1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
|
include <mach.h>
include "mimstat.h"
# MST_ALLOCATE -- Allocate space for the statistics structure.
procedure mst_allocate (mst)
pointer mst #O the statistics descriptor
begin
call calloc (mst, LEN_MIMSTAT, TY_STRUCT)
call malloc (MIS_SW(mst), LEN_NSWITCHES, TY_INT)
end
# MST_FREE -- Free the statistics structure.
procedure mst_free (mst)
pointer mst #O the statistics descriptor
begin
call mfree (MIS_SW(mst), TY_INT)
call mfree (mst, TY_STRUCT)
end
# MST_FIELDS -- Procedure to decode the fields string into a list of the
# fields to be computed and printed.
int procedure mst_fields (fieldstr, fields, max_nfields)
char fieldstr[ARB] #I string containing the list of fields
int fields[ARB] #O fields array
int max_nfields #I maximum number of fields
int nfields, flist, field
pointer sp, fname
int fntopnb(), fntgfnb(), strdic()
begin
nfields = 0
call smark (sp)
call salloc (fname, SZ_FNAME, TY_CHAR)
flist = fntopnb (fieldstr, NO)
while (fntgfnb (flist, Memc[fname], SZ_FNAME) != EOF &&
(nfields < max_nfields)) {
field = strdic (Memc[fname], Memc[fname], SZ_FNAME, MIS_FIELDS)
if (field == 0)
next
nfields = nfields + 1
fields[nfields] = field
}
call fntclsb (flist)
call sfree (sp)
return (nfields)
end
# MST_SWITCHES -- Set the processing switches.
procedure mst_switches (mst, fields, nfields, nclip)
pointer mst #I the statistics pointer
int fields[ARB] #I fields array
int nfields #I maximum number of fields
int nclip #I the number of clipping iterations
pointer sw
int mst_isfield()
begin
# Initialize.
sw = MIS_SW(mst)
call amovki (NO, Memi[sw], LEN_NSWITCHES)
# Set the computation switches.
MIS_SNPIX(sw) = mst_isfield (MIS_FNPIX, fields, nfields)
MIS_SMEAN(sw) = mst_isfield (MIS_FMEAN, fields, nfields)
MIS_SMEDIAN(sw) = mst_isfield (MIS_FMEDIAN, fields, nfields)
MIS_SMODE(sw) = mst_isfield (MIS_FMODE, fields, nfields)
if (nclip > 0)
MIS_SSTDDEV(sw) = YES
else
MIS_SSTDDEV(sw) = mst_isfield (MIS_FSTDDEV, fields, nfields)
MIS_SSKEW(sw) = mst_isfield (MIS_FSKEW, fields, nfields)
MIS_SKURTOSIS(sw) = mst_isfield (MIS_FKURTOSIS, fields, nfields)
# Adjust the computation switches.
if (mst_isfield (MIS_FMIN, fields, nfields) == YES)
MIS_SMINMAX(sw) = YES
else if (mst_isfield (MIS_FMAX, fields, nfields) == YES)
MIS_SMINMAX(sw) = YES
else if (MIS_SMEDIAN(sw) == YES || MIS_SMODE(sw) == YES)
MIS_SMINMAX(sw) = YES
else
MIS_SMINMAX(sw) = NO
end
# MST_PHEADER -- Print the banner fields.
procedure mst_pheader (fields, nfields)
int fields[ARB] # fields to be printed
int nfields # number of fields
int i
begin
call printf ("#")
do i = 1, nfields {
switch (fields[i]) {
case MIS_FIMAGE:
call printf (MIS_FSTRING)
call pargstr (MIS_KIMAGE)
case MIS_FMASK:
call printf (MIS_FSTRING)
call pargstr (MIS_KMASK)
case MIS_FNPIX:
call printf (MIS_FCOLUMN)
call pargstr (MIS_KNPIX)
case MIS_FMIN:
call printf (MIS_FCOLUMN)
call pargstr (MIS_KMIN)
case MIS_FMAX:
call printf (MIS_FCOLUMN)
call pargstr (MIS_KMAX)
case MIS_FMEAN:
call printf (MIS_FCOLUMN)
call pargstr (MIS_KMEAN)
case MIS_FMEDIAN:
call printf (MIS_FCOLUMN)
call pargstr (MIS_KMEDIAN)
case MIS_FMODE:
call printf (MIS_FCOLUMN)
call pargstr (MIS_KMODE)
case MIS_FSTDDEV:
call printf (MIS_FCOLUMN)
call pargstr (MIS_KSTDDEV)
case MIS_FSKEW:
call printf (MIS_FCOLUMN)
call pargstr (MIS_KSKEW)
case MIS_FKURTOSIS:
call printf (MIS_FCOLUMN)
call pargstr (MIS_KKURTOSIS)
}
}
call printf ("\n")
call flush (STDOUT)
