointer rg_lstatp()
real rg_lstatr()
begin
stat = OK
# Compute the bscale factor.
switch (rg_lstati (ls, BSALGORITHM)) {
case LS_NUMBER:
bscale = rg_lstatr (ls, CBSCALE)
bserr = 0.0
chi = INDEFR
case LS_MEAN:
if (fp_equalr (0.0, Memr[rg_lstatp(ls,IMEAN)+i-1])) {
bscale = 1.0
bserr = 0.0
} else {
bscale = Memr[rg_lstatp(ls, RMEAN)+i-1] /
Memr[rg_lstatp (ls, IMEAN)+i-1]
if (fp_equalr (0.0, Memr[rg_lstatp(ls,RMEAN)+i-1]))
bserr = 0.0
else
bserr = abs (bscale) * sqrt ((Memr[rg_lstatp(ls,
RSIGMA)+i-1] / Memr[rg_lstatp(ls,RMEAN)+i-1]) ** 2 +
(Memr[rg_lstatp(ls, ISIGMA)+i-1] /
Memr[rg_lstatp(ls,IMEAN)+i-1]) ** 2)
}
chi = INDEFR
case LS_MEDIAN:
if (fp_equalr (0.0, Memr[rg_lstatp(ls,IMEDIAN)+i-1])) {
bscale = 1.0
bserr= 0.0
} else {
bscale = Memr[rg_lstatp (ls,RMEDIAN)+i-1] /
Memr[rg_lstatp(ls,IMEDIAN)+i-1]
if (fp_equalr (0.0, Memr[rg_lstatp(ls,RMEDIAN)+i-1]))
bserr = 0.0
else
bserr = abs (bscale) * sqrt ((Memr[rg_lstatp(ls,
RSIGMA)+i-1] / Memr[rg_lstatp(ls,RMEDIAN)+i-1]) ** 2 +
(Memr[rg_lstatp(ls, ISIGMA)+i-1] / Memr[rg_lstatp(ls,
IMEDIAN)+i-1]) ** 2)
}
chi = INDEFR
case LS_MODE:
if (fp_equalr (0.0, Memr[rg_lstatp (ls,IMODE)+i-1])) {
bscale = 1.0
bserr = 0.0
} else {
bscale = Memr[rg_lstatp (ls, RMODE)+i-1] /
Memr[rg_lstatp (ls, IMODE)+i-1]
if (fp_equalr (0.0, Memr[rg_lstatp (ls,RMODE)+i-1]))
bserr = 0.0
else
bserr = abs (bscale) * sqrt ((Memr[rg_lstatp(ls,
RSIGMA)+i-1] / Memr[rg_lstatp(ls,RMODE)+i-1]) ** 2 +
(Memr[rg_lstatp(ls, ISIGMA)+i-1] / Memr[rg_lstatp(ls,
IMODE)+i-1]) ** 2)
}
chi = INDEFR
case LS_FIT:
call rg_llsqfit (ls, i, bscale, bzero, bserr, bzerr, chi)
case LS_PHOTOMETRY:
if (IS_INDEFR(Memr[rg_lstatp(ls,RMAG)+i-1]) ||
IS_INDEFR(Memr[rg_lstatp(ls,IMAG)+i-1])) {
bscale = 1.0
bserr = 0.0
} else {
bscale = 10.0 ** ((Memr[rg_lstatp(ls,IMAG)+i-1] -
Memr[rg_lstatp(ls,RMAG)+i-1]) / 2.5)
if (IS_INDEFR(Memr[rg_lstatp(ls,RMAGERR)+i-1]) ||
IS_INDEFR(Memr[rg_lstatp(ls,IMAGERR)+i-1]))
bserr = 0.0
else
bserr = 0.4 * log (10.0) * bscale *
sqrt (Memr[rg_lstatp(ls,RMAGERR)+i-1] ** 2 +
Memr[rg_lstatp(ls,IMAGERR)+i-1] ** 2)
}
chi = INDEFR
default:
