aboutsummaryrefslogtreecommitdiff
path: root/pkg/images/immatch/src/linmatch/rglsqfit.x
blob: f728ecdeb1ad8346fb6350f65d69f06e5bcecd55 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
include <mach.h>
include "lsqfit.h"

# LL_RLSQF1 -- Given an initial fit reject points outside of the low and
# high cut rejections parameters.

procedure ll_rlsqf1 (x, y, xerr, yerr, weight, npts, maxiter, answers, nreject,
	locut, hicut)

real	x[ARB]				#I the input vector
real	y[ARB]				#I the reference vector
real	xerr[ARB]			#I the input vector errors squared
real	yerr[ARB]			#I the reference vector errors squared
real	weight[ARB]			#I the input weight array
int	npts				#I the number of points
int	maxiter				#I the number of iterations
real	answers[ARB]			#I/O the answers array
int	nreject				#I the max number of rejection cycles
real	locut				#I the low side rejection parameter
real	hicut				#I the high side rejection parameter

int	i, niter, nrej
real	loval, hival, resid

begin
	if ((IS_INDEFR(locut) && IS_INDEFR(hicut)) || npts <= 2)
	    return
	if (RMS[answers] <= 0.0 || IS_INDEFR(CHI[answers]))
	    return

	niter = 0
	repeat {
	    if (IS_INDEFR(locut))
		loval = -MAX_REAL
	    else
		loval = -locut * RMS[answers]
	    if (IS_INDEFR(hicut))
		hival = MAX_REAL
	    else
		hival = hicut * RMS[answers]
	    nrej = 0
	    do i = 1, npts {
		if (weight[i] <= 0.0)
		    next
		resid = y[i] - (SLOPE[answers] * x[i] + YINCPT[answers])
		if (resid >= loval && resid <= hival)
		    next
		weight[i] = 0.0
		nrej = nrej + 1
	    }
	    if (nrej <= 0)
		break
	    call ll_lsqf1 (x, y, xerr, yerr, weight, npts, maxiter, answers)
	    if (IS_INDEFR(CHI[answers]))
	        break
	    if (RMS[answers] <= 0.0)
		break
	    niter = niter + 1
	} until (niter >= nreject)
end


# LL_LSQF1 -- Compute the slope and intercept of the equation y = a * x + b
# using error arrays in both x and y.

procedure ll_lsqf1 (x, y, xerr, yerr, weight, npts, niter, answers)

real	x[ARB]				#I the input vector
real	y[ARB]				#I the reference vector
real	xerr[ARB]			#I the input vector errors squared
real	yerr[ARB]			#I the reference vector errors squared
real	weight[ARB]			#I the input weight array
int	npts				#I the number of points
int	niter				#I the number of iterations
real	answers[ARB]			#I/O the answers array

int	i, j
pointer	bufr, bufx, bufw
real	slope, yintrcpt, me1, msq, wt, dm, db

begin
	# Peform the initial fit.
	call ll_0lsqf1 (x, y, weight, npts, answers)
	if (IS_INDEFR(CHI[answers]))
	    return

	# Allocate working space.
	call malloc (bufr, npts, TY_REAL)
	call malloc (bufx, npts, TY_REAL)
	call malloc (bufw, npts, TY_REAL)

