1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
include <ctype.h>
include <imhdr.h>
include <time.h>
include "pvol.h"
define iwrapup_ 91
define mwrapup_ 92
# PVOL -- Project Volume. Given an input datacube, produce a series of
# frames representing projections at stepped rotations around the cube,
# using voxel intensity and/or opacity information. This is a form of
# volume rendering.
procedure t_pvol
pointer input, output, sp, tmpstr, vp, timestr, im1, im2
long clock1, clock2, elapclock, cpu1, cpu2, elapcpu
bool need_lims, use_both
real tmpmin, tmpmax
pointer immap()
int clgeti(), clktime(), cputime()
bool clgetb()
real clgetr()
begin
call smark (sp)
call salloc (tmpstr, SZ_LINE, TY_CHAR)
call salloc (input, SZ_FNAME, TY_CHAR)
call salloc (output, SZ_FNAME, TY_CHAR)
call salloc (timestr, SZ_FNAME, TY_CHAR)
# Allocate storage for volume projection descriptor.
call malloc (vp, LEN_VP, TY_STRUCT)
# Input parameters.
if (clgetb ("verbose"))
VERBOSE(vp) = YES
else
VERBOSE(vp) = NO
call clgstr ("input", Memc[input], SZ_FNAME)
call clgstr ("output", Memc[output], SZ_FNAME)
# Geometric projection parameters:
DEGREES(vp) = clgetr ("degrees")
INIT_THETA(vp) = clgetr ("theta0")
NFRAMES(vp) = clgeti ("nframes")
if (IS_INDEFI(NFRAMES(vp)) && !IS_INDEFR(DEGREES(vp)))
NFRAMES(vp) = int (360.0 / DEGREES(vp))
else if (IS_INDEFR(DEGREES(vp)) && !IS_INDEFI(NFRAMES(vp)))
DEGREES(vp) = 360.0 / NFRAMES(vp)
else if (IS_INDEFR(DEGREES(vp)) && IS_INDEFI(NFRAMES(vp))) {
NFRAMES(vp) = 36
DEGREES(vp) = 10.0
}
PTYPE(vp) = clgeti ("ptype")
VIMIN(vp) = clgetr ("imin")
VIMAX(vp) = clgetr ("imax")
IZERO(vp) = clgetr ("izero")
OSCALE(vp) = clgetr ("oscale")
OMIN(vp) = clgetr ("omin")
OMAX(vp) = clgetr ("omax")
AMIN(vp) = clgetr ("amin")
AMAX(vp) = clgetr ("amax")
DISCUTOFF(vp) = NO
if (PTYPE(vp) == P_INVDISPOW || PTYPE(vp) == P_MODN) {
DISPOWER(vp) = clgetr ("dispower")
if (clgetb ("discutoff"))
DISCUTOFF(vp) = YES
}
if (PTYPE(vp) == P_MODN)
MODN(vp) = clgeti ("modn")
VECX(vp) = clgetr ("vecx")
VECY(vp) = clgetr ("vecy")
VECZ(vp) = clgetr ("vecz")
MAX_WS(vp) = clgeti ("maxws")
# In prototype, the incremental algorithm is only implemented for
# rotations about the X axis, counterclockwise when viewed from +X
# looking back toward the origin.
if (!(VECX(vp) == +1.0 && VECY(vp) == 0.0 && VECZ(vp) == 0.0)) {
call eprintf ("ERROR: Only +X axis rotations supported with")
call eprintf (" incremental alg. at present\n")
call error (0, "Unsupported feature")
}
# Open images.
im1 = immap (Memc[input], READ_ONLY, 0)
im2 = immap (Memc[output], NEW_IMAGE, 0)
call clgstr ("title", IM_TITLE(im1), SZ_IMTITLE)