bscale = 1.0
bserr = 0.0
chi = INDEFR
}
# Compute the bzero factor.
switch (rg_lstati (ls, BZALGORITHM)) {
case LS_NUMBER:
bzero = rg_lstatr (ls, CBZERO)
bzerr = 0.0
chi = INDEFR
case LS_MEAN:
if (rg_lstati(ls, BSALGORITHM) == LS_NUMBER) {
bzero = Memr[rg_lstatp(ls,RMEAN)+i-1] - Memr[rg_lstatp(ls,
IMEAN)+i-1]
bzerr = sqrt (Memr[rg_lstatp(ls,RSIGMA)+i-1] ** 2 +
Memr[rg_lstatp(ls,ISIGMA)+i-1] ** 2)
} else {
bzero = 0.0
bzerr = 0.0
}
chi = INDEFR
case LS_MEDIAN:
if (rg_lstati(ls, BSALGORITHM) == LS_NUMBER) {
bzero = Memr[rg_lstatp(ls,RMEDIAN)+i-1] -
Memr[rg_lstatp(ls,IMEDIAN)+i-1]
bzerr = sqrt (Memr[rg_lstatp(ls,RSIGMA)+i-1] ** 2 +
Memr[rg_lstatp(ls,ISIGMA)+i-1] ** 2)
} else {
bzero = 0.0
bzerr = 0.0
}
chi = INDEFR
case LS_MODE:
if (rg_lstati(ls, BSALGORITHM) == LS_NUMBER) {
bzero = Memr[rg_lstatp(ls,RMODE)+i-1] - Memr[rg_lstatp(ls,
IMODE)+i-1]
bzerr = sqrt (Memr[rg_lstatp(ls,RSIGMA)+i-1] ** 2 +
Memr[rg_lstatp(ls,ISIGMA)+i-1] ** 2)
} else {
bzero = 0.0
bzerr = 0.0
}
chi = INDEFR
case LS_FIT:
if (rg_lstati(ls, BSALGORITHM) == LS_NUMBER)
call rg_llsqfit (ls, i, bjunk, bzero, bjunk, bzerr, chi)
case LS_PHOTOMETRY:
if (IS_INDEFR(Memr[rg_lstatp(ls,RSKY)+i-1]) ||
IS_INDEFR(Memr[rg_lstatp(ls,ISKY)+i-1])) {
bzero = 0.0
bzerr = 0.0
} else {
bzero = Memr[rg_lstatp(ls,RSKY)+i-1] - bscale *
Memr[rg_lstatp(ls,ISKY)+i-1]
if (IS_INDEFR(Memr[rg_lstatp(ls,RSKYERR)+i-1]) ||
IS_INDEFR(Memr[rg_lstatp(ls,ISKYERR)+i-1]))
bzerr = 0.0
else
bzerr = sqrt (Memr[rg_lstatp(ls,RSKYERR)+i-1] ** 2 +
bserr ** 2 * Memr[rg_lstatp(ls,ISKY)+i-1] ** 2 +
bscale ** 2 * Memr[rg_lstatp(ls,ISKYERR)+i-1] ** 2)
}
chi = INDEFR
default:
bzero = 0.0
bzerr = 0.0
chi = INDEFR
}
# Store the results.
Memr[rg_lstatp(ls,RBSCALE)+i-1] = bscale
Memr[rg_lstatp(ls,RBZERO)+i-1] = bzero
Memr[rg_lstatp(ls,RBSCALEERR)+i-1] = bserr
Memr[rg_lstatp(ls,RBZEROERR)+i-1] = bzerr
Memr[rg_lstatp(ls,RCHI)+i-1] = chi
return (stat)
