1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
|
include <mach.h>
include <math/iminterp.h>
include <math/nlfit.h>
include "xregister.h"
define NL_MAXITER 10
define NL_TOL 0.001
# RG_FIT -- Fit the peak of the cross-correlation function using one of the
# fitting functions.
procedure rg_fit (xc, nreg, gd, xshift, yshift)
pointer xc #I the pointer to the cross-corrrelation structure
int nreg #I the current region
pointer gd #I the pointer to the graphics stream
real xshift, yshift #O the computed shifts
int nrlines, xwindow, ywindow, xcbox, ycbox, xlag, ylag
real xin, yin, xout, yout
int rg_xstati()
pointer rg_xstatp()
begin
# Check the window and centering box sizes.
nrlines = Memi[rg_xstatp(xc,RL2)+nreg-1] -
Memi[rg_xstatp(xc,RL1)+nreg-1] + 1
xwindow = rg_xstati (xc, XWINDOW)
if (nrlines == 1)
ywindow = 1
else
ywindow = rg_xstati (xc, YWINDOW)
xcbox = rg_xstati (xc, XCBOX)
if (nrlines == 1)
ycbox = 1
else
ycbox = rg_xstati (xc, YCBOX)
# Do the centering.
switch (rg_xstati (xc, PFUNC)) {
case XC_PNONE:
call rg_maxmin (Memr[rg_xstatp(xc,XCOR)], xwindow, ywindow,
xshift, yshift)
case XC_CENTROID:
call rg_imean (Memr[rg_xstatp(xc,XCOR)], xwindow,
ywindow, xcbox, ycbox, xshift, yshift)
case XC_SAWTOOTH:
call rg_sawtooth (Memr[rg_xstatp(xc,XCOR)], xwindow,
ywindow, xcbox, ycbox, xshift, yshift)
case XC_PARABOLA:
call rg_iparabolic (Memr[rg_xstatp(xc,XCOR)], xwindow, ywindow,
xcbox, ycbox, xshift, yshift)
case XC_MARK:
if (gd == NULL)
call rg_imean (Memr[rg_xstatp(xc,XCOR)], xwindow,
ywindow, xcbox, ycbox, xshift, yshift)
else
call rg_xmkpeak (gd, xwindow, ywindow, xshift, yshift)
default:
call rg_imean (Memr[rg_xstatp(xc,XCOR)], xwindow, ywindow,
xcbox, ycbox, xshift, yshift)
}
# Store the shifts.
if (rg_xstati (xc, NREFPTS) > 0) {
xin = (Memi[rg_xstatp(xc,RC1)+nreg-1] +
Memi[rg_xstatp(xc,RC2)+nreg-1]) / 2.0
yin = (Memi[rg_xstatp(xc,RL1)+nreg-1] +
Memi[rg_xstatp(xc,RL2)+nreg-1]) / 2.0
call rg_etransform (xc, xin, yin, xout, yout)
xlag = xout - xin
ylag = yout - yin
} else {
xlag = rg_xstati (xc, XLAG)
ylag = rg_xstati (xc, YLAG)
}
xshift = - (xshift + xlag)
yshift = - (yshift + ylag)
Memr[rg_xstatp(xc,XSHIFTS)+nreg-1] = xshift
Memr[rg_xstatp(xc,YSHIFTS)+nreg-1] = yshift
end
# RG_MAXMIN -- Procedure to compute the peak of the cross-correlation function
# by determining the maximum point.
procedure rg_maxmin (xcor, xwindow, ywindow, xshift, yshift)
real xcor[xwindow,ywindow] #I the cross-correlation function
int xwindow, ywindow #I dimensions of cross-correlation function
real xshift, yshift #O x and shift of the peak
int xindex, yindex
begin
# Locate the maximum point.
call rg_alim2r (xcor, xwindow, ywindow, xindex, yindex)
