1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <fset.h>
include <imhdr.h>
include <math/curfit.h>
include <pkg/gtools.h>
include "curfit.h"
define VERBOSE_OUTPUT 1
define LIST_OUTPUT 2
define DEFAULT_OUTPUT 3
define CF_UNIFORM 1
define CF_USER 2
define CF_STATISTICAL 3
define CF_INSTRUMENTAL 4
# CF_FIT -- Called once for each curve to be fit.
procedure cf_fitr (ic, gt, x, y, wts, nvalues, nmax, device, interactive, ofmt,
power)
pointer ic # ICFIT pointer
pointer gt # Graphics tools pointer
real x[nmax] # X data values
real y[nmax] # Y data values
real wts[nmax] # Weights
int nvalues # Number of data points
int nmax # Maximum number of data points
char device[SZ_FNAME] # Output graphics device
int interactive # Fit curve interactively?
int ofmt # Type of output listing
bool power # Convert coeff to power series?
int ncoeff, i
real xmin, xmax
pointer sp, gp, cv, coeff, tty
pointer gopen(), ttyodes()
int fstati(), rcvstati()
begin
# Determine data range and set up curve fitting limits.
call alimr (x, nvalues, xmin, xmax)
call ic_putr (ic, "xmin", real (xmin))
call ic_putr (ic, "xmax", real (xmax))
if (interactive == YES) {
gp = gopen (device, NEW_FILE, STDGRAPH)
call icg_fitr (ic, gp, "cursor", gt, cv, x, y, wts, nvalues)
call gclose (gp)
} else
# Do fit non-interactively
call ic_fitr (ic, cv, x, y, wts, nvalues, YES, YES, YES, YES)
# Output answers to STDOUT
if (ofmt != LIST_OUTPUT) {
if (fstati (STDOUT, F_REDIR) == NO) {
tty = ttyodes ("terminal")
call ttyclear (STDOUT, tty)
call ttycdes (tty)
}
#call ic_show (ic, "STDOUT", gt)
call ic_vshowr (ic, "STDOUT", cv, x, y, wts, nvalues, gt)
if (ofmt == VERBOSE_OUTPUT) {
call printf (
"\n# \t X \t Yc \t Y \t W\n")
call cf_listxyr (cv, x, y, wts, nvalues)
}
} else
call cf_listxyr (cv, x, y, wts, nvalues)
# Convert coefficients if requested for legendre or chebyshev
if (power && ofmt != LIST_OUTPUT) {
# Calculate and print coefficients
ncoeff = rcvstati (cv, CVNCOEFF)
call smark (sp)
call salloc (coeff, ncoeff, TY_REAL)
call rcvpower (cv, Memr[coeff], ncoeff)
call printf ("# Power series coefficients would be:\n")
call printf ("# \t\tcoefficient\n")
do i = 1, ncoeff {
call printf ("# \t%d \t%14.7e\n")
call pargi (i)
call pargr (Memr[coeff+i-1])
}
call sfree (sp)
}
call cvfree (cv)
#call ic_close$t (ic)
end
# CF_LISTXY -- Print answers to STDOUT as x,y pairs.
procedure cf_listxyr (cv, xvals, yvals, wts, nvalues)
pointer cv # Pointer to curfit structure
int nvalues # Number of data values
real xvals[nvalues] # Array of x data values
real yvals[nvalues] # Array of y data values
real wts[nvalues] # Array of weights
int i
real rcveval()
begin
do i = 1, nvalues {
call printf ("\t%14.7e \t%14.7e \t%14.7e \t%14.7e\n")
call pargr (xvals[i])
call pargr (rcveval (cv, xvals[i]))
call pargr (yvals[i])
call pargr (wts[i])