# If input image is 4d, with 2 elements in 4th dimension, one of them
# must be opacity and the other intensity. If someone wants to merge
# two or more sets of intensity data, they can make independent runs
# of PVOL and merge the outputs using RGB displays.
use_both = false
OPACELEM(vp) = INDEFI
if (IM_NDIM(im1) == 4 && PTYPE(vp) != P_ATTENUATE) {
if (IM_LEN(im1,4) > 2)
call error (0, "Don't know how to handle 4d image w/ >2 elems")
else if (IM_LEN(im1,4) == 2) {
OPACELEM(vp) = clgeti ("opacelem")
if (PTYPE(vp) == P_LASTONLY) {
call eprintf ("Warning: cannot use ptype LASTONLY with ")
call eprintf ("combined opacity/intensity data.\n")
PTYPE(vp) = P_SUM
call eprintf (" resetting ptype = %d (SUM)\n")
call pargi (PTYPE(vp))
}
use_both = true
if (VERBOSE(vp) == YES)
call eprintf ("4D image, using both opacity & intensity.\n")
} else
OPACELEM(vp) = INDEFI
} else if (IM_NDIM(im1) > 4)
call error (0, "Don't know how to handle > 4d image")
# Determine voxel intensity minimum & maximum for all intensity
# transformations. Both a specified intensity min & max and an
# image min & max are required in the intensity transformation step
# function: if image min & max are up to date in the image header,
# they will be used for image min & max; and if task parameters
# imin, imax are NOT supplied, they will be set equal to image min
# & max. Likewise, if image min & max are not present, but
# task params imin,imax are, the image min & max will be set to
# imin,imax for duration of PVOL execution. If neither are supplied,
# the image min & max will be calculated but not updated (might not
# have write access, user might not want them updated); however, if
# verbose is on, the user will be warned to run MINMAX on the image
# in the future to save time.
if (PTYPE(vp) == P_ATTENUATE || use_both) {
# Get opacity transformation function parameters.
if (IS_INDEFR(OMIN(vp)))
OMIN(vp) = IIMIN(vp)
if (IS_INDEFR(OMAX(vp)))
OMAX(vp) = IIMAX(vp)
if (OMAX(vp) - OMIN(vp) <= 0.0) {
call eprintf ("Error: Invalid omin / omax (%g : %g)\n")
call pargr (OMIN(vp))
call pargr (OMAX(vp))
goto iwrapup_
}
}
if (PTYPE(vp) != P_ATTENUATE || use_both) {
# Get intensity transformation function parameters & image minmax.
need_lims = false
if (IM_LIMTIME(im1) < IM_MTIME(im1))
need_lims = true
else {
tmpmin = IM_MIN(im1)
tmpmax = IM_MAX(im1)
}
if (IS_INDEFR(VIMIN(vp))) {
if (need_lims) {
call imminmax (im1, tmpmin, tmpmax)
need_lims = false
if (VERBOSE(vp) == YES) {
call eprintf ("Must compute input image min & max...\n")
call eprintf ("NOTE: run MINMAX with force+ & update+")
call eprintf (" on input image in the future.\n")
}
}
IIMIN(vp) = tmpmin
VIMIN(vp) = IIMIN(vp)
} else {
if (need_lims) {
IIMIN(vp) = VIMIN(vp)
if (VERBOSE(vp) == YES)
call eprintf ("Image MIN not present; using IMIN\n")
} else
IIMIN(vp) = tmpmin
}
if (IS_INDEFR(VIMAX(vp))) {
if (need_lims) {
call imminmax (im1, tmpmin, tmpmax)
if (VERBOSE(vp) == YES) {
call eprintf ("Must compute input image min & max...\n")
call eprintf ("NOTE: run MINMAX with force+ & update+")
call eprintf (" on input image in the future.\n")
}
}
IIMAX(vp) = tmpmax
VIMAX(vp) = IIMAX(vp)
} else {
if (need_lims) {
IIMAX(vp) = VIMAX(vp)
if (VERBOSE(vp) == YES)
call eprintf ("Image MAX not present; using IMAX\n")
} else
IIMAX(vp) = tmpmax
}
if (VIMAX(vp) - VIMIN(vp) <= 0.0 && PTYPE(vp) != P_ATTENUATE) {
call eprintf ("Error: Invalid imin / imax (%g : %g)\n")
call pargr (VIMIN(vp))
call pargr (VIMAX(vp))