xshift = xindex - (1.0 + xwindow) / 2.0
yshift = yindex - (1.0 + ywindow) / 2.0
end
# RG_IMEAN -- Compute the peak of the cross-correlation function using the
# intensity weighted mean of the marginal distributions in x and y.
procedure rg_imean (xcor, xwindow, ywindow, xcbox, ycbox, xshift, yshift)
real xcor[xwindow,ARB] #I the cross-correlation function
int xwindow, ywindow #I dimensions of the cross-correlation function
int xcbox, ycbox #I dimensions of the centering box
real xshift, yshift #O x and y shift of cross-correlation function
int xindex, yindex, xlo, xhi, ylo, yhi, nx, ny
pointer sp, xmarg, ymarg
begin
call smark (sp)
call salloc (xmarg, xcbox, TY_REAL)
call salloc (ymarg, ycbox, TY_REAL)
# Locate the maximum point and normalize.
call rg_alim2r (xcor, xwindow, ywindow, xindex, yindex)
# Compute the limits of the centering box.
xlo = max (1, xindex - xcbox / 2)
xhi = min (xwindow, xindex + xcbox / 2)
nx = xhi - xlo + 1
ylo = max (1, yindex - ycbox / 2)
yhi = min (ywindow, yindex + ycbox / 2)
ny = yhi - ylo + 1
# Accumulate the marginals.
call rg_xmkmarg (xcor, xwindow, ywindow, xlo, xhi, ylo, yhi,
Memr[xmarg], Memr[ymarg])
# Compute the shifts.
call rg_centroid (Memr[xmarg], nx, xshift)
xshift = xshift + xlo - 1 - (1.0 + xwindow) / 2.0
call rg_centroid (Memr[ymarg], ny, yshift)
yshift = yshift + ylo - 1 - (1.0 + ywindow) / 2.0
call sfree (sp)
end
# RG_IPARABOLIC -- Computer the peak of the cross-correlation function by
# doing parabolic interpolation around the peak.
procedure rg_iparabolic (xcor, xwindow, ywindow, xcbox, ycbox, xshift, yshift)
real xcor[xwindow,ARB] #I the cross-correlation function
int xwindow, ywindow #I dimensions of the cross-correlation fucntion
int xcbox, ycbox #I the dimensions of the centering box
real xshift, yshift #O the x and y shift of the peak
int i, j, xindex, yindex, xlo, xhi, nx, ylo, yhi, ny
pointer sp, x, y, c, xfit, yfit
begin
# Allocate working space.
call smark (sp)
call salloc (x, 3, TY_REAL)
call salloc (y, 3, TY_REAL)
call salloc (c, 3, TY_REAL)
call salloc (xfit, 3, TY_REAL)
call salloc (yfit, 3, TY_REAL)
# Locate the maximum point.
call rg_alim2r (xcor, xwindow, ywindow, xindex, yindex)
xlo = max (1, xindex - 1)
xhi = min (xwindow, xindex + 1)
nx = xhi - xlo + 1
ylo = max (1, yindex - 1)
yhi = min (ywindow, yindex + 1)
ny = yhi - ylo + 1
# Initialize.
do i = 1, 3
Memr[x+i-1] = i
# Fit the x shift.
if (nx >= 3) {
do j = ylo, yhi {
do i = xlo, xhi
Memr[y+i-xlo] = xcor[i,j]
call rg_iparab (Memr[x], Memr[y], Memr[c])
Memr[xfit+j-ylo] = - Memr[c+1] / (2.0 * Memr[c+2])
Memr[yfit+j-ylo] = Memr[c] + Memr[c+1] * Memr[xfit+j-ylo] +
Memr[c+2] * Memr[xfit+j-ylo] ** 2
}
if (ny >= 3)
call rg_iparab (Memr[xfit], Memr[yfit], Memr[c])
xshift = - Memr[c+1] / (2.0 * Memr[c+2])