}
end
# IM_PROJECTION -- Given an image section of arbitrary dimension, compute
# the projection along a single axis by taking the average over the other
# axes. We do not know about bad pixels.
procedure im_projectionr (im, x, y, w, npix, weighting, axis)
pointer im # Pointer to image header structure
real x[npix] # Index of projection vector
real y[npix] # Receives the projection vector
real w[npix] # Receives the weight vector
int weighting # Weighting of the individual points
int npix # Length of projection vector
int axis # The axis to be projected to (x=1)
int i, lastv
long v[IM_MAXDIM], nsum, totpix
pointer pix
real asumr()
pointer imgnlr()
errchk imgnlr
begin
if (im == NULL)
call error (1, "Image projection operator called with null im")
if (axis < 1 || axis > IM_NDIM(im))
call error (2, "Attempt to take projection over nonexistent axis")
# Set the y projection vector
call aclrr (y, npix)
call amovkl (long(1), v, IM_MAXDIM)
switch (axis) {
case 1:
# Since the image is read line by line, it is easy to compute the
# projection along the x-axis (axis 1). We merely sum all of the
# image lines.
while (imgnlr (im, pix, v) != EOF)
call aaddr (Memr[pix], y, y, npix)
default:
# Projecting along any other axis when reading the image line
# by line is a bit difficult to understand. Basically, the
# element 'axis' of the V vector (position of the line in the
# image) gives us the index into the appropriate element of
# y. When computing the projection over multiple dimensions,
# the same output element will be referenced repeatedly. All
# of the elmenents of the input line are summed and added into
# this output element.
for (lastv=v[axis]; imgnlr (im, pix, v) != EOF; lastv=v[axis]) {
i = lastv
if (i <= npix)
y[i] = y[i] + asumr (Memr[pix], IM_LEN(im,1))
}
}
# Now compute the number of pixels contributing to each element
# of the output vector. This is the number of pixels in the image
# divided by the length of the projection.
totpix = 1
do i = 1, IM_NDIM(im)
if (i == axis)
totpix = totpix * min (npix, IM_LEN(im,i))
else
totpix = totpix * IM_LEN(im,i)
nsum = totpix / min (npix, IM_LEN(im,axis))
# Compute the average by dividing by the number if pixels summed at
# each point.
call adivkr (y, real (nsum), y, npix)
# Set the x and weight vectors
do i = 1, npix {
x[i] = i
switch (weighting) {
case CF_STATISTICAL:
if (y[i] > 0.0)
w[i] = 1.0 / y[i]
else if (y[i] < 0.0)
w[i] = abs (1.0 / y[i])
else
w[i] = 1.0
case CF_UNIFORM:
w[i] = 1.
default:
w[i] = 1.
}
}
end
procedure cf_fitd (ic, gt, x, y, wts, nvalues, nmax, device, interactive, ofmt,
power)
pointer ic # ICFIT pointer
pointer gt # Graphics tools pointer
double x[nmax] # X data values
double y[nmax] # Y data values
double wts[nmax] # Weights
int nvalues # Number of data points
int nmax # Maximum number of data points
char device[SZ_FNAME] # Output graphics device
int interactive # Fit curve interactively?
int ofmt # Type of output listing
bool power # Convert coeff to power series?
int ncoeff, i
double xmin, xmax
pointer sp, gp, cv, coeff, tty
pointer gopen(), ttyodes()
int fstati(), dcvstati()
begin
# Determine data range and set up curve fitting limits.
call alimd (x, nvalues, xmin, xmax)
call ic_putr (ic, "xmin", real (xmin))
call ic_putr (ic, "xmax", real (xmax))
if (interactive == YES) {
gp = gopen (device, NEW_FILE, STDGRAPH)
call icg_fitd (ic, gp, "cursor", gt, cv, x, y, wts, nvalues)
call gclose (gp)
} else
# Do fit non-interactively
call ic_fitd (ic, cv, x, y, wts, nvalues, YES, YES, YES, YES)
# Output answers to STDOUT
if (ofmt != LIST_OUTPUT) {
if (fstati (STDOUT, F_REDIR) == NO) {
tty = ttyodes ("terminal")
call ttyclear (STDOUT, tty)
call ttycdes (tty)
}
#call ic_show (ic, "STDOUT", gt)
call ic_vshowd (ic, "STDOUT", cv, x, y, wts, nvalues, gt)
if (ofmt == VERBOSE_OUTPUT) {
call printf (
"\n# \t X \t Yc \t Y \t W\n")
call cf_listxyd (cv, x, y, wts, nvalues)
}
} else
call cf_listxyd (cv, x, y, wts, nvalues)
# Convert coefficients if requested for legendre or chebyshev
if (power && ofmt != LIST_OUTPUT) {
# Calculate and print coefficients
ncoeff = dcvstati (cv, CVNCOEFF)
call smark (sp)
call salloc (coeff, ncoeff, TY_DOUBLE)
call dcvpower (cv, Memd[coeff], ncoeff)
call printf ("# Power series coefficients would be:\n")
call printf ("# \t\tcoefficient\n")
do i = 1, ncoeff {
call printf ("# \t%d \t%14.7e\n")
call pargi (i)
call pargd (Memd[coeff+i-1])
}
call sfree (sp)
}
call dcvfree (cv)
#call ic_close$t (ic)