end
# MST_ISFIELD -- Procedure to determine whether a specified field is one
# of the selected fields or not.
int procedure mst_isfield (field, fields, nfields)
int field #I field to be tested
int fields[ARB] #I array of selected fields
int nfields #I number of fields
int i, isfield
begin
isfield = NO
do i = 1, nfields {
if (field != fields[i])
next
isfield = YES
break
}
return (isfield)
end
# MST_INITIALIZE -- Initialize the statistics computation.
procedure mst_initialize (mst, lower, upper)
pointer mst #I pointer to the statistics structure
real lower #I lower good data limit
real upper #I upper good data limit
begin
if (IS_INDEFR(lower))
MIS_LO(mst) = -MAX_REAL
else
MIS_LO(mst) = lower
if (IS_INDEFR(upper))
MIS_HI(mst) = MAX_REAL
else
MIS_HI(mst) = upper
MIS_NPIX(mst) = 0
MIS_SUMX(mst) = 0.0d0
MIS_SUMX2(mst) = 0.0d0
MIS_SUMX3(mst) = 0.0d0
MIS_SUMX4(mst) = 0.0d0
MIS_MIN(mst) = MAX_REAL
MIS_MAX(mst) = -MAX_REAL
MIS_MEAN(mst) = INDEFR
MIS_MEDIAN(mst) = INDEFR
MIS_MODE(mst) = INDEFR
MIS_STDDEV(mst) = INDEFR
MIS_SKEW(mst) = INDEFR
MIS_KURTOSIS(mst) = INDEFR
end
# MST_ACCUMULATE4 -- Accumulate sums up to the fourth power of the data for
# data values between lower and upper.
procedure mst_accumulate4 (mst, x, npts, lower, upper, minmax)
pointer mst #I pointer to the statistics structure
real x[ARB] #I the data array
int npts #I the number of data points
real lower #I lower data boundary
real upper #I upper data boundary
int minmax #I compute the minimum and maximum ?
double xx, xx2, sumx, sumx2, sumx3, sumx4
real lo, hi, xmin, xmax
int i, npix
begin
lo = MIS_LO(mst)
hi = MIS_HI(mst)
npix = MIS_NPIX(mst)
sumx = 0.0
sumx2 = 0.0
sumx3 = 0.0
sumx4 = 0.0
xmin = MIS_MIN(mst)
xmax = MIS_MAX(mst)
if (IS_INDEFR(lower) && IS_INDEFR(upper)) {
npix = npix + npts
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
xx2 = xx * xx
sumx = sumx + xx
sumx2 = sumx2 + xx2
sumx3 = sumx3 + xx2 * xx
sumx4 = sumx4 + xx2 * xx2
}
} else {
do i = 1, npts {
xx = x[i]