end
# RG_LBSZAVG -- Compute the final scaling parameters.
procedure rg_lbszavg (ls, avbscale, avbzero, avbserr, avbzerr, tbscale,
tbzero, tbserr, tbzerr)
pointer ls #I pointer to the intensity scaling strucuture
real avbscale #I the computed bscale factor
real avbzero #I the computed bzero factor
real avbserr #I the computed error in bscale
real avbzerr #I the computed error in bzero
real tbscale #O the computed bscale factor
real tbzero #O the computed bzero factor
real tbserr #O the computed error in bscale
real tbzerr #O the computed error in bzero
int i, bsalg, bzalg, nregions
pointer sp, weight
real answers[MAX_NFITPARS]
int rg_lstati()
pointer rg_lstatp()
real rg_lstatr()
begin
bsalg = rg_lstati (ls, BSALGORITHM)
bzalg = rg_lstati (ls, BZALGORITHM)
nregions = rg_lstati (ls, NREGIONS)
call smark (sp)
call salloc (weight, nregions, TY_REAL)
if (bsalg == LS_MEAN || bzalg == LS_MEAN) {
do i = 1, nregions {
if (IS_INDEFR(Memr[rg_lstatp(ls,IMEAN)+i-1]) ||
IS_INDEFR(Memr[rg_lstatp(ls,RMEAN)+i-1]) ||
Memi[rg_lstatp(ls,RDELETE)+i-1] != LS_NO)
Memr[weight+i-1] = 0.0
else
Memr[weight+i-1] = 1.0
}
call ll_lsqf1 (Memr[rg_lstatp(ls,IMEAN)], Memr[rg_lstatp(ls,
RMEAN)], Memr[rg_lstatp(ls,ISIGMA)], Memr[rg_lstatp(ls,
RSIGMA)], Memr[weight], nregions, rg_lstati(ls,MAXITER),
answers)
if (nregions > 2 && rg_lstati(ls,NREJECT) > 0 &&
(! IS_INDEFR(rg_lstatr(ls,LOREJECT)) ||
! IS_INDEFR(rg_lstatr(ls,HIREJECT)))) {
call ll_rlsqf1 (Memr[rg_lstatp(ls,IMEAN)], Memr[rg_lstatp(ls,
RMEAN)], Memr[rg_lstatp(ls,ISIGMA)], Memr[rg_lstatp(ls,
RSIGMA)], Memr[weight], nregions, rg_lstati(ls,MAXITER),
answers, rg_lstati(ls,NREJECT), rg_lstatr(ls,LOREJECT),
rg_lstatr(ls,HIREJECT))
do i = 1, nregions {
if (Memr[weight+i-1] <= 0.0 && Memi[rg_lstatp(ls,
RDELETE)+i-1] == LS_NO)
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADSIGMA
}
}
if (IS_INDEFR(CHI[answers])) {
tbscale = avbscale
tbserr = avbserr
tbzero = avbzero
tbzerr = avbzerr
} else if (bsalg == LS_MEAN && bzalg == LS_MEAN) {
tbscale = SLOPE[answers]
tbserr = ESLOPE[answers]
tbzero = YINCPT[answers]
tbzerr = EYINCPT[answers]
} else if (bsalg == LS_MEAN) {
tbscale = SLOPE[answers]
tbserr = ESLOPE[answers]
tbzero = avbzero
tbzerr = avbzerr
} else {
tbscale = avbscale
tbserr = avbserr
tbzero = avbzero
tbzerr = avbzerr
}
} else if (bsalg == LS_MEDIAN || bzalg == LS_MEDIAN) {
do i = 1, nregions {
if (IS_INDEFR(Memr[rg_lstatp(ls,IMEDIAN)+i-1]) ||
IS_INDEFR(Memr[rg_lstatp(ls,RMEDIAN)+i-1]) ||
Memi[rg_lstatp(ls,RDELETE)+i-1] != LS_NO)
Memr[weight+i-1] = 0.0
else
Memr[weight+i-1] = 1.0
}
call ll_lsqf1 (Memr[rg_lstatp(ls,IMEDIAN)], Memr[rg_lstatp(ls,
RMEDIAN)], Memr[rg_lstatp(ls,ISIGMA)], Memr[rg_lstatp(ls,
RSIGMA)], Memr[weight], nregions, rg_lstati(ls,MAXITER),
answers)
if (nregions > 2 && rg_lstati(ls,NREJECT) > 0 &&
(! IS_INDEFR(rg_lstatr(ls,LOREJECT)) ||
! IS_INDEFR(rg_lstatr(ls,HIREJECT)))) {
call ll_rlsqf1 (Memr[rg_lstatp(ls,IMEDIAN)], Memr[rg_lstatp(ls,
RMEDIAN)], Memr[rg_lstatp(ls,ISIGMA)], Memr[rg_lstatp(ls,
RSIGMA)], Memr[weight], nregions, rg_lstati(ls,MAXITER),
