1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <gset.h>
include <mach.h>
include <math.h>
include <imhdr.h>
include <imset.h>
include <math/iminterp.h>
define BTYPES "|constant|nearest|reflect|wrap|project|"
define SZ_BTYPE 8 # Length of boundary type string
define NLINES 16 # Number of image lines in the buffer
# T_PVECTOR -- Plot the vector of image data between two pixels.
procedure t_pvector()
pointer image, boundary, output, outtype
pointer sp, im, x_vec, y_vec
int wrt_image, wrt_text
int btype, ndim, nxvals, nyvals, nzvals, width
real xc, yc, x1, y1, x2, y2, theta, length, zmin, zmax, bconstant
bool streq(), fp_equalr()
int clgeti(), clgwrd(), nowhite()
pointer immap()
real clgetr()
begin
call smark (sp)
call salloc (image, SZ_FNAME, TY_CHAR)
call salloc (boundary, SZ_BTYPE, TY_CHAR)
call salloc (output, SZ_FNAME, TY_CHAR)
call salloc (outtype, SZ_FNAME, TY_CHAR)
# Get boundary extension parameters.
btype = clgwrd ("boundary", Memc[boundary], SZ_BTYPE, BTYPES)
bconstant = clgetr ("constant")
# Open the image.
call clgstr ("image", Memc[image], SZ_FNAME)
im = immap (Memc[image], READ_ONLY, 0)
ndim = IM_NDIM(im)
if (ndim > 2)
call error (0, "The number of image dimensions is greater then 2.")
# See if we're going to output the vector
call clgstr ("vec_output", Memc[output], SZ_FNAME)
call clgstr ("out_type", Memc[outtype], SZ_FNAME)
wrt_text = NO
wrt_image = NO
if (nowhite (Memc[output], Memc[output], SZ_FNAME) > 0) {
if (streq("image",Memc[outtype]))
wrt_image = YES
else if (streq("text",Memc[outtype]))
wrt_text = YES
}
# Store the maximum coordinate values in the parameter file.
nxvals = IM_LEN(im,1)
if (ndim == 1)
nyvals = 1
else
nyvals = IM_LEN(im,2)
call clputi ("x1.p_maximum", nxvals)
call clputi ("x2.p_maximum", nxvals)
call clputi ("y1.p_maximum", nyvals)
call clputi ("y2.p_maximum", nyvals)
# Get the beginning and ending coordinates and width of the strip.
theta = clgetr ("theta")
if (IS_INDEFR(theta)) {
x1 = clgetr ("x1")
y1 = clgetr ("y1")
x2 = clgetr ("x2")
y2 = clgetr ("y2")
} else {
xc = clgetr ("xc")
yc = clgetr ("yc")
length = clgetr ("length")
call pv_get_bound (xc, yc, length, theta, nxvals, nyvals, x1, y1,
x2, y2)
}
width = clgeti ("width")
# Check the boundary and compute the length of the output vector.
x1 = max (1.0, min (x1, real (nxvals)))
x2 = min (real(nxvals), max (1.0, x2))
y1 = max (1.0, min (y1, real (nyvals)))
y2 = min (real(nyvals), max (1.0, y2))
nzvals = int (sqrt ((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))) + 1
# Check for cases which should be handled by pcols or prows.
call malloc (x_vec, nzvals, TY_REAL)
call malloc (y_vec, nzvals, TY_REAL)
if (fp_equalr (x1, x2)) {
call pv_get_col (im, x1, y1, x2, y2, nzvals, width, btype,
bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax)
} else if (fp_equalr (y1, y2)) {
if (ndim == 1) {
call pv_get_row1 (im, x1, x2, nzvals, btype, bconstant,
Memr[x_vec], Memr[y_vec], zmin, zmax)
} else {
call pv_get_row (im, x1, y1, x2, y2, nzvals, width, btype,
bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax)
}
} else {
call pv_get_vector (im, x1, y1, x2, y2, nzvals, width, btype,
bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax)