xx2 = xx * xx
sumx = sumx + xx
sumx2 = sumx2 + xx2
sumx3 = sumx3 + xx2 * xx
sumx4 = sumx4 + xx2 * xx2
}
}
} else {
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
npix = npix + 1
xx2 = xx * xx
sumx = sumx + xx
sumx2 = sumx2 + xx2
sumx3 = sumx3 + xx2 * xx
sumx4 = sumx4 + xx2 * xx2
}
} else {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
npix = npix + 1
xx2 = xx * xx
sumx = sumx + xx
sumx2 = sumx2 + xx2
sumx3 = sumx3 + xx2 * xx
sumx4 = sumx4 + xx2 * xx2
}
}
}
MIS_NPIX(mst) = npix
MIS_SUMX(mst) = MIS_SUMX(mst) + sumx
MIS_SUMX2(mst) = MIS_SUMX2(mst) + sumx2
MIS_SUMX3(mst) = MIS_SUMX3(mst) + sumx3
MIS_SUMX4(mst) = MIS_SUMX4(mst) + sumx4
MIS_MIN(mst) = xmin
MIS_MAX(mst) = xmax
end
# MST_ACCUMULATE3 -- Accumulate sums up to the third power of the data for
# data values between lower and upper.
procedure mst_accumulate3 (mst, x, npts, lower, upper, minmax)
pointer mst #I pointer to the statistics structure
real x[ARB] #I the data array
int npts #I the number of data points
real lower #I lower data boundary
real upper #I upper data boundary
int minmax #I compute the minimum and maximum ?
double xx, xx2, sumx, sumx2, sumx3
real lo, hi, xmin, xmax
int i, npix
begin
lo = MIS_LO(mst)
hi = MIS_HI(mst)
npix = MIS_NPIX(mst)
sumx = 0.0
sumx2 = 0.0
sumx3 = 0.0
xmin = MIS_MIN(mst)
xmax = MIS_MAX(mst)
if (IS_INDEFR(lower) && IS_INDEFR(upper)) {
npix = npix + npts
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
xx2 = xx * xx
sumx = sumx + xx
sumx2 = sumx2 + xx2
sumx3 = sumx3 + xx2 * xx
}
} else {
do i = 1, npts {
xx = x[i]
xx2 = xx * xx
sumx = sumx + xx
sumx2 = sumx2 + xx2
sumx3 = sumx3 + xx2 * xx
}
}
} else {
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
npix = npix + 1
xx2 = xx * xx
sumx = sumx + xx
sumx2 = sumx2 + xx2
sumx3 = sumx3 + xx2 * xx
}
} else {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
npix = npix + 1
xx2 = xx * xx
sumx = sumx + xx
sumx2 = sumx2 + xx2
sumx3 = sumx3 + xx2 * xx
}
}
}
MIS_NPIX(mst) = npix
MIS_SUMX(mst) = MIS_SUMX(mst) + sumx
MIS_SUMX2(mst) = MIS_SUMX2(mst) + sumx2
MIS_SUMX3(mst) = MIS_SUMX3(mst) + sumx3
MIS_MIN(mst) = xmin
MIS_MAX(mst) = xmax
end
# MST_ACCUMULATE2 -- Accumulate sums up to the second power of the data for
# data values between lower and upper.
procedure mst_accumulate2 (mst, x, npts, lower, upper, minmax)
pointer mst #I pointer to the statistics structure
real x[ARB] #I the data array
int npts #I the number of data points
real lower #I lower data boundary
real upper #I upper data boundary
int minmax #I compute the minimum and maximum ?
double xx, sumx, sumx2
real lo, hi, xmin, xmax
int i, npix
begin
lo = MIS_LO(mst)
hi = MIS_HI(mst)
npix = MIS_NPIX(mst)
sumx = 0.0
sumx2 = 0.0
xmin = MIS_MIN(mst)
xmax = MIS_MAX(mst)
if (IS_INDEFR(lower) && IS_INDEFR(upper)) {
npix = npix + npts
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
sumx = sumx + xx
sumx2 = sumx2 + xx * xx
}
} else {
do i = 1, npts {
xx = x[i]
sumx = sumx + xx
sumx2 = sumx2 + xx * xx
}
}
} else {
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
npix = npix + 1
sumx = sumx + xx
sumx2 = sumx2 + xx * xx
}
} else {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
npix = npix + 1
sumx = sumx + xx
sumx2 = sumx2 + xx * xx
}
}
}
MIS_NPIX(mst) = npix
MIS_SUMX(mst) = MIS_SUMX(mst) + sumx
MIS_SUMX2(mst) = MIS_SUMX2(mst) + sumx2
MIS_MIN(mst) = xmin
MIS_MAX(mst) = xmax
end
# MST_ACCUMULATE1 -- Accumulate sums up to the first power of the data for
# data values between lower and upper.
procedure mst_accumulate1 (mst, x, npts, lower, upper, minmax)
pointer mst #I pointer to the statistics structure
real x[ARB] #I the data array
int npts #I the number of data points
real lower #I lower data boundary
real upper #I upper data boundary
int minmax #I compute the minimum and maximum ?