} else
xshift = xindex - xlo + 1
# Fit the y shift.
if (ny >= 3) {
do i = xlo, xhi {
do j = ylo, yhi
Memr[y+j-ylo] = xcor[i,j]
call rg_iparab (Memr[x], Memr[y], Memr[c])
Memr[xfit+i-xlo] = - Memr[c+1] / (2.0 * Memr[c+2])
Memr[yfit+i-xlo] = Memr[c] + Memr[c+1] * Memr[xfit+i-xlo] +
Memr[c+2] * Memr[xfit+i-xlo] ** 2
}
call rg_iparab (Memr[xfit], Memr[yfit], Memr[c])
yshift = - Memr[c+1] / (2.0 * Memr[c+2])
} else
yshift = yindex - ylo + 1
xshift = xshift + xlo - 1 - (1.0 + xwindow) / 2.0
yshift = yshift + ylo - 1 - (1.0 + ywindow) / 2.0
call sfree (sp)
end
define NPARS_PARABOLA 3
# RG_PARABOLIC -- Compute the peak of the cross-correlation function by fitting
# a parabola to the peak.
procedure rg_parabolic (xcor, xwindow, ywindow, xcbox, ycbox, xshift, yshift)
real xcor[xwindow,ARB] #I the cross-correlation function
int xwindow, ywindow #I dimensions of the cross-correlation fucntion
int xcbox, ycbox #I the dimensions of the centering box
real xshift, yshift #O the x and y shift of the peak
extern rg_polyfit, rg_dpolyfit
int i, xindex, yindex, xlo, xhi, ylo, yhi, nx, ny, npar, ier
pointer sp, x, w, xmarg, ymarg, params, eparams, list, nl
int locpr()
begin
call smark (sp)
call salloc (x, max (xwindow, ywindow), TY_REAL)
call salloc (w, max (xwindow, ywindow), TY_REAL)
call salloc (xmarg, max (xwindow, ywindow), TY_REAL)
call salloc (ymarg, max (xwindow, ywindow), TY_REAL)
call salloc (params, NPARS_PARABOLA, TY_REAL)
call salloc (eparams, NPARS_PARABOLA, TY_REAL)
call salloc (list, NPARS_PARABOLA, TY_INT)
# Locate the maximum point.
call rg_alim2r (xcor, xwindow, ywindow, xindex, yindex)
xlo = max (1, xindex - xcbox / 2)
xhi = min (xwindow, xindex + xcbox / 2)
nx = xhi - xlo + 1
ylo = max (1, yindex - ycbox / 2)
yhi = min (ywindow, yindex + ycbox / 2)
ny = yhi - ylo + 1
# Accumulate the marginals.
call rg_xmkmarg (xcor, xwindow, ywindow, xlo, xhi, ylo, yhi,
Memr[xmarg], Memr[ymarg])
# Compute the x shift.
if (nx >= 3) {
do i = 1, nx
Memr[x+i-1] = i
do i = 1, nx
Memr[w+i-1] = Memr[xmarg+i-1]
call rg_iparab (Memr[x+xindex-xlo-1], Memr[xmarg+xindex-xlo-1],
Memr[params])
xshift = - Memr[params+1] / (2.0 * Memr[params+2])
call eprintf ("\txshift=%g\n")
call pargr (xshift)
call aclrr (Memr[eparams], NPARS_PARABOLA)
do i = 1, NPARS_PARABOLA
Memi[list+i-1] = i
call nlinitr (nl, locpr (rg_polyfit), locpr (rg_dpolyfit),
Memr[params], Memr[eparams], NPARS_PARABOLA, Memi[list],
NPARS_PARABOLA, .0001, NL_MAXITER)
call nlfitr (nl, Memr[x], Memr[xmarg], Memr[w], nx, 1, WTS_USER,
ier)
call nlvectorr (nl, Memr[x], Memr[w], nx, 1)
do i = 1, nx {
call eprintf ("x=%g y=%g yfit=%g\n")
call pargr (Memr[x+i-1])
call pargr (Memr[xmarg+i-1])
call pargr (Memr[w+i-1])
}
if (ier != NO_DEG_FREEDOM) {
call nlpgetr (nl, Memr[params], npar)
if (Memr[params+2] != 0)
xshift = - Memr[params+1] / (2.0 * Memr[params+2])
else
xshift = xindex - xlo + 1
} else
xshift = xindex - xlo + 1
call nlfreer (nl)
