1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
# RG_PG10F -- Fetch the 0 component of the fft.
real procedure rg_pg10f (fft, nxfft, nyfft)
real fft[nxfft,nyfft] #I array containing 2 real ffts
int nxfft #I x dimension of complex array
int nyfft #I y dimension of complex array
int xcen, ycen
begin
xcen = nxfft / 2 + 1
ycen = nyfft / 2 + 1
return (fft[xcen,ycen])
end
# RG_PG1NORM -- Estimate the normalization factor by computing the amplitude
# of the best fitting Gaussian. This routine may eventually be replaced by
# on which does a complete Gaussian fit. The Gaussian is assumed to be
# of the form g = a * exp (b * r * r). The input array is a 2D real array
# storing 1 fft of dimension nxfft by nyfft in complex order with the
# zero frequency in the center.
real procedure rg_pg1norm (fft, nxfft, nyfft)
real fft[nxfft,nyfft] #I array containing 2 real ffts
int nxfft #I x dimension of complex array
int nyfft #I y dimension of complex array
int xcen, ycen
real ln1, ln2, cx, cy
begin
xcen = nxfft / 2 + 1
ycen = nyfft / 2 + 1
if (nxfft >= 8) {
ln1 = log (sqrt (fft[xcen-2,ycen] ** 2 + fft[xcen-1,ycen] ** 2))
ln2 = log (sqrt (fft[xcen-4,ycen] ** 2 + fft[xcen-3,ycen] ** 2))
cx = exp ((4.0 * ln1 - ln2) / 3.0)
} else
cx = 0.0
if (nyfft >= 4) {
ln1 = log (sqrt (fft[xcen,ycen-1] ** 2 + fft[xcen+1,ycen-1] ** 2))
ln2 = log (sqrt (fft[xcen,ycen-2] ** 2 + fft[xcen+1,ycen-2] ** 2))
cy = exp ((4.0 * ln1 - ln2) / 3.0)
} else
cy = 0.0
if (cx <= 0.0)
return (cy)
else if (cy <= 0.0)
return (cx)
else
return (0.5 * (cx + cy))
end
# RG_PG20F -- Fetch the 0 component of the fft.
real procedure rg_pg20f (fft, nxfft, nyfft)
real fft[nxfft,nyfft] #I array containing 2 real ffts
int nxfft #I x dimension of complex array
int nyfft #I y dimension of complex array
int xcen, ycen
begin
xcen = nxfft / 2 + 1
ycen = nyfft / 2 + 1
return (fft[xcen,ycen] / fft[xcen+1,ycen])
end
# RG_PG2NORM -- Estimate the normalization factor by computing the amplitude
# of the best fitting Gaussian. This routine may eventually be replaced by
# on which does a complete Gaussian fit. The Gaussian is assumed to be
# of the form g = a * exp (b * r * r). The input array is a 2D real array
# storing 2 2D ffts of dimension nxfft by nyfft in complex order with the
# zero frequency in the center.
real procedure rg_pg2norm (fft, nxfft, nyfft)
real fft[nxfft,nyfft] #I array containing 2 real ffts
int nxfft #I x dimension of complex array
int nyfft #I y dimension of complex array
int xcen, ycen
real fftr, ffti, ln1r, ln2r, ln1i, ln2i, cxr, cyr, cxi, cyi, ampr, ampi
begin
xcen = nxfft / 2 + 1
ycen = nyfft / 2 + 1
# Compute the x amplitude for the first fft.
if (nxfft >= 8) {
fftr = 0.5 * (fft[xcen+2,ycen] + fft[xcen-2,ycen])
ffti = 0.5 * (fft[xcen+3,ycen] - fft[xcen-1,ycen])
ln1r = log (sqrt (fftr ** 2 + ffti ** 2))
fftr = 0.5 * (fft[xcen+4,ycen] + fft[xcen-4,ycen])
ffti = 0.5 * (fft[xcen+5,ycen] - fft[xcen-3,ycen])
ln2r = log (sqrt (fftr ** 2 + ffti ** 2))
fftr = 0.5 * (fft[xcen+3,ycen] + fft[xcen-1,ycen])
ffti = -0.5 * (fft[xcen+2,ycen] - fft[xcen-2,ycen])
ln1i = log (sqrt (fftr ** 2 + ffti ** 2))
fftr = 0.5 * (fft[xcen+5,ycen] + fft[xcen-3,ycen])
ffti = -0.5 * (fft[xcen+4,ycen] - fft[xcen-4,ycen])
ln2i = log (sqrt (fftr ** 2 + ffti ** 2))
cxr = exp ((4.0 * ln1r - ln2r) / 3.0)
cxi = exp ((4.0 * ln1i - ln2i) / 3.0)