}
# Output the plot, via the graphics stream, or as a textfile or image.
if (wrt_image == YES) {
call pv_wrt_image (im, Memc[image], Memc[output],
Memr[x_vec], Memr[y_vec], nzvals, x1, x2, y1, y2, width)
} else if (wrt_text == YES) {
call pv_wrt_pixels (Memc[output],
Memr[x_vec], Memr[y_vec], nzvals)
} else {
call pv_draw_vector (Memr[x_vec], Memr[y_vec], nzvals,
x1, x2, y1, y2, zmin, zmax, width, Memc[image])
}
# Free resources.
call mfree (x_vec, TY_REAL)
call mfree (y_vec, TY_REAL)
call imunmap (im)
call sfree (sp)
end
# PV_DRAW_VECTOR - Draw the vector to the specified output device.
procedure pv_draw_vector (xvec, yvec, nzvals,
x1, x2, y1, y2, zmin, zmax, width, image)
real xvec[nzvals], yvec[nzvals] #I Vectors to draw
int nzvals, width #I Plot parameters
real x1, x2, y1, y2, zmin, zmax #I Plot parameters
char image[SZ_FNAME] #I Image name
pointer sp, gp
int mode, imark
pointer device, marker, xlabel, ylabel, title, suffix, hostid
real wx1, wx2, wy1, wy2, vx1, vx2, vy1, vy2, szm, tol
bool pointmode
bool clgetb(), streq()
int clgeti(), btoi()
pointer gopen()
real clgetr()
errchk gopen
begin
call smark (sp)
call salloc (device, SZ_FNAME, TY_CHAR)
call salloc (marker, SZ_FNAME, TY_CHAR)
call salloc (xlabel, SZ_LINE, TY_CHAR)
call salloc (ylabel, SZ_LINE, TY_CHAR)
call salloc (hostid, 2 * SZ_LINE, TY_CHAR)
call salloc (title, SZ_LINE, TY_CHAR)
call salloc (suffix, SZ_FNAME, TY_CHAR)
# Open the graphics stream.
call clgstr ("device", Memc[device], SZ_FNAME)
if (clgetb ("append"))
mode = APPEND
else
mode = NEW_FILE
iferr (gp = gopen (Memc[device], mode, STDGRAPH))
call error (0, "Error opening graphics device.")
tol = 10. * EPSILONR
if (mode != APPEND) {
# Establish window.
wx1 = clgetr ("wx1")
wx2 = clgetr ("wx2")
wy1 = clgetr ("wy1")
wy2 = clgetr ("wy2")
# Set window limits to defaults if not specified by user.
if (abs(wx2 - wx1) < tol) {
wx1 = 1.0
wx2 = real (nzvals)
}
if (abs(wy2 - wy1) < tol) {
wy1 = zmin
wy2 = zmax
}
call gswind (gp, wx1, wx2, wy1, wy2)
# Establish viewport.
vx1 = clgetr ("vx1")
vx2 = clgetr ("vx2")
vy1 = clgetr ("vy1")
vy2 = clgetr ("vy2")
# Set viewport only if specified by user.
if ((vx2 - vx1) > tol && (vy2 - vy1) > tol)
call gsview (gp, vx1, vx2, vy1, vy2)
else {
if (!clgetb ("fill"))
call gseti (gp, G_ASPECT, 1)
}
call clgstr ("xlabel", Memc[xlabel], SZ_LINE)
call clgstr ("ylabel", Memc[ylabel], SZ_LINE)
call clgstr ("title", Memc[title], SZ_LINE)
call sysid (Memc[hostid], SZ_LINE)
call strcat ("\n", Memc[hostid], SZ_LINE)
if (streq (Memc[title], "imtitle")) {
call strcpy (image, Memc[title], SZ_LINE)
call sprintf (Memc[suffix], SZ_FNAME,
": vector %.1f,%.1f to %.1f,%.1f width: %d") {
call pargr (x1)
call pargr (y1)
call pargr (x2)
call pargr (y2)
call pargi (width)
}
call strcat (Memc[suffix], Memc[title], SZ_LINE)
}
call strcat (Memc[title], Memc[hostid], 2 * SZ_LINE)
call gseti (gp, G_XNMAJOR, clgeti ("majrx"))
call gseti (gp, G_XNMINOR, clgeti ("minrx"))
call gseti (gp, G_YNMAJOR, clgeti ("majry"))
call gseti (gp, G_YNMINOR, clgeti ("minry"))
call gseti (gp, G_ROUND, btoi (clgetb ("round")))
if (clgetb ("logx"))
call gseti (gp, G_XTRAN, GW_LOG)
if (clgetb ("logy"))
call gseti (gp, G_YTRAN, GW_LOG)
# Draw axes using all this information
call glabax (gp, Memc[hostid], Memc[xlabel], Memc[ylabel])
}
pointmode = clgetb ("pointmode")
if (pointmode) {
call clgstr ("marker", Memc[marker], SZ_FNAME)
szm= clgetr ("szmarker")
call init_marker (Memc[marker], imark)
} else
call clgstr ("marker", Memc[marker], SZ_FNAME)