} else
xshift = xindex - xlo + 1
# Compute the y shift.
if (ny >= 3) {
do i = 1, ny
Memr[x+i-1] = i
do i = 1, ny
Memr[w+i-1] = Memr[ymarg+i-1]
call rg_iparab (Memr[x+yindex-ylo-1], Memr[ymarg+yindex-ylo-1],
Memr[params])
yshift = - Memr[params+1] / (2.0 * Memr[params+2])
call eprintf ("\tyshift=%g\n")
call pargr (yshift)
call aclrr (Memr[eparams], NPARS_PARABOLA)
do i = 1, NPARS_PARABOLA
Memi[list+i-1] = i
call nlinitr (nl, locpr (rg_polyfit), locpr (rg_dpolyfit),
Memr[params], Memr[eparams], NPARS_PARABOLA, Memi[list],
NPARS_PARABOLA, 0.0001, NL_MAXITER)
call nlfitr (nl, Memr[x], Memr[ymarg], Memr[w], ny, 1, WTS_USER,
ier)
call nlvectorr (nl, Memr[x], Memr[w], ny, 1)
do i = 1, ny {
call eprintf ("x=%g y=%g yfit=%g\n")
call pargr (Memr[x+i-1])
call pargr (Memr[ymarg+i-1])
call pargr (Memr[w+i-1])
}
if (ier != NO_DEG_FREEDOM) {
call nlpgetr (nl, Memr[params], npar)
if (Memr[params+2] != 0)
yshift = -Memr[params+1] / (2.0 * Memr[params+2])
else
yshift = yindex - ylo + 1
} else
yshift = yindex - ylo + 1
call nlfreer (nl)
} else
yshift = yindex - ylo + 1
xshift = xshift + xlo - 1 - (1.0 + xwindow) / 2.0
yshift = yshift + ylo - 1 - (1.0 + ywindow) / 2.0
call sfree (sp)
end
define EMISSION 1 # emission features
define ABSORPTION 2 # emission features
# RG_SAWTOOTH -- Compute the the x and y centers using a sawtooth
# convolution function.
procedure rg_sawtooth (xcor, xwindow, ywindow, xcbox, ycbox, xshift, yshift)
real xcor[xwindow,ARB] #I the cross-correlation function
int xwindow, ywindow #I the dimensions of the cross-correlation
int xcbox, ycbox #I the dimensions of the centering box
real xshift, yshift #O the x and y shifts
int i, j, xindex, yindex, xlo, xhi, ylo, yhi, nx, ny
pointer sp, data, xfit, yfit, yclean
real ic
begin
call smark (sp)
call salloc (data, max (xwindow, ywindow), TY_REAL)
call salloc (xfit, max (xwindow, ywindow), TY_REAL)
call salloc (yfit, max (xwindow, ywindow), TY_REAL)
call salloc (yclean, max (xwindow, ywindow), TY_REAL)
# Locate the maximum point and normalize.
call rg_alim2r (xcor, xwindow, ywindow, xindex, yindex)
xlo = max (1, xindex - xcbox)
xhi = min (xwindow, xindex + xcbox)
nx = xhi - xlo + 1
ylo = max (1, yindex - ycbox)
yhi = min (ywindow, yindex + ycbox)
ny = yhi - ylo + 1
# Compute the y shift.
if (ny >= 3) {
do j = ylo, yhi {
do i = xlo, xhi
Memr[data+i-xlo] = xcor[i,j]
call rg_x1dcenter (real (xindex - xlo + 1), Memr[data], nx,
Memr[xfit+j-ylo], Memr[yfit+j-ylo], real (nx / 2.0),
EMISSION, real (nx / 2.0), 0.0)
}
call arbpix (Memr[yfit], Memr[yclean], ny, II_SPLINE3,
II_BOUNDARYEXT)
call rg_x1dcenter (real (yindex - ylo + 1), Memr[yclean], ny,
yshift, ic, real (ny / 2.0), EMISSION, real (ny / 2.0), 0.0)
if (IS_INDEFR(yshift))