	# Initialize the iterations.
	slope = SLOPE[answers]
	yintrcpt = YINCPT[answers]
	me1 = CHI[answers]

	# Iterate on the fit.
	do i = 1, niter {
	    msq = slope * slope
	    do j = 1, npts {
		if (weight[j] <= 0.0) {
		    Memr[bufr+j-1] = 0.0
		    Memr[bufw+j-1] = 0.0
		    Memr[bufx+j-1] = 0.0
		} else {
		    wt = yerr[j] + msq * xerr[j]
		    if (wt <= 0.0)
			wt = 1.0
		    else
			wt = 1.0 / wt
		    Memr[bufr+j-1] = y[j] - (slope * x[j] + yintrcpt)
		    Memr[bufw+j-1] = weight[j] * wt
		    Memr[bufx+j-1] = x[j] + Memr[bufr+j-1] * slope * xerr[j] *
		        wt
		}
	    }
	    call ll_0lsqf1 (Memr[bufx], Memr[bufr], Memr[bufw], npts, answers)
	    if (IS_INDEFR(CHI[answers]))
	        break
	    if (abs ((me1 - CHI[answers]) / CHI[answers]) < 1.0e-5)
		break
	    dm = SLOPE[answers]
	    db = YINCPT[answers]
	    me1 = CHI[answers]
	    slope = slope + dm
	    yintrcpt = yintrcpt + db
	}

	# Compute the final answers.
	SLOPE[answers] = slope
	YINCPT[answers] = yintrcpt

	call mfree (bufr, TY_REAL)
	call mfree (bufx, TY_REAL)
	call mfree (bufw, TY_REAL)
end


# LL_0LSQF1: Compute the slope and intercept of the equation y = a * x + b
# using errors in y only.

procedure ll_0lsqf1 (x, y, w, npts, answers)

real	x[ARB]				#I the input vector
real	y[ARB]				#I the reference vector
real	w[ARB]				#I the weight vector
int	npts				#I the number of points
real	answers[ARB]			#I the answers

int	i, ngood
double	sumyy, sumxx, sumxy, sumx, sumy, sumw
double	a, b, det
real	wressq, ressq
bool	fp_equald()
double 	ll_dsum1(), ll_dsum2(), ll_dsum3()

begin
	# Compute the determinant.
	sumyy = ll_dsum3 (y, y, w, npts)
	sumxx = ll_dsum3 (x, x, w, npts)
	sumxy = ll_dsum3 (x, y, w, npts)
	sumy = ll_dsum2 (y, w, npts)
	sumx = ll_dsum2 (x, w, npts)
	sumw = ll_dsum1 (w, npts)
	det = sumw * sumxx - sumx * sumx

	if (fp_equald (0.0d0, det)) {
	    SLOPE[answers] = INDEFR
	    YINCPT[answers] = INDEFR
	    ESLOPE[answers] = INDEFR
	    EYINCPT[answers] = INDEFR
	    CHI[answers] = INDEFR
	    RMS[answers] = INDEFR
	} else {
	    a = (sumw * sumxy - sumx * sumy) / det
	    b = (sumxx * sumy - sumx * sumxy) / det
	    ngood = 0.0
	    ressq = 0.0
	    do i = 1, npts {
	        if (w[i] > 0.0) {
		    ngood = ngood + 1
		    ressq = ressq + (y[i] - (a * x[i] + b)) ** 2
		}
	    }
	    SLOPE[answers] = a
	    YINCPT[answers] = b
	    wressq = sumyy + a * (a * sumxx + 2. * (b * sumx - sumxy)) +
	        b * (b * sumw - 2.0 * sumy)
	    if (ngood <= 2) {
		CHI[answers] = 0.0
		ESLOPE[answers] = 0.0
		EYINCPT[answers] = 0.0
		RMS[answers] = 0.0
	    } else if (wressq >= 0.0) {
		CHI[answers] = sqrt (wressq / (ngood - 2))
		ESLOPE[answers] = CHI[answers] * sqrt (real (sumw / abs(det)))
		EYINCPT[answers] = CHI[answers] * sqrt (real (sumxx / abs(det)))
		RMS[answers] = sqrt (ressq / (ngood - 2))
	    } else {
		CHI[answers] = 0.0
		ESLOPE[answers] = 0.0
		EYINCPT[answers] = 0.0
		RMS[answers] = 0.0
	    }
	}
end