# Now to actually draw the plot.
if (pointmode)
call gpmark (gp, x_vec, y_vec, nzvals, imark, szm, szm)
else
call hgpline (gp, x_vec, y_vec, nzvals, Memc[marker])
# Close up graphics and image.
call gclose (gp)
call sfree (sp)
end
# PV_WRT_PIXELS - Write out the vector to the specified file. File may be
# specified as STDOUT. Behaves much like LISTPIX.
procedure pv_wrt_pixels (file, x, y, npts)
char file[SZ_FNAME] #I Output file name
real x[npts], y[npts] #I Vector to write
int npts #I Npts in vector
int i
pointer fd, open()
bool streq()
errchk open
begin
if (streq("STDOUT", file))
fd = STDOUT
else if (streq("STDERR", file))
fd = STDERR
else
iferr (fd = open (file, APPEND, TEXT_FILE))
call error (0, "Error opening output file.")
do i = 1, npts {
call fprintf (fd, "%.1f %.4f\n")
call pargr (x[i])
call pargr (y[i])
}
call flush (fd)
if (fd != STDOUT && fd != STDERR)
call close (fd)
end
# PV_WRT_IMAGE - Write out the vector to the specified image name. The original
# image header is coptired to the new image and a acomment added describing the
# computed vector
procedure pv_wrt_image (im, image, file, x, y, npts, x1, x2, y1, y2, width)
pointer im #I Parent image pointer
char image[SZ_FNAME] #I Name of original image
char file[SZ_FNAME] #I Ouput image name
real x[npts], y[npts] #I Vector to write
int npts #I Npts in vector
real x1, x2, y1, y2 #I Endpoints of vector
int width #I Width of sampled points
pointer sp, comment, imo
pointer immap(), impl2r()
bool streq()
errchk immap, impl2r
begin
if (streq(file,"STDOUT") || streq(file,"STDERR"))
call error (0, "Illegal filename for output image.")
# Open a (new) image
iferr (imo = immap(file, NEW_COPY, im))
call error (0, "Error opening output image.")
call smark (sp)
call salloc (comment, SZ_LINE, TY_CHAR)
# Do some header manipulations
IM_NDIM(imo) = 1
IM_LEN(imo,1) = npts
call sprintf (Memc[comment], SZ_LINE,
"%s: vector %.1f,%.1f to %.1f,%.1f width: %d")
call pargstr (image)
call pargr (x1)
call pargr (x2)
call pargr (y1)
call pargr (y2)
call pargi (width)
call imastr (imo, "VSLICE", Memc[comment])
# Now dump it into the image
call amovr (y, Memr[impl2r(imo,1)], npts)
# Do some housecleaning
call imunmap (imo)
call sfree (sp)