yshift = yindex - ylo + 1
} else
yshift = yindex - ylo + 1
yshift = yshift + ylo - 1 - (1.0 + ywindow) / 2.0
# Compute the x shift.
if (nx >= 3) {
if (ny >= 3) {
do i = xlo, xhi {
do j = ylo, yhi
Memr[data+j-ylo] = xcor[i,j]
call rg_x1dcenter (real (yindex - ylo + 1), Memr[data], ny,
Memr[xfit+i-xlo], Memr[yfit+i-xlo], real (ny / 2.0),
EMISSION, real (ny / 2.0), 0.0)
}
call arbpix (Memr[yfit], Memr[yclean], nx, II_SPLINE3,
II_BOUNDARYEXT)
call rg_x1dcenter (real (xindex - xlo + 1), Memr[yclean], nx,
xshift, ic, real (nx / 2.0), EMISSION, real (nx / 2.0), 0.0)
} else {
call rg_x1dcenter (real (xindex - xlo + 1), xcor[xlo,1], nx,
xshift, ic, real (nx / 2.0), EMISSION, real (nx / 2.0), 0.0)
}
if (IS_INDEFR(xshift))
xshift = xindex - xlo + 1
} else
xshift = xindex - xlo + 1
xshift = xshift + xlo - 1 - (1.0 + xwindow) / 2.0
call sfree (sp)
end
# RG_ALIM2R -- Determine the pixel position of the data maximum.
procedure rg_alim2r (data, nx, ny, i, j)
real data[nx,ARB] #I the input data
int nx, ny #I the dimensions of the input array
int i, j #O the indices of the maximum pixel
int ii, jj
real datamax
begin
datamax = -MAX_REAL
do jj = 1, ny {
do ii = 1, nx {
if (data[ii,jj] > datamax) {
datamax = data[ii,jj]
i = ii
j = jj
}
}
}
end
# RG_XMKMARG -- Acumulate the marginal arrays in x and y.
procedure rg_xmkmarg (xcor, xwindow, ywindow, xlo, xhi, ylo, yhi, xmarg,
ymarg)
real xcor[xwindow,ARB] #I the cross-correlation function
int xwindow, ywindow #I dimensions of cross-correlation function
int xlo, xhi #I the x limits for centering
int ylo, yhi #I the y limits for centering
real xmarg[ARB] #O the output x marginal array
real ymarg[ARB] #O the output y marginal array
int i, j, index, nx, ny
begin
nx = xhi - xlo + 1
ny = yhi - ylo + 1
# Compute the x marginal.
index = 1 - xlo
do i = xlo, xhi {
xmarg[index+i] = 0.0
do j = ylo, yhi
xmarg[index+i] = xmarg[index+i] + xcor[i,j]
}
# Normalize the x marginal.
call adivkr (xmarg, real (ny), xmarg, nx)
# Compute the y marginal.
index = 1 - ylo
do j = ylo, yhi {
ymarg[index+j] = 0.0
do i = xlo, xhi
ymarg[index+j] = ymarg[index+j] + xcor[i,j]
}
# Normalize the ymarginal.
call adivkr (ymarg, real (nx), ymarg, ny)
end
# RG_CENTROID -- Compute the intensity weighted maximum of an array.
procedure rg_centroid (a, npts, shift)
real a[ARB] #I the input array
int npts #I the number of points
real shift #O the position of the maximum
int i
real mean, dif, sumi, sumix
bool fp_equalr()
real asumr()
begin
sumi = 0.0
sumix = 0.0
mean = asumr (a, npts) / npts
do i = 1, npts {
dif = a[i]
dif = a[i] - mean
if (dif < 0.0)
next
sumi = sumi + dif
sumix = sumix + i * dif
}
if (fp_equalr (sumi, 0.0))
