1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <imhdr.h>
.help zscale
.nf ___________________________________________________________________________
ZSCALE -- Compute the optimal Z1, Z2 (range of greyscale values to be
displayed) of an image. For efficiency a statistical subsample of an image
is used. The pixel sample evenly subsamples the image in x and y. The entire
image is used if the number of pixels in the image is smaller than the desired
sample.
The sample is accumulated in a buffer and sorted by greyscale value.
The median value is the central value of the sorted array. The slope of a
straight line fitted to the sorted sample is a measure of the standard
deviation of the sample about the median value. Our algorithm is to sort
the sample and perform an iterative fit of a straight line to the sample,
using pixel rejection to omit gross deviants near the endpoints. The fitted
straight line is the transfer function used to map image Z into display Z.
If more than half the pixels are rejected the full range is used. The slope
of the fitted line is divided by the user-supplied contrast factor and the
final Z1 and Z2 are computed, taking the origin of the fitted line at the
median value.
.endhelp ______________________________________________________________________
define MIN_NPIXELS 5 # smallest permissible sample
define MAX_REJECT 0.5 # max frac. of pixels to be rejected
define GOOD_PIXEL 0 # use pixel in fit
define BAD_PIXEL 1 # ignore pixel in all computations
define REJECT_PIXEL 2 # reject pixel after a bit
define KREJ 2.5 # k-sigma pixel rejection factor
define MAX_ITERATIONS 5 # maximum number of fitline iterations
# ZSCALE -- Sample the image and compute Z1 and Z2.
procedure zscale (im, z1, z2, contrast, optimal_sample_size, len_stdline)
pointer im # image to be sampled
real z1, z2 # output min and max greyscale values
real contrast # adj. to slope of transfer function
int optimal_sample_size # desired number of pixels in sample
int len_stdline # optimal number of pixels per line
int npix, minpix, ngoodpix, center_pixel, ngrow
real zmin, zmax, median
real zstart, zslope
pointer sample, left
int zsc_sample_image(), zsc_fit_line()
begin
# Subsample the image.
npix = zsc_sample_image (im, sample, optimal_sample_size, len_stdline)
center_pixel = max (1, (npix + 1) / 2)
# Sort the sample, compute the minimum, maximum, and median pixel
# values.
call asrtr (Memr[sample], Memr[sample], npix)
zmin = Memr[sample]
zmax = Memr[sample+npix-1]
# The median value is the average of the two central values if there
# are an even number of pixels in the sample.
left = sample + center_pixel - 1
if (mod (npix, 2) == 1 || center_pixel >= npix)
median = Memr[left]
else
median = (Memr[left] + Memr[left+1]) / 2
# Fit a line to the sorted sample vector. If more than half of the
# pixels in the sample are rejected give up and return the full range.
# If the user-supplied contrast factor is not 1.0 adjust the scale
# accordingly and compute Z1 and Z2, the y intercepts at indices 1 and
# npix.
minpix = max (MIN_NPIXELS, int (npix * MAX_REJECT))
ngrow = max (1, nint (npix * .01))
ngoodpix = zsc_fit_line (Memr[sample], npix, zstart, zslope,
KREJ, ngrow, MAX_ITERATIONS)
if (ngoodpix < minpix) {
z1 = zmin
z2 = zmax
} else {
if (contrast > 0)
zslope = zslope / contrast
z1 = max (zmin, median - (center_pixel - 1) * zslope)
z2 = min (zmax, median + (npix - center_pixel) * zslope)
}
call mfree (sample, TY_REAL)