## GET_LSQF2: iterate LSq Fit to z=ax+by+c for errors in x, y and z.
## NB: xerr, yerr, zerr are errors SQUARED.
##
#
#procedure get_lsqf2 (x, y, z, xerr, yerr, zerr, weight, npts, niter, stats)
#
#real	x[npts], y[npts], z[npts]		# data vectors
#real	xerr[npts], yerr[npts], zerr[npts]	# error ** 2 vectors
#real	weight[npts]				# additional weight factors
#int	npts					# vector lengths
#int	niter					# no. of iterations
#real	stats[NFITPAR]				# returned fit params
#
#int	i, j
#real	a, b, c, me1
#pointer	bufr, bufx, bufy, bufw
#real	asq, bsq, res, wt, da, db, dc
#
#begin
#	call malloc (bufr, npts, TY_REAL)
#	call malloc (bufx, npts, TY_REAL)
#	call malloc (bufy, npts, TY_REAL)
#	call malloc (bufw, npts, TY_REAL)
#
## initial fit; NB needs expansion
#	call get_0lsqf2 (x, y, z, weight, npts, stats)
#	a = SLOPE1[stats]
#	b = SLOPE2[stats]
#	c = OFFSET[stats]
#	me1 = CHI[stats]
##	call printf ("iteration: %2d  a=%7.4f b=%7.4f off=%6.2f (%7.3f) \n")
##		call pargi (0)
##		call pargr (a)
##		call pargr (b)
##		call pargr (c)
##		call pargr (me1)
#
## iterate
#	do i = 1, niter {
#		asq = a * a
#		bsq = b * b
#		do j = 1, npts {
#			res = z[j] - (a * x[j] + b * y[j] + c)
#			wt = 1. / (zerr[j] + asq * xerr[j] + bsq * yerr[j])
#			Memr[bufr+j-1] = res
#			Memr[bufw+j-1] = weight[j] * wt
#			Memr[bufx+j-1] = x[j] + res * a * xerr[j] * wt
#			Memr[bufy+j-1] = y[j] + res * b * yerr[j] * wt
#		}
#		call get_0lsqf2 (Memr[bufx], Memr[bufy], Memr[bufr], Memr[bufw], npts, stats)
#		da = SLOPE1[stats]
#		db = SLOPE2[stats]
#		dc = OFFSET[stats]
#		me1 = CHI[stats]
#		a = a + da
#		b = b + db
#		c = c + dc
##		call printf ("iteration: %2d  a=%7.4f b=%7.4f off=%6.2f (%7.3f) \n")
##			call pargi (i)
##			call pargr (a)
##			call pargr (b)
##			call pargr (c)
##			call pargr (me1)
#	}
#
#	SLOPE1[stats] = a
#	SLOPE2[stats] = b
#	OFFSET[stats] = c
#
#	call mfree (bufr, TY_REAL)
#	call mfree (bufx, TY_REAL)
#	call mfree (bufy, TY_REAL)
#	call mfree (bufw, TY_REAL)
#end
#
##
## GET_0LSQF2 -- calculate the zeroth order LLSq Fit for 2 independent variables,
## assumming errors in z only
##
#
#	procedure get_0lsqf2 (x, y, z, w, npt, stats)
#
#real	x[npt], y[npt]				# input coords
#real	z[npt]					# ref. coord.
#real	w[npt]					# weights
#int	npt					# number of points
#real	stats[NFITPAR]				# fit info struct
#
#real	ga[4, 3]
#
#double	dsum1(), dsum2(), dsum3()
#
#begin
#	ga[1,1] = dsum3 (x, x, w, npt)
#	ga[2,1] = dsum3 (x, y, w, npt)
#	ga[2,2] = dsum3 (y, y, w, npt)
#	ga[3,1] = dsum2 (x, w, npt)
#	ga[3,2] = dsum2 (y, w, npt)
#	ga[4,1] = dsum3 (x, z, w, npt)
#	ga[4,2] = dsum3 (y, z, w, npt)
#	ga[4,3] = dsum2 (z, w, npt)
#	ga[3,3] = dsum1 (w, npt)
#
#	ga[1,2] = ga[2,1]
#	ga[1,3] = ga[3,1]
#	ga[2,3] = ga[3,2]
#
#	call g_elim(ga, 3)
#
#	SLOPE1[stats] = ga[4,1]
#	SLOPE2[stats] = ga[4,2]
#	OFFSET[stats]  = ga[4,3]
##need to define errors, me1
#	EOFFSET[stats] = INDEF
#	ESLOPE1[stats] = INDEF
#	ESLOPE2[stats] = INDEF
#	CHI[stats] = INDEF
#end
#