end
# PV_GET_BOUND -- Find the point where a vector, defined by it's starting
# point and an theta (ccw from +x), intersects the image boundary. The
# image is defined from 1 - nxvals; 1 - nyvals.
procedure pv_get_bound (xc, yc, length, theta, nxvals, nyvals, x1, y1, x2, y2)
real xc, yc # x and y center points
real length # length of the vector
real theta # angle of vector (ccw from +x)
int nxvals, nyvals # image dimensions
real x1, y1 # starting point of vector
real x2, y2 # point where vector intersects boundary
real half_length, angle, dx, dy
begin
if (IS_INDEFR(length))
half_length = sqrt (real (nxvals ** 2 + nyvals ** 2)) / 2.0
else
half_length = length / 2.0
dx = cos (DEGTORAD (theta))
dy = sin (DEGTORAD (theta))
# Compute the coordinates of the end of the vector
x1 = xc - dx * half_length
y1 = yc - dy * half_length
x2 = xc + dx * half_length
y2 = yc + dy * half_length
if (x2 < 1.0 || x2 > nxvals || y2 < 1.0 || y2 > nyvals)
call pv_limits (xc, yc, theta, nxvals, nyvals, x2, y2)
angle = theta + 180.0
if (angle > 360.0)
angle = angle - 360.0
if (x1 < 1.0 || x1 > nxvals || y1 < 1.0 || y1 > nyvals)
call pv_limits (xc, yc, angle, nxvals, nyvals, x1, y1)
end
# PV_LIMITS -- Find the point where a vector, defined by it's starting
# point and an theta (ccw from +x), intersects the image boundary. The
# image is defined from 1 - nxvals; 1 - nyvals.
procedure pv_limits (x1, y1, theta, nxvals, nyvals, x2, y2)
real x1, y1 # starting point of vector
real theta # angle of vector (ccw from +x)
int nxvals, nyvals # size of image
real x2, y2 # point where vector intersects boundary
real tan_theta, xx
bool fp_equalr()
begin
tan_theta = tan (DEGTORAD (theta))
if (fp_equalr (theta, 0.0)) {
x2 = nxvals
y2 = y1
} else if (fp_equalr (theta, 90.0)) {
x2 = x1
y2 = nyvals
} else if (fp_equalr (theta, 180.0)) {
x2 = 1
y2 = y1
} else if (fp_equalr (theta, 270.0)) {
x2 = x1
y2 = 1
} else if (fp_equalr (theta, 360.0)) {
x2 = nxvals
y2 = y1
# Assume it intersects y = nyvals boundary.
} else if (theta > 0.0 && theta < 180.0) {
xx = (nyvals - y1) / tan_theta + x1
if (xx > nxvals || xx < 1.0) {
if (theta < 90.)
x2 = nxvals
else
x2 = 1.0
y2 = y1 + (x2 - x1) * tan_theta
} else {
y2 = nyvals
x2 = (y2 - y1) / tan_theta + x1
}
# Assume it intersects y = 1.0 boundary.
} else if (theta > 180.0 && theta < 360.0) {
xx = (1.0 - y1) / tan_theta + x1
if (xx > nxvals || xx < 1.0) {
if (theta < 270.)
x2 = 1.0
else
x2 = nxvals
y2 = y1 + (x2 - x1) * tan_theta
} else {
y2 = 1.0
x2 = (y2 - y1) / tan_theta + x1
}
}
end
# PV_GET_VECTOR -- Average a strip perpendicular to a given vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure pv_get_vector (im, x1, y1, x2, y2, nvals, width, btype,
bconstant, x_vector, y_vector, zmin, zmax)
pointer im # pointer to image header
real x1, y1 # starting pixel of vector
real x2, y2 # ending pixel of pixel
real bconstant # Boundary extension constant
int btype # Boundary extension type
int nvals # number of samples along the vector
int width # width of strip to average over
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
double dx, dy, dpx, dpy, ratio, xoff, yoff, noff, xv, yv
int i, j, k, nedge, col1, col2, line1, line2
int colb, colc, line, linea, lineb, linec
pointer sp, oxs, oys, xs, ys, yvals, msi, buf
real sum , lim1, lim2, lim3, lim4
pointer imgs2r()
begin
call smark (sp)
call salloc (oxs, width, TY_REAL)
call salloc (oys, width, TY_REAL)
call salloc (xs, width, TY_REAL)
call salloc (ys, width, TY_REAL)
call salloc (yvals, width, TY_REAL)
# Determine sampling perpendicular to vector.
dx = (x2 - x1) / (nvals - 1)
dy = (y2 - y1) / (nvals - 1)
if (x1 < x2) {
dpx = -dy
dpy = dx
} else {
dpx = dy
dpy = -dx
}
# Compute offset from the nominal vector to the first sample point.
ratio = dx / dy
nedge = width + 1
noff = (real (width) - 1.0) / 2.0
xoff = noff * dpx
yoff = noff * dpy
# Initialize the interpolator and the image data buffer.
call msiinit (msi, II_BILINEAR]
buf = NULL
# Set the boundary.
col1 = int (min (x1, x2)) - nedge
col2 = nint (max (x1, x2)) + nedge
line1 = int (min (y1, y2)) - nedge
line2 = nint (max (y2, y1)) + nedge
call pv_setboundary (im, col1, col2, line1, line2, btype, bconstant)
# Initialize.
xv = x1 - xoff
yv = y1 - yoff
do j = 1, width {
Memr[oxs+j-1] = double (j - 1) * dpx
Memr[oys+j-1] = double (j - 1) * dpy
}
# Loop over the output image lines.
do i = 1, nvals {
x_vector[i] = real (i)