} else {
cxr = 0.0
cxi = 0.0
}
# Compute the y ratio.
if (nyfft >= 4) {
fftr = 0.5 * (fft[xcen,ycen+1] + fft[xcen,ycen-1])
ffti = 0.5 * (fft[xcen+1,ycen+1] - fft[xcen+1,ycen-1])
ln1r = log (sqrt (fftr ** 2 + ffti ** 2))
fftr = 0.5 * (fft[xcen,ycen+2] + fft[xcen,ycen-2])
ffti = 0.5 * (fft[xcen+1,ycen+2] - fft[xcen+1,ycen-2])
ln2r = log (sqrt (fftr ** 2 + ffti ** 2))
fftr = 0.5 * (fft[xcen+1,ycen+1] + fft[xcen+1,ycen-1])
ffti = -0.5 * (fft[xcen,ycen+1] - fft[xcen,ycen-1])
ln1i = log (sqrt (fftr ** 2 + ffti ** 2))
fftr = 0.5 * (fft[xcen+1,ycen+2] + fft[xcen+1,ycen-2])
ffti = -0.5 * (fft[xcen,ycen+2] - fft[xcen,ycen-2])
ln2i = log (sqrt (fftr ** 2 + ffti ** 2))
cyr = exp ((4.0 * ln1r - ln2r) / 3.0)
cyi = exp ((4.0 * ln1i - ln2i) / 3.0)
} else {
cyr = 0.0
cyi = 0.0
}
if (cxr <= 0.0)
ampr = cyr
else if (cyr <= 0.0)
ampr = cxr
else
ampr = 0.5 * (cxr + cyr)
if (cxi <= 0.0)
ampi = cyi
else if (cyi <= 0.0)
ampi = cxi
else
ampi = 0.5 * (cxi + cyi)
if (ampi <= 0.0)
return (INDEFR)
else
return (ampr /ampi)
end
# RG_PDIVFFT -- Unpack the two fft's, save the first fft, and compute the
# quotient of the two ffts.
procedure rg_pdivfft (fft1, fftnum, fftdenom, fft2, nxfft, nyfft)
real fft1[nxfft,nyfft] # array containing 2 ffts of 2 real functions
real fftnum[nxfft,nyfft] # the numerator fft
real fftdenom[nxfft,nyfft] # the denominator fft
real fft2[nxfft,nyfft] # fft of psf matching function
int nxfft, nyfft # dimensions of fft
int i, j, xcen, ycen, nxp2, nxp3, nyp2
real c1, c2, h1r, h1i, h2r, h2i, denom
begin
c1 = 0.5
c2 = -0.5
xcen = nxfft / 2 + 1
ycen = nyfft / 2 + 1
nxp2 = nxfft + 2
nxp3 = nxfft + 3
nyp2 = nyfft + 2
# Compute the 0 frequency point.
h1r = fft1[xcen,ycen]
h1i = 0.0
h2r = fft1[xcen+1,ycen]
h2i = 0.0
fftnum[xcen,ycen] = h1r
fftnum[xcen+1,ycen] = 0.0
fftdenom[xcen,ycen] = h2r
fftdenom[xcen+1,ycen] = 0.0
fft2[xcen,ycen] = h1r / h2r
fft2[xcen+1,ycen] = 0.0
#call eprintf ("fft11=%g fft21=%g\n")
#call pargr (fft1[1,1])
#call pargr (fft1[2,1])
# Compute the first point.
h1r = c1 * (fft1[1,1] + fft1[1,1])
h1i = 0.0
h2r = -c2 * (fft1[2,1] + fft1[2,1])