answers, rg_lstati(ls,NREJECT), rg_lstatr(ls,LOREJECT),
rg_lstatr(ls,HIREJECT))
do i = 1, nregions {
if (Memr[weight+i-1] <= 0.0 && Memi[rg_lstatp(ls,
RDELETE)+i-1] == LS_NO)
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADSIGMA
}
}
if (IS_INDEFR(CHI[answers])) {
tbscale = avbscale
tbserr = avbserr
tbzero = avbzero
tbzerr = avbzerr
} else if (bsalg == LS_MEDIAN && bzalg == LS_MEDIAN) {
tbscale = SLOPE[answers]
tbserr = ESLOPE[answers]
tbzero = YINCPT[answers]
tbzerr = EYINCPT[answers]
} else if (bsalg == LS_MEDIAN) {
tbscale = SLOPE[answers]
tbserr = ESLOPE[answers]
tbzero = avbzero
tbzerr = avbzerr
} else {
tbscale = avbscale
tbserr = avbserr
tbzero = avbzero
tbzerr = avbzerr
}
} else if (bsalg == LS_MODE || bzalg == LS_MODE) {
do i = 1, nregions {
if (IS_INDEFR(Memr[rg_lstatp(ls,IMODE)+i-1]) ||
IS_INDEFR(Memr[rg_lstatp(ls,RMODE)+i-1]) ||
Memi[rg_lstatp(ls,RDELETE)+i-1] != LS_NO)
Memr[weight+i-1] = 0.0
else
Memr[weight+i-1] = 1.0
}
call ll_lsqf1 (Memr[rg_lstatp(ls,IMODE)], Memr[rg_lstatp(ls,
RMODE)], Memr[rg_lstatp(ls,ISIGMA)], Memr[rg_lstatp(ls,
RSIGMA)], Memr[weight], nregions, rg_lstati(ls,MAXITER),
answers)
if (nregions > 2 && rg_lstati(ls,NREJECT) > 0 &&
(! IS_INDEFR(rg_lstatr(ls,LOREJECT)) ||
! IS_INDEFR(rg_lstatr(ls,HIREJECT)))) {
call ll_rlsqf1 (Memr[rg_lstatp(ls,IMODE)], Memr[rg_lstatp(ls,
RMODE)], Memr[rg_lstatp(ls,ISIGMA)], Memr[rg_lstatp(ls,
RSIGMA)], Memr[weight], nregions, rg_lstati(ls,MAXITER),
answers, rg_lstati(ls,NREJECT), rg_lstatr(ls,LOREJECT),
rg_lstatr(ls,HIREJECT))
do i = 1, nregions {
if (Memr[weight+i-1] <= 0.0 && Memi[rg_lstatp(ls,
RDELETE)+i-1] == LS_NO)
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADSIGMA
}
}
if (IS_INDEFR(CHI[answers])) {
tbscale = avbscale
tbserr = avbserr
tbzero = avbzero
tbzerr = avbzerr
} else if (bsalg == LS_MODE && bzalg == LS_MODE) {
tbscale = SLOPE[answers]
tbserr = ESLOPE[answers]
tbzero = YINCPT[answers]
tbzerr = EYINCPT[answers]
} else if (bsalg == LS_MODE) {
tbscale = SLOPE[answers]
tbserr = ESLOPE[answers]
tbzero = avbzero
tbzerr = avbzerr
} else {
tbscale = avbscale
tbserr = avbserr
tbzero = avbzero
tbzerr = avbzerr
}
} else {
tbscale = avbscale
tbzero = avbzero
tbserr = avbserr
tbzerr = avbzerr
}
call sfree (sp)
end
# RG_LFILE -- Fetch the scaling parameters from the datafile.
procedure rg_lfile (db, ls, bscale, bzero, bserr, bzerr)
pointer db #I pointer to the database file
pointer ls #I pointer to the intensity scaling structure
real bscale #O the average scaling parameter
real bzero #O the average offset parameter
real bserr #O the error in bscale
real bzerr #O the error in bzero
int rec
pointer sp, record
int dtlocate()
real dtgetr()
begin
call smark (sp)
call salloc (record, SZ_FNAME, TY_CHAR)
call rg_lstats (ls, RECORD, Memc[record], SZ_FNAME)
iferr {
rec = dtlocate (db, Memc[record])
bscale = dtgetr (db, rec, "bscale")
bzero = dtgetr (db, rec, "bzero")
bserr = dtgetr (db, rec, "bserr")
bzerr = dtgetr (db, rec, "bzerr")
} then {
bscale = 1.0
bzero = 0.0
bserr = INDEFR
bzerr = INDEFR
}
call sfree (sp)