line = yv
# Get the input image data and fit an interpolator to the data.
# The input data is buffered in a section of size NLINES + 2 *
# NEDGE.
if (dy >= 0.0 && (buf == NULL || line > linea)) {
linea = min (line2, line + NLINES - 1)
lineb = max (line1, line - nedge)
linec = min (line2, linea + nedge)
lim1 = xv
lim2 = lim1 + double (width - 1) * dpx
lim3 = xv + double (linea - line + 1) * ratio
lim4 = lim3 + double (width - 1) * dpx
colb = max (col1, int (min (lim1, lim2, lim3, lim4)) - 1)
colc = min (col2, nint (max (lim1, lim2, lim3, lim4)) + 1)
buf = imgs2r (im, colb, colc, lineb, linec)
call msifit (msi, Memr[buf], colc - colb + 1, linec - lineb +
1, colc - colb + 1)
} else if (dy < 0.0 && (buf == NULL || line < linea)) {
linea = max (line1, line - NLINES + 1)
lineb = max (line1, linea - nedge)
linec = min (line2, line + nedge)
lim1 = xv
lim2 = lim1 + double (width - 1) * dpx
lim3 = xv + double (linea - line - 1) * ratio
lim4 = lim3 + double (width - 1) * dpx
colb = max (col1, int (min (lim1, lim2, lim3, lim4)) - 1)
colc = min (col2, nint (max (lim1, lim2, lim3, lim4)) + 1)
buf = imgs2r (im, colb, colc, lineb, linec)
call msifit (msi, Memr[buf], colc - colb + 1, linec - lineb +
1, colc - colb + 1)
}
# Evaluate the interpolant.
call aaddkr (Memr[oxs], real (xv - colb + 1), Memr[xs], width)
call aaddkr (Memr[oys], real (yv - lineb + 1), Memr[ys], width)
call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], width)
if (width == 1)
y_vector[i] = Memr[yvals]
else {
sum = 0.0
do k = 1, width
sum = sum + Memr[yvals+k-1]
y_vector[i] = sum / width
}
xv = xv + dx
yv = yv + dy
}
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call msifree (msi)
call sfree (sp)
end
# PV_GET_COL -- Average a strip perpendicular to a column vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure pv_get_col (im, x1, y1, x2, y2, nvals, width, btype,
bconstant, x_vector, y_vector, zmin, zmax)
pointer im # pointer to image header
real x1, y1 # starting pixel of vector
real x2, y2 # ending pixel of pixel
int nvals # number of samples along the vector
int width # width of strip to average over
int btype # Boundary extension type
real bconstant # Boundary extension constant
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
real sum
int line, linea, lineb, linec
pointer sp, xs, ys, msi, yvals, buf
double dx, dy, xoff, noff, xv, yv
int i, j, k, nedge, col1, col2, line1, line2
pointer imgs2r()
begin
call smark (sp)
call salloc (xs, width, TY_REAL)
call salloc (ys, width, TY_REAL)
call salloc (yvals, width, TY_REAL)
# Initialize the interpolator and the image data buffer.
call msiinit (msi, II_BILINEAR]
buf = NULL
# Set the boundary.
nedge = max (2, width / 2 + 1)
col1 = int (x1) - nedge
col2 = nint (x1) + nedge
line1 = int (min (y1, y2)) - nedge
line2 = nint (max (y1, y2)) + nedge
call pv_setboundary (im, col1, col2, line1, line2, btype, bconstant)
# Determine sampling perpendicular to vector.
dx = 1.0d0
if (nvals == 1)
dy = 0.0d0
else
dy = (y2 - y1) / (nvals - 1)
# Compute offset from the nominal vector to the first sample point.
noff = (real (width) - 1.0) / 2.0
xoff = noff * dx
xv = x1 - xoff
do j = 1, width
Memr[xs+j-1] = xv + double (j - col1)
yv = y1
# Loop over the output image lines.
do i = 1, nvals {
x_vector[i] = real (i)