end
# ZSC_SAMPLE_IMAGE -- Extract an evenly gridded subsample of the pixels from
# a two-dimensional image into a one-dimensional vector.
int procedure zsc_sample_image (im, sample, optimal_sample_size, len_stdline)
pointer im # image to be sampled
pointer sample # output vector containing the sample
int optimal_sample_size # desired number of pixels in sample
int len_stdline # optimal number of pixels per line
int ncols, nlines, col_step, line_step, maxpix, line
int opt_npix_per_line, npix_per_line
int opt_nlines_in_sample, min_nlines_in_sample, max_nlines_in_sample
pointer op
pointer imgl2r()
begin
ncols = IM_LEN(im,1)
nlines = IM_LEN(im,2)
# Compute the number of pixels each line will contribute to the sample,
# and the subsampling step size for a line. The sampling grid must
# span the whole line on a uniform grid.
opt_npix_per_line = min (ncols, len_stdline)
col_step = (ncols + opt_npix_per_line-1) / opt_npix_per_line
npix_per_line = (ncols + col_step-1) / col_step
# Compute the number of lines to sample and the spacing between lines.
# We must ensure that the image is adequately sampled despite its
# size, hence there is a lower limit on the number of lines in the
# sample. We also want to minimize the number of lines accessed when
# accessing a large image, because each disk seek and read is expensive.
# The number of lines extracted will be roughly the sample size divided
# by len_stdline, possibly more if the lines are very short.
min_nlines_in_sample = max (1, optimal_sample_size / len_stdline)
opt_nlines_in_sample = max(min_nlines_in_sample, min(nlines,
(optimal_sample_size + npix_per_line-1) / npix_per_line))
line_step = max (1, nlines / (opt_nlines_in_sample))
max_nlines_in_sample = (nlines + line_step-1) / line_step
# Allocate space for the output vector. Buffer must be freed by our
# caller.
maxpix = npix_per_line * max_nlines_in_sample
call malloc (sample, maxpix, TY_REAL)
# call eprintf ("sample: x[%d:%d:%d] y[%d:%d:%d]\n")
# call pargi(1);call pargi(ncols); call pargi(col_step)
# call pargi((line_step+1)/2); call pargi(nlines); call pargi(line_step)
# Extract the vector.
op = sample
do line = (line_step + 1) / 2, nlines, line_step {
call zsc_subsample (Memr[imgl2r(im,line)], Memr[op],
npix_per_line, col_step)
op = op + npix_per_line
if (op - sample + npix_per_line > maxpix)
break
}
return (op - sample)
end
# ZSC_SUBSAMPLE -- Subsample an image line. Extract the first pixel and
# every "step"th pixel thereafter for a total of npix pixels.
procedure zsc_subsample (a, b, npix, step)
real a[ARB]
real b[npix]
int npix, step
int ip, i
begin
if (step <= 1)
call amovr (a, b, npix)
else {
ip = 1
do i = 1, npix {
b[i] = a[ip]
ip = ip + step
}
}
end
# ZSC_FIT_LINE -- Fit a straight line to a data array of type real. This is
# an iterative fitting algorithm, wherein points further than ksigma from the
# current fit are excluded from the next fit. Convergence occurs when the
# next iteration does not decrease the number of pixels in the fit, or when
# there are no pixels left. The number of pixels left after pixel rejection
# is returned as the function value.
int procedure zsc_fit_line (data, npix, zstart, zslope, krej, ngrow, maxiter)
real data[npix] # data to be fitted
int npix # number of pixels before rejection
real zstart # Z-value of pixel data[1] (output)
real zslope # dz/pixel (output)
real krej # k-sigma pixel rejection factor
int ngrow # number of pixels of growing
int maxiter # max iterations
int i, ngoodpix, last_ngoodpix, minpix, niter
real xscale, z0, dz, x, z, mean, sigma, threshold
double sumxsqr, sumxz, sumz, sumx, rowrat
pointer sp, flat, badpix, normx
int zsc_reject_pixels(), zsc_compute_sigma()
begin
call smark (sp)
if (npix <= 0)
return (0)
else if (npix == 1) {
zstart = data[1]
zslope = 0.0
return (1)
} else
xscale = 2.0 / (npix - 1)