end
# RG_SIMGET -- Fill a buffer from a specified region of the image including a
# step size in x and y.
int procedure rg_simget (im, c1, c2, cstep, l1, l2, lstep, ptr)
pointer im #I the pointer to the iraf image
int c1, c2 #I the column limits
int cstep #I the column step size
int l1, l2 #I the line limits
int lstep #I the line step size
pointer ptr #I the pointer to the output buffer
int i, j, ncols, nlines, npts
pointer iptr, buf
pointer imgs2r()
begin
ncols = (c2 - c1) / cstep + 1
nlines = (l2 - l1) / lstep + 1
npts = ncols * nlines
call malloc (ptr, npts, TY_REAL)
iptr = ptr
do j = l1, l2, lstep {
buf = imgs2r (im, c1, c2, j, j)
do i = 1, ncols {
Memr[iptr+i-1] = Memr[buf]
buf = buf + cstep
}
iptr = iptr + ncols
}
return (npts)
end
# RG_LMODE -- Compute mode of an array. The mode is found by binning
# with a bin size based on the data range over a fraction of the
# pixels about the median and a bin step which may be smaller than the
# bin size. If there are too few points the median is returned.
# The input array must be sorted.
real procedure rg_lmode (a, npts, nmin, zrange, fzbin, fzstep)
real a[npts] #I the sorted input data array
int npts #I the number of points
int nmin #I the minimum number of points
real zrange #I fraction of pixels around median to use
real fzbin #I the bin size for the mode search
real fzstep #I the step size for the mode search
int x1, x2, x3, nmax
real zstep, zbin, y1, y2, mode
bool fp_equalr()
begin
# If there are too few points return the median.
if (npts < nmin) {
if (mod (npts,2) == 1)
return (a[1+npts/2])
else
return ((a[npts/2] + a[1+npts/2]) / 2.0)
}
# Compute the data range that will be used to do the mode search.
# If the data has no range then the constant value will be returned.
x1 = max (1, int (1.0 + npts * (1.0 - zrange) / 2.0))
x3 = min (npts, int (1.0 + npts * (1.0 + zrange) / 2.0))
if (fp_equalr (a[x1], a[x3]))
return (a[x1])
# Compute the bin and step size. The bin size is based on the
# data range over a fraction of the pixels around the median
# and a bin step which may be smaller than the bin size.
zstep = fzstep * (a[x3] - a[x1])
zbin = fzbin * (a[x3] - a[x1])
nmax = 0
x2 = x1
for (y1 = a[x1]; x2 < x3; y1 = y1 + zstep) {
for (; a[x1] < y1; x1 = x1 + 1)
;
y2 = y1 + zbin
for (; (x2 < x3) && (a[x2] < y2); x2 = x2 + 1)
;
if (x2 - x1 > nmax) {
nmax = x2 - x1
if (mod (x2+x1,2) == 0)
mode = a[(x2+x1)/2]
else
mode = (a[(x2+x1)/2] + a[(x2+x1)/2+1]) / 2.0
}
}
return (mode)
end
# RG_LLSQFIT -- Compute the bscale and bzero factors by doing a least squares
# fit to the region data. For this technque to be successful the data must
# be registered and psf matched.
procedure rg_llsqfit (ls, i, bscale, bzero, bserr, bzerr, chi)
pointer ls #I pointer to the intensity scaling structure
int i #I the current region
real bscale #O the computed bscale factor
real bzero #O the computed bzero factor
real bserr #O the estimated error in bscale
real bzerr #O the estimated error in bzero
real chi #O the output chi at unit weight
int j, npts
pointer rbuf, ibuf, rerr, ierr, weight
real rgain, igain, rrnoise, irnoise, answers[MAX_NFITPARS]
real datamin, datamax
int rg_lstati()
pointer rg_lstatp()
real rg_lstatr()
begin
# Get the data pointers.
rbuf = rg_lstatp (ls, RBUF)
ibuf = rg_lstatp (ls, IBUF)
# Allocate space for the error and weight arrays.
npts = Memi[rg_lstatp(ls,RNPTS)+i-1]
call malloc (rerr, npts, TY_REAL)
call malloc (ierr, npts, TY_REAL)
call malloc (weight, npts, TY_REAL)
# Compute the errors.
rgain = rg_lstatr (ls, RGAIN)
igain = rg_lstatr (ls, IGAIN)
