1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
include <imhdr.h>
include <error.h>
include <math/gsurfit.h>
# T_SURFIT -- Fit a surface to a set of x, y, and z points from an input
# text file. Output the surface parameters, coefficients, errors, data
# points with fit and residuals, and chi square to the standard output.
# Optionally evaluate the surface for a set of x and y from a text file and
# write x, y, and z to an output text file. Optionally evaluate the surface
# over the fit limits and create an image with appropriate WCS.
procedure t_surfit ()
pointer input # Input file
pointer func # Function type
pointer wttype # Weight type
pointer image # Surface image
pointer coords # Coordinates to evaluate
pointer fit # Fit output file
int xorder # X order
int yorder # Y order
int xterms # Cross-terms?
double xmin, xmax # Surface range
double ymin, ymax # Surface range
double zmin, zmax # Data limits
int ncols # Number of image columns
int nlines # Number of image lines
int i, j, k, fd, n, ncoeff, maxorder, xincr
double r[8], dx, dy, chisqr
pointer sf, im, mw
pointer sp, x, y, z, w, c, e, f, xvec, yvec, ptr, xtype
int clgeti(), clgwrd()
int open(), fscan(), nscan(), nowhite(), dgsgeti()
double clgetd(), dgseval()
pointer immap(), impl2d(), mw_open()
errchk open, malloc, realloc, immap, impl2d, mw_open
errchk dgsinit, dgsfit, dgscoeff, dgserrors
begin
call smark (sp)
call salloc (input, SZ_FNAME, TY_CHAR)
call salloc (func, SZ_FNAME, TY_CHAR)
call salloc (wttype, SZ_FNAME, TY_CHAR)
call salloc (coords, SZ_FNAME, TY_CHAR)
call salloc (fit, SZ_FNAME, TY_CHAR)
call salloc (image, SZ_FNAME, TY_CHAR)
call salloc (xtype, SZ_FNAME, TY_CHAR)
x = NULL
y = NULL
z = NULL
w = NULL
fd = NULL
sf = NULL
im = NULL
mw = NULL
iferr {
# Read points to be fit.
call clgstr ("input", Memc[input], SZ_FNAME)
ptr = open (Memc[input], READ_ONLY, TEXT_FILE); fd = ptr
n = 0
while (fscan (fd) != EOF) {
call gargd (r[1])
call gargd (r[2])
call gargd (r[3])
call gargd (r[4])
if (nscan() < 3)
next
if (nscan() < 4)
r[4] = 1.
if (n == 0) {
call malloc (x, 100, TY_DOUBLE)
call malloc (y, 100, TY_DOUBLE)
call malloc (z, 100, TY_DOUBLE)
call malloc (w, 100, TY_DOUBLE)
} else if (mod (n, 100) == 0) {
call realloc (x, n+100, TY_DOUBLE)
call realloc (y, n+100, TY_DOUBLE)
call realloc (z, n+100, TY_DOUBLE)
call realloc (w, n+100, TY_DOUBLE)
}
Memd[x+n] = r[1]
Memd[y+n] = r[2]
Memd[z+n] = r[3]
Memd[w+n] = r[4]
n = n + 1
}
call close (fd)
if (n == 0)
call error (1, "No points")