line = yv
# Get the input image data and fit an interpolator to the data.
# The input data is buffered in a section of size NLINES + 2 *
# NEDGE.
if (dy >= 0.0 && (buf == NULL || line > (linea))) {
linea = min (line2, line + NLINES - 1)
lineb = max (line1, line - nedge)
linec = min (line2, linea + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
} else if (dy < 0.0 && (buf == NULL || line < linea)) {
linea = max (line1, line - NLINES + 1)
lineb = max (line1, linea - nedge)
linec = min (line2, line + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
}
# Evaluate the interpolant.
call amovkr (real (yv - lineb + 1), Memr[ys], width)
call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], width)
if (width == 1)
y_vector[i] = Memr[yvals]
else {
sum = 0.0
do k = 1, width
sum = sum + Memr[yvals+k-1]
y_vector[i] = sum / width
}
yv = yv + dy
}
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call msifree (msi)
call sfree (sp)
end
# PV_GET_ROW -- Average a strip parallel to a row vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure pv_get_row (im, x1, y1, x2, y2, nvals, width, btype, bconstant,
x_vector, y_vector, zmin, zmax)
pointer im # pointer to image header
real x1, y1 # starting pixel of vector
real x2, y2 # ending pixel of pixel
int nvals # number of samples along the vector
int width # width of strip to average over
int btype # Boundary extension type
real bconstant # Boundary extension constant
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
double dx, dy, yoff, noff, xv, yv
int i, j, nedge, col1, col2, line1, line2
int line, linea, lineb, linec
pointer sp, oys, xs, ys, yvals, msi, buf
pointer imgs2r()
errchk imgs2r, msifit
begin
call smark (sp)
call salloc (oys, width, TY_REAL)
call salloc (xs, nvals, TY_REAL)
call salloc (ys, nvals, TY_REAL)
call salloc (yvals, nvals, TY_REAL)
# Initialize the interpolator and the image data buffer.
call msiinit (msi, II_BILINEAR]
buf = NULL
# Set the boundary.
nedge = max (2, width / 2 + 1)
col1 = int (min (x1, x2)) - nedge
col2 = nint (max (x1, x2)) + nedge
line1 = int (y1) - nedge
line2 = nint (y1) + nedge
call pv_setboundary (im, col1, col2, line1, line2, btype, bconstant)
# Determine sampling perpendicular to vector.
if (nvals == 1)
dx = 0.0d0
else
dx = (x2 - x1) / (nvals - 1)
dy = 1.0
# Compute offset from the nominal vector to the first sample point.
noff = (real (width) - 1.0) / 2.0
xv = x1 - col1 + 1
do i = 1, nvals {
Memr[xs+i-1] = xv
xv = xv + dx
}
yoff = noff * dy
yv = y1 - yoff
do j = 1, width
Memr[oys+j-1] = yv + double (j - 1)
# Clear the accululator.
call aclrr (y_vector, nvals)
# Loop over the output image lines.
do i = 1, width {
line = yv
# Get the input image data and fit an interpolator to the data.
# The input data is buffered in a section of size NLINES + 2 *
# NEDGE.
if (dy >= 0.0 && (buf == NULL || line > (linea))) {
linea = min (line2, line + NLINES - 1)
lineb = max (line1, line - nedge)
linec = min (line2, linea + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
if (buf == NULL)
call error (0, "Error reading input image.")
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
} else if (dy < 0.0 && (buf == NULL || line < linea)) {
linea = max (line1, line - NLINES + 1)
lineb = max (line1, linea - nedge)
linec = min (line2, line + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
if (buf == NULL)
call error (0, "Error reading input image.")