double sumx
real lo, hi, xx, xmin, xmax
int i, npix
begin
lo = MIS_LO(mst)
hi = MIS_HI(mst)
npix = MIS_NPIX(mst)
sumx = 0.0
xmin = MIS_MIN(mst)
xmax = MIS_MAX(mst)
if (IS_INDEFR(lower) && IS_INDEFR(upper)) {
npix = npix + npts
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
sumx = sumx + xx
}
} else {
do i = 1, npts
sumx = sumx + x[i]
}
} else {
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
npix = npix + 1
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
sumx = sumx + xx
}
} else {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
npix = npix + 1
sumx = sumx + xx
}
}
}
MIS_NPIX(mst) = npix
MIS_SUMX(mst) = MIS_SUMX(mst) + sumx
MIS_MIN(mst) = xmin
MIS_MAX(mst) = xmax
end
# MST_ACCUMULATE0 -- Accumulate sums up to the 0th power of the data for
# data values between lower and upper.
procedure mst_accumulate0 (mst, x, npts, lower, upper, minmax)
pointer mst #I pointer to the statistics structure
real x[ARB] #I the data array
int npts #I the number of data points
real lower #I lower data boundary
real upper #I upper data boundary
int minmax #I compute the minimum and maximum ?
int i, npix
real lo, hi, xx, xmin, xmax
begin
lo = MIS_LO(mst)
hi = MIS_HI(mst)
npix = MIS_NPIX(mst)
xmin = MIS_MIN(mst)
xmax = MIS_MAX(mst)
if (IS_INDEFR(lower) && IS_INDEFR(upper)) {
npix = npix + npts
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
}
}
} else {
if (minmax == YES) {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
npix = npix + 1
if (xx < xmin)
xmin = xx
if (xx > xmax)
xmax = xx
}
} else {
do i = 1, npts {
xx = x[i]
if (xx < lo || xx > hi)
next
npix = npix + 1
}
}
}
MIS_NPIX(mst) = npix
MIS_MIN(mst) = xmin
MIS_MAX(mst) = xmax
end
# MST_STATS -- Procedure to compute the first four central moments of the
# distribution.
procedure mst_stats (mst)
pointer mst #I statistics structure
double mean, var, stdev
pointer sw
bool fp_equalr()
begin
sw = MIS_SW(mst)
# Compute the basic statistics regardless of the switches.
if (fp_equalr (MIS_MIN(mst), MAX_REAL))
MIS_MIN(mst) = INDEFR
if (fp_equalr (MIS_MAX(mst), -MAX_REAL))
MIS_MAX(mst) = INDEFR
if (MIS_NPIX(mst) <= 0)
return
mean = MIS_SUMX(mst) / MIS_NPIX(mst)
MIS_MEAN(mst) = mean
if (MIS_NPIX(mst) < 2)
return
var = (MIS_SUMX2(mst) - MIS_SUMX(mst) * mean) /
(MIS_NPIX(mst) - 1)
if (var <= 0.0) {
MIS_STDDEV(mst) = 0.0
return
} else {
stdev = sqrt (var)
MIS_STDDEV(mst) = stdev
}
# Compute higher order moments if the switches are set.
if (MIS_SSKEW(sw)== YES)
MIS_SKEW(mst) = (MIS_SUMX3(mst) - 3.0d0 * MIS_MEAN(mst) *
MIS_SUMX2(mst) + 3.0d0 * mean * mean *
MIS_SUMX(mst) - MIS_NPIX(mst) * mean ** 3) /
MIS_NPIX(mst) / stdev / stdev / stdev
if (MIS_SKURTOSIS(sw) == YES)