rrnoise = rg_lstatr (ls, RREADNOISE) ** 2 / rgain
irnoise = rg_lstatr (ls, IREADNOISE) ** 2 / igain
do j = 1, npts {
Memr[rerr+j-1] = (Memr[rbuf+j-1] + rrnoise) / rgain
Memr[ierr+j-1] = (Memr[ibuf+j-1] + irnoise) / igain
}
# Compute the weights.
if (IS_INDEFR(rg_lstatr(ls,DATAMIN)) && IS_INDEFR(ls,DATAMAX))
call amovkr (1.0, Memr[weight], npts)
else {
if (IS_INDEFR(rg_lstatr(ls,DATAMIN)))
datamin = -MAX_REAL
else
datamin = rg_lstatr (ls, DATAMIN)
if (IS_INDEFR(rg_lstatr(ls,DATAMAX)))
datamax = MAX_REAL
else
datamax = rg_lstatr (ls, DATAMAX)
do j = 1, npts {
if (Memr[rbuf+j-1] < datamin || Memr[rbuf+j-1] > datamax)
Memr[weight+j-1] = 0.0
else if (Memr[ibuf+j-1] < datamin || Memr[ibuf+j-1] > datamax)
Memr[weight+j-1] = 0.0
else
Memr[weight+j-1] = 1.0
}
}
# Compute the fit.
call ll_lsqf1 (Memr[ibuf], Memr[rbuf], Memr[ierr], Memr[rerr],
Memr[weight], npts, rg_lstati(ls, MAXITER), answers)
# Perform the rejection cycle.
if (npts > 2 && rg_lstati(ls,NREJECT) > 0 &&
(! IS_INDEFR(rg_lstatr(ls,LOREJECT)) ||
! IS_INDEFR(rg_lstatr(ls,HIREJECT))))
call ll_rlsqf1 (Memr[ibuf], Memr[rbuf], Memr[ierr], Memr[rerr],
Memr[weight], npts, rg_lstati(ls,MAXITER), answers,
rg_lstati(ls,NREJECT), rg_lstatr(ls,LOREJECT),
rg_lstatr(ls,HIREJECT))
bscale = SLOPE[answers]
bzero = YINCPT[answers]
bserr = ESLOPE[answers]
bzerr = EYINCPT[answers]
chi = CHI[answers]
# Free the working space.
call mfree (rerr, TY_REAL)
call mfree (ierr, TY_REAL)
call mfree (weight, TY_REAL)
end
# RG_RAVSTATS -- Compute the average statistics.
procedure rg_ravstats (ls, sumbscale, sumbzero, sumwbscale, sumwbzero, sumbserr,
sumbzerr, bserr, bzerr, avbscale, avbzero, avbserr, avbzerr, ngood)
pointer ls #I pointer to the linmatch structure
double sumbscale #I/O sum of the bscale values
double sumbzero #I/O sum of the bzero values
double sumwbscale #I/O sum of the weighted bscale values
double sumwbzero #I/O sum of the weighted bzero values
double sumbserr #I/O sum of the bscale error
double sumbzerr #I/O sum of the bscale error
real bserr #I/O the bscale error of 1 observation
real bzerr #I/O the bzero error of 1 observation
real avbscale #I/O the average bscale factor
real avbzero #I/O the average bzero factor
real avbserr #O the average bscale error factor
real avbzerr #O the average bzero error factor
int ngood #I/O the number of good data values
int i, nregions, nrej, nbad
real sigbscale, sigbzero, lobscale, hibscale, lobzero, hibzero
real bscale, bzero, bsresid, bzresid
double dw
int rg_lstati()
pointer rg_lstatp()
real rg_lsigma(), rg_lstatr()
begin
nregions = rg_lstati (ls,NREGIONS)