shift = (1.0 + npts) / 2.0
else
shift = sumix / sumi
end
define MIN_WIDTH 3. # minimum centering width
define EPSILON 0.001 # accuracy of centering
define EPSILON1 0.005 # tolerance for convergence check
define ITERATIONS 100 # maximum number of iterations
define MAX_DXCHECK 3 # look back for failed convergence
define INTERPTYPE II_SPLINE3 # image interpolation type
# RG_X1DCENTER -- Locate the center of a one dimensional feature.
# A value of INDEF is returned in the centering fails for any reason.
# This procedure just sets up the data and adjusts for emission or
# absorption features. The actual centering is done by C1D_CENTER.
procedure rg_x1dcenter (x, data, npts, xc, ic, width, type, radius, threshold)
real x #I initial guess
real data[npts] #I data points
int npts #I number of data points
real xc #O computed center
real ic #O intensity at computed center
real width #I feature width
int type #I feature type
real radius #I centering radius
real threshold #I minimum range in feature
int x1, x2, nx
real a, b, rad, wid
pointer sp, data1
begin
# Check starting value.
if (IS_INDEF(x) || (x < 1) || (x > npts)) {
xc = INDEF
ic = INDEF
return
}
# Set minimum width and error radius. The minimum in the error radius
# is for defining the data window. The user error radius is used to
# check for an error in the derived center at the end of the centering.
wid = max (width, MIN_WIDTH)
rad = max (2., radius)
# Determine the pixel value range around the initial center, including
# the width and error radius buffer. Check for a minimum range.
x1 = max (1., x - wid / 2 - rad - wid)
x2 = min (real (npts), x + wid / 2 + rad + wid + 1)
nx = x2 - x1 + 1
call alimr (data[x1], nx, a, b)
if (b - a < threshold) {
xc = INDEF
ic = INDEF
return
}
# Allocate memory for the continuum subtracted data vector. The X
# range is just large enough to include the error radius and the
# half width.
x1 = max (1., x - wid / 2 - rad)
x2 = min (real (npts), x + wid / 2 + rad + 1)
nx = x2 - x1 + 1
call smark (sp)
call salloc (data1, nx, TY_REAL)
call amovr (data[x1], Memr[data1], nx)
# Make the centering data positive, subtract the continuum, and
# apply a threshold to eliminate noise spikes.
switch (type) {
case EMISSION:
a = 0.
call asubkr (data[x1], a + threshold, Memr[data1], nx)
call amaxkr (Memr[data1], 0., Memr[data1], nx)
case ABSORPTION:
call anegr (data[x1], Memr[data1], nx)
call asubkr (Memr[data1], threshold - b, Memr[data1], nx)
call amaxkr (Memr[data1], 0., Memr[data1], nx)
default:
call error (0, "Unknown feature type")
}
# Determine the center.
call rg_xcenter (x - x1 + 1, Memr[data1], nx, xc, ic, wid)
# Check user centering error radius.
if (!IS_INDEF(xc)) {
xc = xc + x1 - 1
if (abs (x - xc) > radius) {
xc = INDEF
ic = INDEF
}
}
# Free memory and return the center position.
call sfree (sp)
end
# RG_XCENTER -- One dimensional centering algorithm.
procedure rg_xcenter (x, data, npts, xc, ic, width)
real x #I starting guess
int npts #I number of points in data vector
real data[npts] #I data vector
real xc #O computed xc
real ic #O computed intensity at xc
real width #I centering width
int i, j, iteration, dxcheck
real hwidth, dx, dxabs, dxlast
real a, b, sum1, sum2, intgrl1, intgrl2
pointer asi1, asi2, sp, data1
real asigrl(), asieval()
define done_ 99
begin
# Find the nearest local maxima as the starting point.
# This is required because the threshold limit may have set
# large regions of the data to zero and without a gradient
# the centering will fail.
i = x
for (i=x+.5; (i<npts) && (data[i]<=data[i+1]); i=i+1)
;
for (j=x+.5; (j>1) && (data[j]<=data[j-1]); j=j-1)
;
if (i-x < x-j)
xc = i
else
xc = j
# Check data range.
hwidth = width / 2
if ((xc - hwidth < 1) || (xc + hwidth > npts)) {
xc = INDEF
ic = INDEF
return
}
# Set interpolation functions.
call asiinit (asi1, INTERPTYPE)
call asiinit (asi2, INTERPTYPE)
call asifit (asi1, data, npts)
# Allocate, compute, and interpolate the x*y values.
call smark (sp)
call salloc (data1, npts, TY_REAL)
do i = 1, npts
Memr[data1+i-1] = data[i] * i
call asifit (asi2, Memr[data1], npts)
call sfree (sp)
# Iterate to find center. This loop exits when 1) the maximum
# number of iterations is reached, 2) the delta is less than
# the required accuracy (criterion for finding a center), 3)
# there is a problem in the computation, 4) successive steps
# continue to exceed the minimum delta.
dxlast = 1.