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
}
# Evaluate the interpolant.
call amovkr (real (Memr[oys+i-1] - lineb + 1), Memr[ys], nvals)
call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], nvals)
if (width == 1)
call amovr (Memr[yvals], y_vector, nvals)
else
call aaddr (Memr[yvals], y_vector, y_vector, nvals)
yv = yv + dy
}
# Compute the x and y vectors.
do i = 1, nvals
x_vector[i] = real (i)
if (width > 1)
call adivkr (y_vector, real (width), y_vector, nvals)
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call msifree (msi)
call sfree (sp)
end
# PV_GET_ROW1 -- Average a strip parallel to a row vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure pv_get_row1 (im, x1, x2, nvals, btype, bconstant, x_vector,
y_vector, zmin, zmax)
pointer im # pointer to image header
real x1 # starting pixel of vector
real x2 # ending pixel of pixel
int nvals # number of samples along the vector
int btype # Boundary extension type
real bconstant # Boundary extension constant
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
double dx, xv
int i, nedge, col1, col2
pointer sp, xs, asi, buf
pointer imgs1r()
errchk imgs1r
begin
call smark (sp)
call salloc (xs, nvals, TY_REAL)
# Initialize the interpolator.
call asiinit (asi, II_LINEAR]
# Set the boundary.
nedge = 2
col1 = int (min (x1, x2)) - nedge
col2 = nint (max (x1, x2)) + nedge
call pv_setboundary (im, col1, col2, 1, 1, btype, bconstant)
# Compute the x vector.
if (nvals == 1)
dx = 0.0d0
else
dx = (x2 - x1) / (nvals - 1)
xv = x1 - col1 + 1
do i = 1, nvals {
Memr[xs+i-1] = xv
xv = xv + dx
}
# Get the image data, fit and evaluate the interpolant.
buf = imgs1r (im, col1, col2)
if (buf == NULL)
call error (0, "Error reading input image.")
call asifit (asi, Memr[buf], col2 - col1 + 1)
call asivector (asi, Memr[xs], y_vector, nvals)
# Compute the output x vector.
do i = 1, nvals
x_vector[i] = real (i)
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call asifree (asi)
call sfree (sp)
end
# PV_SETBOUNDARY -- Set boundary extension.
procedure pv_setboundary (im, col1, col2, line1, line2, btype, bconstant)
pointer im # IMIO pointer
int col1, col2 # Range of columns
int line1, line2 # Range of lines
int btype # Boundary extension type
real bconstant # Constant for constant boundary extension
int btypes[5]
int nbndrypix
data btypes /BT_CONSTANT, BT_NEAREST, BT_REFLECT, BT_WRAP, BT_PROJECT/
begin
nbndrypix = 0
nbndrypix = max (nbndrypix, 1 - col1)
nbndrypix = max (nbndrypix, col2 - IM_LEN(im, 1))
nbndrypix = max (nbndrypix, 1 - line1)
nbndrypix = max (nbndrypix, line2 - IM_LEN(im, 2))
call imseti (im, IM_TYBNDRY, btypes[btype])
call imseti (im, IM_NBNDRYPIX, nbndrypix + 1)
if (btypes[btype] == BT_CONSTANT)
call imsetr (im, IM_BNDRYPIXVAL, bconstant)
end
# PV_BUFL2R -- Maintain buffer of image lines. A new buffer is created when
# the buffer pointer is null or if the number of lines requested is changed.
# The minimum number of image reads is used.
procedure pv_bufl2r (im, col1, col2, line1, line2, buf)
pointer im # Image pointer
int col1 # First image column of buffer
int col2 # Last image column of buffer
int line1 # First image line of buffer
int line2 # Last image line of buffer
pointer buf # Buffer
int i, ncols, nlines, nclast, llast1, llast2, nllast
pointer buf1, buf2
pointer imgs2r()
begin
ncols = col2 - col1 + 1
nlines = line2 - line1 + 1
# If the buffer pointer is undefined then allocate memory for the
# buffer. If the number of columns or lines requested changes
# reallocate the buffer. Initialize the last line values to force
# a full buffer image read.
if (buf == NULL) {
call malloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
} else if ((nlines != nllast) || (ncols != nclast)) {
call realloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
}
# Read only the image lines with are different from the last buffer.
if (line1 < llast1) {
do i = line2, line1, -1 {
if (i > llast1)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
} else if (line2 > llast2) {
do i = line1, line2 {
if (i < llast2)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
}
# Save the buffer parameters.
llast1 = line1
llast2 = line2
nclast = ncols
nllast = nlines
end
|