nrej = 0
repeat {
# Compute sigma.
sigbscale = rg_lsigma (Memr[rg_lstatp(ls,RBSCALE)],
Memi[rg_lstatp(ls,RDELETE)], nregions, avbscale)
if (sigbscale <= 0.0)
break
sigbzero = rg_lsigma (Memr[rg_lstatp(ls,RBZERO)],
Memi[rg_lstatp(ls,RDELETE)], nregions, avbzero)
if (sigbzero <= 0.0)
break
if (IS_INDEFR(rg_lstatr(ls,LOREJECT))) {
lobscale = -MAX_REAL
lobzero = -MAX_REAL
} else {
lobscale = -sigbscale * rg_lstatr (ls, LOREJECT)
lobzero = -sigbzero * rg_lstatr (ls, LOREJECT)
}
if (IS_INDEFR(rg_lstatr(ls,HIREJECT))) {
hibscale = MAX_REAL
hibzero = MAX_REAL
} else {
hibscale = sigbscale * rg_lstatr (ls, HIREJECT)
hibzero = sigbzero * rg_lstatr (ls, HIREJECT)
}
nbad = 0
do i = 1, nregions {
if (Memi[rg_lstatp(ls,RDELETE)+i-1] != LS_NO)
next
bscale = Memr[rg_lstatp(ls,RBSCALE)+i-1]
if (IS_INDEFR(bscale))
next
bzero = Memr[rg_lstatp(ls,RBZERO)+i-1]
if (IS_INDEFR(bzero))
next
bserr = Memr[rg_lstatp(ls,RBSCALEERR)+i-1]
bsresid = bscale - avbscale
bzerr = Memr[rg_lstatp(ls,RBZEROERR)+i-1]
bzresid = bzero - avbzero
if (bsresid >= lobscale && bsresid <= hibscale && bzresid >=
lobzero && bzresid <= hibzero)
next
if (bserr <= 0.0)
dw = 1.0d0
else
dw = 1.0d0 / bserr ** 2
sumbscale = sumbscale - dw * bscale
sumbserr = sumbserr - dw * bscale * bscale
sumwbscale = sumwbscale - dw
if (bzerr <= 0.0)
dw = 1.0d0
else
dw = 1.0d0 / bzerr ** 2
sumbzero = sumbzero - dw * bzero
sumbzerr = sumbzerr - dw * bzero * bzero
sumwbzero = sumwbzero - dw
nbad = nbad + 1
Memi[rg_lstatp(ls,RDELETE)+i-1] = LS_BADSIGMA
ngood = ngood - 1
}
if (nbad <= 0)
break
call rg_avstats (sumbscale, sumbzero, sumwbscale, sumwbzero,
sumbserr, sumbzerr, bserr, bzerr, avbscale, avbzero,
avbserr, avbzerr, ngood)
if (ngood <= 0)
break
nrej = nrej + 1
} until (nrej >= rg_lstati(ls,NREJECT))
end
# RG_AVSTATS -- Compute the average statistics.
procedure rg_avstats (sumbscale, sumbzero, sumwbscale, sumwbzero, sumbserr,
sumbzerr, bserr, bzerr, avbscale, avbzero, avbserr, avbzerr, ngood)
double sumbscale #I sum of the bscale values
double sumbzero #I sum of the bzero values
double sumwbscale #I sum of the weighted bscale values
double sumwbzero #I sum of the weighted bzero values
double sumbserr #I sum of the bscale error
double sumbzerr #I sum of the bscale error
real bserr #I the bscale error of 1 observation
real bzerr #I the bzero error of 1 observation
real avbscale #O the average bscale factor
real avbzero #O the average bzero factor
real avbserr #O the average bscale error factor
real avbzerr #O the average bzero error factor
int ngood #I the number of good data values
begin
# Compute the average scaling factors.
if (ngood > 0) {
avbscale = sumbscale / sumwbscale
if (ngood > 1) {
avbserr = ngood * (sumbserr / sumwbscale - (sumbscale /
sumwbscale) ** 2) /
(ngood - 1)
if (avbserr >= 0.0)
avbserr = sqrt (avbserr)
else
avbserr = 0.0
} else
avbserr = bserr
avbzero = sumbzero / sumwbzero
if (ngood > 1) {
avbzerr = ngood * (sumbzerr / sumwbzero - (sumbzero /
sumwbzero) ** 2) /
(ngood - 1)
if (avbzerr >= 0.0)
avbzerr = sqrt (avbzerr)
else
avbzerr = 0.0
} else
avbzerr = bzerr
} else {
avbscale = 1.0
avbzero = 0.0
avbserr = INDEFR
avbzerr = INDEFR
}
end
# RG_LSIGMA -- Compute the standard deviation of an array taken into
# account any existing deletions.
real procedure rg_lsigma (a, del, npts, mean)
real a[ARB] #I the input array
int del[ARB] #I the deletions array
int npts #I the number of points in the array
real mean #I the mean of the array
int i, ngood
double sumsq
begin
sumsq = 0.0d0
ngood = 0
do i = 1, npts {
if (del[i] != LS_NO)
next
if (IS_INDEFR(a[i]))
next
sumsq = sumsq + (a[i] - mean) ** 2
ngood = ngood + 1
}
if (ngood <= 1)
return (0.0)
else if (sumsq <= 0.0)
return (0.0)
else
return (sqrt (real (sumsq / (ngood - 1))))
end
|