# Set x, y, z limits and reject data outside range.
xmin = clgetd ("xmin")
xmax = clgetd ("xmax")
ymin = clgetd ("ymin")
ymax = clgetd ("ymax")
zmin = clgetd ("zmin")
zmax = clgetd ("zmax")
call alimd (Memd[x], n, dx, dy)
if (IS_INDEFD(xmin))
xmin = dx
if (IS_INDEFD(xmax))
xmax = dy
call alimd (Memd[y], n, dx, dy)
if (IS_INDEFD(ymin))
ymin = dx
if (IS_INDEFD(ymax))
ymax = dy
call alimd (Memd[z], n, dx, dy)
if (IS_INDEFD(zmin))
zmin = dx
if (IS_INDEFD(zmax))
zmax = dy
j = 0
do i = 0, n-1 {
if (Memd[x+i] < xmin || Memd[x+i] > xmax)
next
if (Memd[y+i] < ymin || Memd[y+i] > ymax)
next
if (Memd[z+i] < zmin || Memd[z+i] > zmax)
next
Memd[x+j] = Memd[x+i]
Memd[y+j] = Memd[y+i]
Memd[z+j] = Memd[z+i]
Memd[w+j] = Memd[w+i]
j = j + 1
}
n = j
if (n == 0)
call error (2, "No data values")
# Fit surface.
i = clgwrd ("function", Memc[func], SZ_FNAME, GS_FUNCTIONS)
xorder = clgeti ("xorder")
yorder = clgeti ("yorder")
xterms = clgwrd ("xterms", Memc[xtype], SZ_FNAME, GS_XTYPES) - 1
# Set the weights.
j = clgwrd ("weighting", Memc[wttype], SZ_FNAME,
"|uniform|user|statistical|instrumental|")
switch (j) {
case 1:
do k = 0, n-1
Memd[w+k] = 1
case 2:
;
case 3:
do k = 0, n-1
Memd[w+k] = 1 / max (1.0d-20, abs (Memd[z+k]))
case 4:
do k = 0, n-1
Memd[w+k] = 1 / max (1.0d-20, Memd[z+k]**2)
}
call dgsinit (sf, i, xorder, yorder, xterms, xmin, xmax, ymin, ymax)
call dgsfit (sf, Memd[x], Memd[y], Memd[z], Memd[w], n, WTS_USER, i)
if (i != OK)
call error (2, "Fitting error")
# Output parameters, coefficients, errors, and fit results.
ncoeff = dgsgeti (sf, GSNCOEFF)
call salloc (c, ncoeff, TY_DOUBLE)
call salloc (e, ncoeff, TY_DOUBLE)
call salloc (f, n, TY_DOUBLE)
call dgscoeff (sf, Memd[c], ncoeff)
call dgsvector (sf, Memd[x], Memd[y], Memd[f], n)
call dgserrors (sf, Memd[z], Memd[w], Memd[f], chisqr, Memd[e])
call printf ("Surface parameters:\n")
call printf (" function = %s\n")
call pargstr (Memc[func])
call printf (" xorder = %d\n yorder = %d\n xterms = %s\n")
call pargi (xorder)
call pargi (yorder)
call pargstr (Memc[xtype])
call printf (" weighting = %s\n")
call pargstr (Memc[wttype])
call printf (" xmin = %8.6g\n xmax = %8.6g\n")
call pargd (xmin)
call pargd (xmax)
call printf (" ymin = %8.6g\n ymax = %8.6g\n")
call pargd (ymin)
call pargd (ymax)
call printf (" zmin = %8.6g\n zmax = %8.6g\n")
call pargd (zmin)
call pargd (zmax)
call printf ("\nSurface coefficients:\n")
call printf (" x y coeff error\n")
i = 0
if (xterms == GS_XFULL) {
do k = 1, yorder {
do j = 1, xorder {
call printf (" %2d %2d %8.6g %8.6g\n")
call pargi (j-1)
call pargi (k-1)
call pargd (Memd[c+i])
call pargd (Memd[e+i])
i = i + 1
}
}
} else if (xterms == GS_XHALF) {
maxorder = max (xorder+1, yorder+1)
xincr = xorder
do k = 1, yorder {
do j = 1, xincr {
call printf (" %2d %2d %8.6g %8.6g\n")
call pargi (j-1)
call pargi (k-1)
call pargd (Memd[c+i])
call pargd (Memd[e+i])
i = i + 1
}
if ((k + xorder + 1) > maxorder)
xincr = xincr - 1
}
} else {
do j = 1, xorder {
call printf (" %2d %2d %8.6g %8.6g\n")
call pargi (j-1)
call pargi (0)
call pargd (Memd[c+i])
call pargd (Memd[e+i])
i = i + 1
}
do k = 2, yorder {
call printf (" %2d %2d %8.6g %8.6g\n")
call pargi (0)
call pargi (k-1)
call pargd (Memd[c+i])
call pargd (Memd[e+i])
i = i + 1
}
}
call printf ("\nFitted points:\n")
call printf (" %8s %8s %8s %8s %8s %8s\n")
call pargstr ("x")
call pargstr ("y")
call pargstr ("z")
call pargstr ("fit")
call pargstr ("residual")
call pargstr ("weight")
do i = 0, n-1 {
call printf (" %8.6g %8.6g %8.6g %8.6g %8.6g %8.6g\n")
call pargd (Memd[x+i])
call pargd (Memd[y+i])
call pargd (Memd[z+i])
call pargd (Memd[f+i])
call pargd (Memd[z+i] - Memd[f+i])
call pargd (Memd[w+i])
}
call printf ("\n chisqr = %8.6g\n")
call pargd (chisqr)