goto iwrapup_
}
}
# Load the relevant output header parameters.
IM_PIXTYPE(im2) = TY_REAL
IM_NDIM(im2) = 3
IM_LEN(im2,COL) = IM_LEN(im1,COL)
# Store run parameters in output image header.
call imastr (im2, "V_OIMAGE", Memc[input])
call imastr (im2, "V_OTITLE", IM_TITLE(im1))
call imaddr (im2, "V_OLDMIN", IIMIN(vp))
call imaddr (im2, "V_OLDMAX", IIMAX(vp))
call imaddr (im2, "V_DEGREES", DEGREES(vp))
call imaddr (im2, "V_THETA0", INIT_THETA(vp))
call sprintf (Memc[tmpstr], SZ_LINE, "x=%5.2f, y=%5.2f, z=%5.2f")
call pargr (VECX(vp)); call pargr (VECY(vp)); call pargr (VECZ(vp))
call imastr (im2, "V_ROTVECT", Memc[tmpstr])
call imaddi (im2, "V_PTYPE", PTYPE(vp))
call sprintf (Memc[tmpstr], SZ_LINE, "%g : %g")
call pargr (VIMIN(vp)); call pargr (VIMAX(vp))
call imastr (im2, "V_IMINMX", Memc[tmpstr])
call imaddr (im2, "V_IZERO", IZERO(vp))
call sprintf (Memc[tmpstr], SZ_LINE, "%g : %g")
call pargr (OMIN(vp)); call pargr (OMAX(vp))
call imastr (im2, "V_OMINMX", Memc[tmpstr])
call imaddr (im2, "V_OSCALE", OSCALE(vp))
call sprintf (Memc[tmpstr], SZ_LINE, "%g : %g")
call pargr (AMIN(vp)); call pargr (AMAX(vp))
call imastr (im2, "V_ATTEN", Memc[tmpstr])
if (PTYPE(vp) == P_INVDISPOW || PTYPE(vp) == P_MODN)
call imaddr (im2, "V_DISPOW", DISPOWER(vp))
call imaddb (im2, "V_DISCUT", (DISCUTOFF(vp) == YES))
if (PTYPE(vp) == P_MODN)
call imaddi (im2, "V_MODN", MODN(vp))
if (use_both) {
call imastr (im2, "V_BOTH", "4D: Both opacity and intensity used")
call imaddi (im2, "V_OPELEM", OPACELEM(vp))
}
# Initialize timers.
clock1 = clktime (long (0))
call cnvtime (clock1, Memc[timestr], SZ_TIME)
cpu1 = cputime (long (0))
# Do all the work.
call vproject (im1, im2, vp, use_both)
call sysid (Memc[tmpstr], SZ_LINE)
call imastr (im2, "P_SYSTEM", Memc[tmpstr])
clock2 = clktime (long (0))
elapclock = (clock2 - clock1)
cpu2 = cputime (long (0))
elapcpu = (cpu2 - cpu1) / 1000
call imastr (im2, "P_STIME", Memc[timestr])
clock1 = clktime (long (0))
call cnvtime (clock1, Memc[timestr], SZ_TIME)
call imastr (im2, "P_ETIME", Memc[timestr])
call sprintf (Memc[tmpstr], SZ_LINE,
"Elapsed cpu = %02d %02s:%02s:%02s, clock = %02d %02s:%02s:%02s")
call pargi (elapcpu/86400)
call pargi (mod (elapcpu, 86400) / 3600)
call pargi (mod (elapcpu, 3600) / 60)
call pargi (mod (elapcpu, 60))
call pargi (elapclock/86400)
call pargi (mod (elapclock, 86400) / 3600)
call pargi (mod (elapclock, 3600) / 60)
call pargi (mod (elapclock, 60))
call imastr (im2, "P_ELAPSED", Memc[tmpstr])
iwrapup_
call imunmap (im1)
call imunmap (im2)
mwrapup_
call mfree (vp, TY_STRUCT)
call sfree (sp)
end
|