MIS_KURTOSIS(mst) = (MIS_SUMX4(mst) - 4.0d0 * mean *
MIS_SUMX3(mst) + 6.0d0 * mean * mean *
MIS_SUMX2(mst) - 4.0 * mean ** 3 * MIS_SUMX(mst) +
MIS_NPIX(mst) * mean ** 4) / MIS_NPIX(mst) /
stdev / stdev / stdev / stdev - 3.0d0
end
# MST_IHIST -- Initilaize the histogram of the image pixels.
int procedure mst_ihist (mst, binwidth, hgm, nbins, hwidth, hmin, hmax)
pointer mst #I pointer to the statistics structure
real binwidth #I histogram bin width in sigma
pointer hgm #O pointer to the histogram
int nbins #O number of bins
real hwidth #O histogram resolution
real hmin #O minimum histogram value
real hmax #O maximum histogram value
begin
nbins = 0
if (binwidth <= 0.0)
return (NO)
hwidth = binwidth * MIS_STDDEV(mst)
if (hwidth <= 0.0)
return (NO)
nbins = (MIS_MAX(mst) - MIS_MIN(mst)) / hwidth + 1
if (nbins < 3)
return (NO)
hmin = MIS_MIN(mst)
hmax = MIS_MAX(mst)
call malloc (hgm, nbins, TY_INT)
return (YES)
end
# MST_HMEDIAN -- Estimate the median from the histogram.
procedure mst_hmedian (mst, hgm, nbins, hwidth, hmin, hmax)
pointer mst #I pointer to the statistics structure
int hgm[ARB] #I histogram of the pixels
int nbins #I number of bins in the histogram
real hwidth #I resolution of the histogram
real hmin #I minimum histogram value
real hmax #I maximum histogram value
real h1, hdiff, hnorm
pointer sp, ihgm
int i, lo, hi
bool fp_equalr()
begin
call smark (sp)
call salloc (ihgm, nbins, TY_REAL)
# Integrate the histogram and normalize.
Memr[ihgm] = hgm[1]
do i = 2, nbins
Memr[ihgm+i-1] = hgm[i] + Memr[ihgm+i-2]
hnorm = Memr[ihgm+nbins-1]
call adivkr (Memr[ihgm], hnorm, Memr[ihgm], nbins)
# Initialize the low and high bin numbers.
lo = 0
hi = 1
# Search for the point which divides the integral in half.
do i = 1, nbins {
if (Memr[ihgm+i-1] > 0.5)
break
lo = i
}
hi = lo + 1
# Approximate the median.
h1 = hmin + lo * hwidth
if (lo == 0)
hdiff = Memr[ihgm+hi-1]
else
hdiff = Memr[ihgm+hi-1] - Memr[ihgm+lo-1]
if (fp_equalr (hdiff, 0.0))
MIS_MEDIAN(mst) = h1
else if (lo == 0)
MIS_MEDIAN(mst) = h1 + 0.5 / hdiff * hwidth
else
MIS_MEDIAN(mst) = h1 + (0.5 - Memr[ihgm+lo-1]) / hdiff * hwidth
call sfree (sp)
end
# MST_HMODE -- Procedure to compute the mode.
procedure mst_hmode (mst, hgm, nbins, hwidth, hmin, hmax)
pointer mst #I pointer to the statistics strucuture
int hgm[ARB] #I histogram of the pixels
int nbins #I number of bins in the histogram
real hwidth #I resolution of the histogram
real hmin #I minimum histogram value
real hmax #I maximum histogram value
int i, bpeak
real hpeak, dh1, dh2, denom
bool fp_equalr()
begin
# If there is a single bin return the midpoint of that bin.
if (nbins == 1) {
MIS_MODE(mst) = hmin + 0.5 * hwidth
return
}
# If there are two bins return the midpoint of the greater bin.
if (nbins == 2) {
if (hgm[1] > hgm[2])
MIS_MODE(mst) = hmin + 0.5 * hwidth
else if (hgm[2] > hgm[1])
MIS_MODE(mst) = hmin + 1.5 * hwidth
else
MIS_MODE(mst) = hmin + hwidth
return
}
# Find the bin containing the histogram maximum.
hpeak = hgm[1]
bpeak = 1
do i = 2, nbins {
if (hgm[i] > hpeak) {
hpeak = hgm[i]