h2i = 0.0
fftnum[1,1] = h1r
fftnum[2,1] = h1i
fftdenom[1,1] = h2r
fftdenom[2,1] = h2i
denom = h2r * h2r + h2i * h2i
if (denom == 0.0) {
fft2[1,1] = 1.0
fft2[2,1] = 0.0
} else {
fft2[1,1] = (h1r * h2r + h1i * h2i) / denom
fft2[2,1] = (h1i * h2r - h2i * h1r) / denom
}
# Compute the x symmetry axis points.
do i = 3, xcen - 1, 2 {
h1r = c1 * (fft1[i,ycen] + fft1[nxp2-i,ycen])
h1i = c1 * (fft1[i+1,ycen] - fft1[nxp3-i,ycen])
h2r = -c2 * (fft1[i+1,ycen] + fft1[nxp3-i,ycen])
h2i = c2 * (fft1[i,ycen] - fft1[nxp2-i,ycen])
fftnum[i,ycen] = h1r
fftnum[i+1,ycen] = h1i
fftnum[nxp2-i,ycen] = h1r
fftnum[nxp3-i,ycen] = -h1i
fftdenom[i,ycen] = h2r
fftdenom[i+1,ycen] = h2i
fftdenom[nxp2-i,ycen] = h2r
fftdenom[nxp3-i,ycen] = -h2i
denom = h2r * h2r + h2i * h2i
if (denom == 0.0) {
fft2[i,ycen] = 1.0
fft2[i+1,ycen] = 0.0
} else {
fft2[i,ycen] = (h1r * h2r + h1i * h2i) / denom
fft2[i+1,ycen] = (h1i * h2r - h2i * h1r) / denom
}
fft2[nxp2-i,ycen] = fft2[i,ycen]
fft2[nxp3-i,ycen] = -fft2[i+1,ycen]
}
# Quit if the transform is 1D.
if (nyfft < 2)
return
# Compute the x axis points.
do i = 3, xcen + 1, 2 {
h1r = c1 * (fft1[i,1] + fft1[nxp2-i,1])
h1i = c1 * (fft1[i+1,1] - fft1[nxp3-i,1])
h2r = -c2 * (fft1[i+1,1] + fft1[nxp3-i,1])
h2i = c2 * (fft1[i,1] - fft1[nxp2-i,1])
fftnum[i,1] = h1r
fftnum[i+1,1] = h1i
fftnum[nxp2-i,1] = h1r
fftnum[nxp3-i,1] = -h1i
fftdenom[i,1] = h2r
fftdenom[i+1,1] = h2i
fftdenom[nxp2-i,1] = h2r
fftdenom[nxp3-i,1] = -h2i
denom = h2r * h2r + h2i * h2i
if (denom == 0) {
fft2[i,1] = 1.0
fft2[i+1,1] = 0.0
} else {
fft2[i,1] = (h1r * h2r + h1i * h2i) / denom
fft2[i+1,1] = (h1i * h2r - h2i * h1r) / denom
}
fft2[nxp2-i,1] = fft2[i,1]
fft2[nxp3-i,1] = -fft2[i+1,1]
}
# Compute the y symmetry axis points.
do i = 2, ycen - 1 {
h1r = c1 * (fft1[xcen,i] + fft1[xcen, nyp2-i])
h1i = c1 * (fft1[xcen+1,i] - fft1[xcen+1,nyp2-i])
h2r = -c2 * (fft1[xcen+1,i] + fft1[xcen+1,nyp2-i])
h2i = c2 * (fft1[xcen,i] - fft1[xcen,nyp2-i])
fftnum[xcen,i] = h1r
fftnum[xcen+1,i] = h1i
fftnum[xcen,nyp2-i] = h1r
fftnum[xcen+1,nyp2-i] = -h1i
fftdenom[xcen,i] = h2r
fftdenom[xcen+1,i] = h2i
fftdenom[xcen,nyp2-i] = h2r
fftdenom[xcen+1,nyp2-i] = -h2i
denom = h2r * h2r + h2i * h2i
if (denom == 0.0) {
fft2[xcen,i] = 1.0
fft2[xcen+1,i] = 0.0
} else {
fft2[xcen,i] = (h1r * h2r + h1i * h2i) / denom
fft2[xcen+1,i] = (h1i * h2r - h2i * h1r) / denom
}
fft2[xcen,nyp2-i] = fft2[xcen,i]
fft2[xcen+1,nyp2-i] = -fft2[xcen+1,i]