end
# CF_LISTXY -- Print answers to STDOUT as x,y pairs.
procedure cf_listxyd (cv, xvals, yvals, wts, nvalues)
pointer cv # Pointer to curfit structure
int nvalues # Number of data values
double xvals[nvalues] # Array of x data values
double yvals[nvalues] # Array of y data values
double wts[nvalues] # Array of weights
int i
double dcveval()
begin
do i = 1, nvalues {
call printf ("\t%14.7e \t%14.7e \t%14.7e \t%14.7e\n")
call pargd (xvals[i])
call pargd (dcveval (cv, xvals[i]))
call pargd (yvals[i])
call pargd (wts[i])
}
end
# IM_PROJECTION -- Given an image section of arbitrary dimension, compute
# the projection along a single axis by taking the average over the other
# axes. We do not know about bad pixels.
procedure im_projectiond (im, x, y, w, npix, weighting, axis)
pointer im # Pointer to image header structure
double x[npix] # Index of projection vector
double y[npix] # Receives the projection vector
double w[npix] # Receives the weight vector
int weighting # Weighting of the individual points
int npix # Length of projection vector
int axis # The axis to be projected to (x=1)
int i, lastv
long v[IM_MAXDIM], nsum, totpix
pointer pix
double asumd()
pointer imgnld()
errchk imgnld
begin
if (im == NULL)
call error (1, "Image projection operator called with null im")
if (axis < 1 || axis > IM_NDIM(im))
call error (2, "Attempt to take projection over nonexistent axis")
# Set the y projection vector
call aclrd (y, npix)
call amovkl (long(1), v, IM_MAXDIM)
switch (axis) {
case 1:
# Since the image is read line by line, it is easy to compute the
# projection along the x-axis (axis 1). We merely sum all of the
# image lines.
while (imgnld (im, pix, v) != EOF)
call aaddd (Memd[pix], y, y, npix)
default:
# Projecting along any other axis when reading the image line
# by line is a bit difficult to understand. Basically, the
# element 'axis' of the V vector (position of the line in the
# image) gives us the index into the appropriate element of
# y. When computing the projection over multiple dimensions,
# the same output element will be referenced repeatedly. All
# of the elmenents of the input line are summed and added into
# this output element.
for (lastv=v[axis]; imgnld (im, pix, v) != EOF; lastv=v[axis]) {
i = lastv
if (i <= npix)
y[i] = y[i] + asumd (Memd[pix], IM_LEN(im,1))
}
}
# Now compute the number of pixels contributing to each element
# of the output vector. This is the number of pixels in the image
# divided by the length of the projection.
totpix = 1
do i = 1, IM_NDIM(im)
if (i == axis)
totpix = totpix * min (npix, IM_LEN(im,i))
else
totpix = totpix * IM_LEN(im,i)
nsum = totpix / min (npix, IM_LEN(im,axis))
# Compute the average by dividing by the number if pixels summed at
# each point.
call adivkd (y, double (nsum), y, npix)
# Set the x and weight vectors
do i = 1, npix {
x[i] = i
switch (weighting) {
case CF_STATISTICAL:
if (y[i] > 0.0)
w[i] = 1.0 / y[i]
else if (y[i] < 0.0)
w[i] = abs (1.0 / y[i])
else
w[i] = 1.0
case CF_UNIFORM:
w[i] = 1.
default:
w[i] = 1.
}
}
end
|