bpeak = i
}
}
# If the maximum is in the first bin return the midpoint of the bin.
if (bpeak == 1) {
MIS_MODE(mst) = hmin + 0.5 * hwidth
return
}
# If the maximum is in the last bin return the midpoint of the bin.
if (bpeak == nbins) {
MIS_MODE(mst) = hmin + (nbins - 0.5) * hwidth
return
}
# Compute the lower limit of bpeak.
bpeak = bpeak - 1
# Do a parabolic interpolation to find the peak.
dh1 = hgm[bpeak+1] - hgm[bpeak]
dh2 = hgm[bpeak+1] - hgm[bpeak+2]
denom = dh1 + dh2
if (fp_equalr (denom, 0.0)) {
MIS_MODE(mst) = hmin + (bpeak + 0.5) * hwidth
} else {
MIS_MODE(mst) = bpeak + 1 + 0.5 * (dh1 - dh2) / denom
MIS_MODE(mst) = hmin + (MIS_MODE(mst) - 0.5) * hwidth
}
#dh1 = hgm[bpeak] * (hmin + (bpeak - 0.5) * hwidth) +
#hgm[bpeak+1] * (hmin + (bpeak + 0.5) * hwidth) +
#hgm[bpeak+2] * (hmin + (bpeak + 1.5) * hwidth)
#dh2 = hgm[bpeak] + hgm[bpeak+1] + hgm[bpeak+2]
end
# MST_PRINT -- Print the fields using builtin format strings.
procedure mst_print (image, mask, mst, fields, nfields)
char image[ARB] #I image name
char mask[ARB] #I mask name
pointer mst #I pointer to the statistics structure
int fields[ARB] #I fields to be printed
int nfields #I number of fields
int i
begin
call printf (" ")
do i = 1, nfields {
switch (fields[i]) {
case MIS_FIMAGE:
call printf (MIS_FSTRING)
call pargstr (image)
case MIS_FMASK:
call printf (MIS_FSTRING)
call pargstr (mask)
case MIS_FNPIX:
call printf (MIS_FINTEGER)
call pargi (MIS_NPIX(mst))
case MIS_FMIN:
call printf (MIS_FREAL)
call pargr (MIS_MIN(mst))
case MIS_FMAX:
call printf (MIS_FREAL)
call pargr (MIS_MAX(mst))
case MIS_FMEAN:
call printf (MIS_FREAL)
call pargr (MIS_MEAN(mst))
case MIS_FMEDIAN:
call printf (MIS_FREAL)
call pargr (MIS_MEDIAN(mst))
case MIS_FMODE:
call printf (MIS_FREAL)
call pargr (MIS_MODE(mst))
case MIS_FSTDDEV:
call printf (MIS_FREAL)
call pargr (MIS_STDDEV(mst))
case MIS_FSKEW:
call printf (MIS_FREAL)
call pargr (MIS_SKEW(mst))
case MIS_FKURTOSIS:
call printf (MIS_FREAL)
call pargr (MIS_KURTOSIS(mst))
}
}
call printf ("\n")
call flush (STDOUT)
end
# MST_FPRINT -- Print the fields using a free format.
procedure mst_fprint (image, mask, mst, fields, nfields)
char image[ARB] #I image name
char mask[ARB] #I mask name
pointer mst #I pointer to the statistics structure
int fields[ARB] #I fields to be printed
int nfields #I number of fields
int i
begin
do i = 1, nfields {
switch (fields[i]) {
case MIS_FIMAGE:
call printf ("%s")
call pargstr (image)
case MIS_FMASK:
call printf ("%s")
call pargstr (mask)
case MIS_FNPIX:
call printf ("%d")
call pargi (MIS_NPIX(mst))
case MIS_FMIN:
call printf ("%g")
call pargr (MIS_MIN(mst))
case MIS_FMAX:
call printf ("%g")
call pargr (MIS_MAX(mst))
case MIS_FMEAN:
call printf ("%g")
call pargr (MIS_MEAN(mst))
case MIS_FMEDIAN:
call printf ("%g")
call pargr (MIS_MEDIAN(mst))
case MIS_FMODE:
call printf ("%g")
call pargr (MIS_MODE(mst))
case MIS_FSTDDEV:
call printf ("%g")
call pargr (MIS_STDDEV(mst))
case MIS_FSKEW:
call printf ("%g")
call pargr (MIS_SKEW(mst))
case MIS_FKURTOSIS:
call printf ("%g")
call pargr (MIS_KURTOSIS(mst))
}
if (i < nfields)
call printf (" ")
}
call printf ("\n")
call flush (STDOUT)
end
|