# Allocate a buffer for data minus fitted curve, another for the
# normalized X values, and another to flag rejected pixels.
call salloc (flat, npix, TY_REAL)
call salloc (normx, npix, TY_REAL)
call salloc (badpix, npix, TY_SHORT)
call aclrs (Mems[badpix], npix)
# Compute normalized X vector. The data X values [1:npix] are
# normalized to the range [-1:1]. This diagonalizes the lsq matrix
# and reduces its condition number.
do i = 0, npix - 1
Memr[normx+i] = i * xscale - 1.0
# Fit a line with no pixel rejection. Accumulate the elements of the
# matrix and data vector. The matrix M is diagonal with
# M[1,1] = sum x**2 and M[2,2] = ngoodpix. The data vector is
# DV[1] = sum (data[i] * x[i]) and DV[2] = sum (data[i]).
sumxsqr = 0
sumxz = 0
sumx = 0
sumz = 0
do i = 1, npix {
x = Memr[normx+i-1]
z = data[i]
sumxsqr = sumxsqr + (x ** 2)
sumxz = sumxz + z * x
sumz = sumz + z
}
# call eprintf ("\t%10g %10g %10g\n")
# call pargd(sumxsqr); call pargd(sumxz); call pargd(sumz)
# Solve for the coefficients of the fitted line.
z0 = sumz / npix
dz = sumxz / sumxsqr
# call eprintf ("fit: z0=%g, dz=%g\n")
# call pargr(z0); call pargr(dz)
# Iterate, fitting a new line in each iteration. Compute the flattened
# data vector and the sigma of the flat vector. Compute the lower and
# upper k-sigma pixel rejection thresholds. Run down the flat array
# and detect pixels to be rejected from the fit. Reject pixels from
# the fit by subtracting their contributions from the matrix sums and
# marking the pixel as rejected.
ngoodpix = npix
minpix = max (MIN_NPIXELS, int (npix * MAX_REJECT))
for (niter=1; niter <= maxiter; niter=niter+1) {
last_ngoodpix = ngoodpix
# Subtract the fitted line from the data array.
call zsc_flatten_data (data, Memr[flat], Memr[normx], npix, z0, dz)
# Compute the k-sigma rejection threshold. In principle this
# could be more efficiently computed using the matrix sums
# accumulated when the line was fitted, but there are problems with
# numerical stability with that approach.
ngoodpix = zsc_compute_sigma (Memr[flat], Mems[badpix], npix,
mean, sigma)
threshold = sigma * krej
# Detect and reject pixels further than ksigma from the fitted
# line.
ngoodpix = zsc_reject_pixels (data, Memr[flat], Memr[normx],
Mems[badpix], npix, sumxsqr, sumxz, sumx, sumz, threshold,
ngrow)
# Solve for the coefficients of the fitted line. Note that after
# pixel rejection the sum of the X values need no longer be zero.
if (ngoodpix > 0) {
rowrat = sumx / sumxsqr
z0 = (sumz - rowrat * sumxz) / (ngoodpix - rowrat * sumx)
dz = (sumxz - z0 * sumx) / sumxsqr
}
# call eprintf ("fit: z0=%g, dz=%g, threshold=%g, npix=%d\n")
# call pargr(z0); call pargr(dz); call pargr(threshold); call pargi(ngoodpix)
if (ngoodpix >= last_ngoodpix || ngoodpix < minpix)
break
}
# Transform the line coefficients back to the X range [1:npix].
zstart = z0 - dz
zslope = dz * xscale
call sfree (sp)
return (ngoodpix)
end
# ZSC_FLATTEN_DATA -- Compute and subtract the fitted line from the data array,
# returned the flattened data in FLAT.
procedure zsc_flatten_data (data, flat, x, npix, z0, dz)
real data[npix] # raw data array
real flat[npix] # flattened data (output)
real x[npix] # x value of each pixel
int npix # number of pixels
real z0, dz # z-intercept, dz/dx of fitted line
int i
begin
do i = 1, npix
flat[i] = data[i] - (x[i] * dz + z0)