# Evaluate surface if desired.
call clgstr ("coordinates", Memc[coords], SZ_FNAME)
if (nowhite (Memc[coords], Memc[coords], SZ_FNAME) != 0) {
ptr = open (Memc[coords], READ_ONLY, TEXT_FILE); fd = ptr
call clgstr ("fit", Memc[fit], SZ_FNAME)
if (nowhite (Memc[fit], Memc[fit], SZ_FNAME) != 0) {
i = open (Memc[fit], APPEND, TEXT_FILE)
while (fscan (fd) != EOF) {
call gargd (r[1])
call gargd (r[2])
if (nscan() < 2)
next
if (r[1]<xmin || r[1]>xmax || r[2]<ymin || r[2]>ymax)
next
r[3] = dgseval (sf, r[1], r[2])
call fprintf (i, "%8.6g %8.6g %8.6g\n")
call pargd (r[1])
call pargd (r[2])
call pargd (r[3])
}
call close (i)
}
call close (fd)
}
# Create an image if desired.
call clgstr ("image", Memc[image], SZ_FNAME)
if (nowhite (Memc[image], Memc[image], SZ_FNAME) != 0) {
ncols = clgeti ("ncols")
nlines = clgeti ("nlines")
ptr = immap (Memc[image], NEW_IMAGE, 0); im = ptr
IM_PIXTYPE(im) = TY_REAL
IM_LEN(im,1) = ncols
IM_LEN(im,2) = nlines
call salloc (xvec, ncols, TY_DOUBLE)
call salloc (yvec, ncols, TY_DOUBLE)
dx = (xmax - xmin) / (ncols - 1)
dy = (ymax - ymin) / (nlines - 1)
do i = 1, ncols
Memd[xvec+i-1] = xmin + dx * (i - 1)
do i = 1, nlines {
Memd[yvec] = ymin + dy * (i - 1)
call amovkd (Memd[yvec], Memd[yvec], ncols)
call dgsvector (sf, Memd[xvec], Memd[yvec],
Memd[impl2d(im,i)], ncols)
}
r[1] = 1.
r[2] = 1.
r[3] = xmin
r[4] = ymin
r[5] = dx
r[6] = 0.
r[7] = 0.
r[8] = dy
mw = mw_open (NULL, 2)
call mw_newsystem (mw, "world", 2)
call mw_swtermd (mw, r[1], r[3], r[5], 2)
call mw_saveim (mw, im)
call mw_close (mw)
call imunmap (im)
}
call dgsfree (sf)
} then {
if (fd != NULL)
call close (fd)
if (mw != NULL)
call mw_close (mw)
if (im != NULL)
call imunmap (im)
if (sf != NULL)
call dgsfree (sf)
call erract (EA_WARN)
}
call sfree (sp)
end
|