do iteration = 1, ITERATIONS {
# Triangle centering function.
a = xc - hwidth
b = xc - hwidth / 2
intgrl1 = asigrl (asi1, a, b)
intgrl2 = asigrl (asi2, a, b)
sum1 = (xc - hwidth) * intgrl1 - intgrl2
sum2 = -intgrl1
a = b
b = xc + hwidth / 2
intgrl1 = asigrl (asi1, a, b)
intgrl2 = asigrl (asi2, a, b)
sum1 = sum1 - xc * intgrl1 + intgrl2
sum2 = sum2 + intgrl1
a = b
b = xc + hwidth
intgrl1 = asigrl (asi1, a, b)
intgrl2 = asigrl (asi2, a, b)
sum1 = sum1 + (xc + hwidth) * intgrl1 - intgrl2
sum2 = sum2 - intgrl1
# Return no center if sum2 is zero.
if (sum2 == 0.)
break
# Limit dx change in one iteration to 1 pixel.
dx = max (-1., min (1., sum1 / abs (sum2)))
dxabs = abs (dx)
xc = xc + dx
ic = asieval (asi1, xc)
# Check data range. Return no center if at edge of data.
if ((xc - hwidth < 1) || (xc + hwidth > npts))
break
# Convergence tests.
if (dxabs < EPSILON)
goto done_
if (dxabs > dxlast + EPSILON1) {
dxcheck = dxcheck + 1
if (dxcheck > MAX_DXCHECK)
break
} else {
dxcheck = 0
dxlast = dxabs
}
}
# If we get here then no center was found.
xc = INDEF
ic = INDEF
done_ call asifree (asi1)
call asifree (asi2)
end
# RG_IPARAB -- Compute the coefficients of the parabola through three
# evenly spaced points.
procedure rg_iparab (x, y, c)
real x[NPARS_PARABOLA] #I input x values
real y[NPARS_PARABOLA] #I input y values
real c[NPARS_PARABOLA] #O computed coefficients
begin
c[3] = (y[1]-y[2]) * (x[2]-x[3]) / (x[1]-x[2]) - (y[2]-y[3])
c[3] = c[3] / ((x[1]**2-x[2]**2) * (x[2]-x[3]) / (x[1]-x[2]) -
(x[2]**2-x[3]**2))
c[2] = (y[1] - y[2]) - c[3] * (x[1]**2 - x[2]**2)
c[2] = c[2] / (x[1] - x[2])
c[1] = y[1] - c[2] * x[1] - c[3] * x[1]**2
end
# RG_POLYFIT -- Evaluate an nth order polynomial.
procedure rg_polyfit (x, nvars, p, np, z)
real x #I position coordinate
int nvars #I number of variables
real p[ARB] #I coefficients of polynomial
int np #I number of parameters
real z #O function return
int i
real r
begin
r = 0.0
do i = 2, np
r = r + x**(i-1) * p[i]
z = p[1] + r
end
# RG_DPOLYFIT -- Evaluate an nth order polynomial and its derivatives.
procedure rg_dpolyfit (x, nvars, p, dp, np, z, der)
real x #I position coordinate
int nvars #I number of variables
real p[ARB] #I coefficients of polynomial
real dp[ARB] #I parameter derivative increments
int np #I number of parameters
real z #O function value
real der[ARB] #O derivatives
int i
begin
der[1] = 1.0
z = 0.0
do i = 2, np {
der[i] = x ** (i-1)
z = z + x**(i-1) * p[i]
}
z = p[1] + z
end
|