# LL_LLSQF0 -- Compute the offset b in the equation y - x = b using error
# arrays in both x and y.

#procedure ll_lsqf0 (x, y, xerr, yerr, w, npts, answers)

#real	x[ARB]				#I the input vector
#real	y[ARB]				#I the reference vector
#real	xerr[ARB]			#I the input vector errors squared
#real	yerr[ARB]			#I the reference vector errors squared
#real	w[ARB]				#I the input weight vector
#int	npts				#I the number of points
#real	answers[ARB]			#I the answer vector

#double	sumxx, sumx, sumw
#pointer	bufr, bufw
#double	ll_dsum1(), ll_dsum2(), ll_dsum3()

#begin
#	# Allocate working space.
#	call malloc (bufr, npts, TY_REAL)
#	call malloc (bufw, npts, TY_REAL)
#
#	call asubr (y, x, Memr[bufr], npts)
#	call aaddr (yerr, xerr, Memr[bufw], npts)
#	call adivr (w, Memr[bufw], Memr[bufw], npts)
#
#	sumxx = ll_dsum3 (Memr[bufr], Memr[bufr], Memr[bufw], npts)
#	sumx = ll_dsum2 (Memr[bufr], Memr[bufw], npts)
#	sumw = ll_dsum1 (Memr[bufw], npts)
#
#	if (sumw <= 0.0d0) {
#	    OFFSET[answers] = INDEFR
#	    EOFFSET[answers] = INDEFR
#	    CHI[answers] = INDEFR
#	} else {
#	    OFFSET[answers] = sumx / sumw
#	    if (npts > 1) {
#	        CHI[answers] = sqrt (real ((sumxx - sumx * sumx / sumw) /
#	            (npts - 1)))
#	        EOFFSET[answers] = CHI[answers] / sqrt (real (sumw))
#	    } else {
#	        CHI[answers] = 0.0
#	        EOFFSET[answers] = 0.0
#	    }
#	}
#
#	# Free working space.
#	call mfree (bufr, TY_REAL)
#	call mfree (bufw, TY_REAL)
#end


# LL_DSUM1 -- Compute a double precision vector sum.

double	procedure ll_dsum1 (a, n)

real	a[ARB]			#I the input vector
int	n			#I the number of points

double	sum
int	i

begin
	sum = 0.0d0
	do i = 1, n
	    sum = sum + a[i]

	return (sum)
end


# LL_DSUM2 -- Compute a double precision vector product.

double	procedure ll_dsum2 (a, b, n)

real	a[n]		#I the input vector 
real	b[n]		#I the weight vector
int	n		#I the number of points

double	sum
int	i

begin
	sum = 0.0d0
	do i = 1, n {
	    if (b[i] > 0.0)
	        sum = sum + a[i] * b[i]
	}

	return (sum)
end


# LL_DSUM3 -- Compute a double precision weighted dot product.


double	procedure ll_dsum3 (a, b, c, n)

real	a[n]			#I first input vector
real	b[n]			#I second input vector
real	c[n]			#I input weight vector
int	n			#I the number of points

double	sum
int	i

begin
	sum = 0.0d0
	do i = 1, n
	    if (c[i] > 0.0)
	        sum = sum + a[i] * b[i] * c[i]

	return (sum)
end