end
# ZSC_COMPUTE_SIGMA -- Compute the root mean square deviation from the
# mean of a flattened array. Ignore rejected pixels.
int procedure zsc_compute_sigma (a, badpix, npix, mean, sigma)
real a[npix] # flattened data array
short badpix[npix] # bad pixel flags (!= 0 if bad pixel)
int npix
real mean, sigma # (output)
real pixval
int i, ngoodpix
double sum, sumsq, temp
begin
sum = 0
sumsq = 0
ngoodpix = 0
# Accumulate sum and sum of squares.
do i = 1, npix
if (badpix[i] == GOOD_PIXEL) {
pixval = a[i]
ngoodpix = ngoodpix + 1
sum = sum + pixval
sumsq = sumsq + pixval ** 2
}
# Compute mean and sigma.
switch (ngoodpix) {
case 0:
mean = INDEF
sigma = INDEF
case 1:
mean = sum
sigma = INDEF
default:
mean = sum / ngoodpix
temp = sumsq / (ngoodpix - 1) - sum**2 / (ngoodpix * (ngoodpix - 1))
if (temp < 0) # possible with roundoff error
sigma = 0.0
else
sigma = sqrt (temp)
}
return (ngoodpix)
end
# ZSC_REJECT_PIXELS -- Detect and reject pixels more than "threshold" greyscale
# units from the fitted line. The residuals about the fitted line are given
# by the "flat" array, while the raw data is in "data". Each time a pixel
# is rejected subtract its contributions from the matrix sums and flag the
# pixel as rejected. When a pixel is rejected reject its neighbors out to
# a specified radius as well. This speeds up convergence considerably and
# produces a more stringent rejection criteria which takes advantage of the
# fact that bad pixels tend to be clumped. The number of pixels left in the
# fit is returned as the function value.
int procedure zsc_reject_pixels (data, flat, normx, badpix, npix,
sumxsqr, sumxz, sumx, sumz, threshold, ngrow)
real data[npix] # raw data array
real flat[npix] # flattened data array
real normx[npix] # normalized x values of pixels
short badpix[npix] # bad pixel flags (!= 0 if bad pixel)
int npix
double sumxsqr,sumxz,sumx,sumz # matrix sums
real threshold # threshold for pixel rejection
int ngrow # number of pixels of growing
int ngoodpix, i, j
real residual, lcut, hcut
double x, z
begin
ngoodpix = npix
lcut = -threshold
hcut = threshold
do i = 1, npix
if (badpix[i] == BAD_PIXEL)
ngoodpix = ngoodpix - 1
else {
residual = flat[i]
if (residual < lcut || residual > hcut) {
# Reject the pixel and its neighbors out to the growing
# radius. We must be careful how we do this to avoid
# directional effects. Do not turn off thresholding on
# pixels in the forward direction; mark them for rejection
# but do not reject until they have been thresholded.
# If this is not done growing will not be symmetric.
do j = max(1,i-ngrow), min(npix,i+ngrow) {
#call eprintf ("\t\t%d->%d\tcheck\n");call pargi(j); call pargs(badpix[j])
if (badpix[j] != BAD_PIXEL) {
if (j <= i) {
x = normx[j]
z = data[j]
#call eprintf ("\treject [%d:%6g]=%6g sum[xsqr,xz,z]\n")
#call pargi(j); call pargd(x); call pargd(z)
#call eprintf ("\t%10g %10g %10g\n")
#call pargd(sumxsqr); call pargd(sumxz); call pargd(sumz)
sumxsqr = sumxsqr - (x ** 2)
sumxz = sumxz - z * x
sumx = sumx - x
sumz = sumz - z
#call eprintf ("\t%10g %10g %10g\n")
#call pargd(sumxsqr); call pargd(sumxz); call pargd(sumz)
badpix[j] = BAD_PIXEL
ngoodpix = ngoodpix - 1
} else
badpix[j] = REJECT_PIXEL
#call eprintf ("\t\t%d->%d\tset\n");call pargi(j); call pargs(badpix[j])
}
}
}
}
return (ngoodpix)
end
|