}
# Compute the y axis points.
do i = 2, ycen {
h1r = c1 * (fft1[1,i] + fft1[1,nyp2-i])
h1i = c1 * (fft1[2,i] - fft1[2,nyp2-i])
h2r = -c2 * (fft1[2,i] + fft1[2,nyp2-i])
h2i = c2 * (fft1[1,i] - fft1[1,nyp2-i])
fftnum[1,i] = h1r
fftnum[2,i] = h1i
fftnum[1,nyp2-i] = h1r
fftnum[2,nyp2-i] = -h1i
fftdenom[1,i] = h2r
fftdenom[2,i] = h2i
fftdenom[1,nyp2-i] = h2r
fftdenom[2,nyp2-i] = -h2i
denom = h2r * h2r + h2i * h2i
if (denom == 0.0) {
fft2[1,i] = 1.0
fft2[2,i] = 0.0
} else {
fft2[1,i] = (h1r * h2r + h1i * h2i) / denom
fft2[2,i] = (h1i * h2r - h2i * h1r) / denom
}
fft2[1,nyp2-i] = fft2[1,i]
fft2[2,nyp2-i] = -fft2[2,i]
}
# Compute the remainder of the transform.
do j = 2, ycen - 1 {
do i = 3, xcen - 1, 2 {
h1r = c1 * (fft1[i,j] + fft1[nxp2-i, nyp2-j])
h1i = c1 * (fft1[i+1,j] - fft1[nxp3-i,nyp2-j])
h2r = -c2 * (fft1[i+1,j] + fft1[nxp3-i,nyp2-j])
h2i = c2 * (fft1[i,j] - fft1[nxp2-i,nyp2-j])
fftnum[i,j] = h1r
fftnum[i+1,j] = h1i
fftnum[nxp2-i,nyp2-j] = h1r
fftnum[nxp3-i,nyp2-j] = -h1i
fftdenom[i,j] = h2r
fftdenom[i+1,j] = h2i
fftdenom[nxp2-i,nyp2-j] = h2r
fftdenom[nxp3-i,nyp2-j] = -h2i
denom = h2r * h2r + h2i * h2i
if (denom == 0.0) {
fft2[i,j] = 1.0
fft2[i+1,j] = 0.0
} else {
fft2[i,j] = (h1r * h2r + h1i * h2i) / denom
fft2[i+1,j] = (h1i * h2r - h2i * h1r) / denom
}
fft2[nxp2-i,nyp2-j] = fft2[i,j]
fft2[nxp3-i,nyp2-j] = - fft2[i+1,j]
}
do i = xcen + 2, nxfft, 2 {
h1r = c1 * (fft1[i,j] + fft1[nxp2-i, nyp2-j])
h1i = c1 * (fft1[i+1,j] - fft1[nxp3-i,nyp2-j])
h2r = -c2 * (fft1[i+1,j] + fft1[nxp3-i,nyp2-j])
h2i = c2 * (fft1[i,j] - fft1[nxp2-i,nyp2-j])
fftnum[i,j] = h1r
fftnum[i+1,j] = h1i
fftnum[nxp2-i,nyp2-j] = h1r
fftnum[nxp3-i,nyp2-j] = -h1i
fftdenom[i,j] = h2r
fftdenom[i+1,j] = h2i
fftdenom[nxp2-i,nyp2-j] = h2r
fftdenom[nxp3-i,nyp2-j] = -h2i
denom = h2r * h2r + h2i * h2i
if (denom == 0.0) {
fft2[i,j] = 1.0
fft2[i+1,j] = 0.0
} else {
fft2[i,j] = (h1r * h2r + h1i * h2i) / denom
fft2[i+1,j] = (h1i * h2r - h2i * h1r) / denom
}
fft2[nxp2-i,nyp2-j] = fft2[i,j]
fft2[nxp3-i,nyp2-j] = - fft2[i+1,j]
}
}
end
# RG_PNORM -- Insert the normalization value into the 0 frequency of the
# fft. The fft is a 2D fft stored in a real array in complex order.
# The fft is assumed to be centered.
procedure rg_pnorm (fft, nxfft, nyfft, norm)
real fft[ARB] #I the input fft
int nxfft #I the x dimension of fft (complex storage)
int nyfft #I the y dimension of the fft
real norm #I the flux ratio
int index
begin
index = nxfft + 1 + 2 * (nyfft / 2) * nxfft
fft[index] = norm
fft[index+1] = 0.0
end
|