1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
include <imhdr.h>
include <imset.h>
include <pmset.h>
include "xtfixpix.h"
# This version uses an internal copy of the input mask rather than modifying
# the input mask.
# XT_FPINIT -- Initialize FIXPIX data structure.
# If the mask is null or empty a null pointer is returned.
# If the mask is not empty the mask is examined for bad pixels requiring
# column interpolation. The columns and interpolation endpoints are
# recorded. Note that line interpolation does not need to be mapped since
# this can be done efficiently as the reference image is accessed line by
# line.
pointer procedure yt_fpinit (pmin, lvalin, cvalin)
pointer pmin #I Pixel mask
int lvalin #I Input line interpolation code
int cvalin #I Input column interpolation code
int i, j, k, l, n, nc, nl, l1, l2, lmin, lmax, ncols, lval, cval, ncompress
short val
long v[IM_MAXDIM]
pointer pm, fp, ptr, col, pl1, pl2
pointer sp, buf, cols
bool pm_empty()
pointer pm_newcopy()
errchk pmglrs, pmplrs
begin
# Check for empty mask.
if (pmin == NULL)
return (NULL)
if (pm_empty (pmin))
return (NULL)
# Make an internal copy of the mask.
pm = pm_newcopy (pmin)
# Get mask size.
call pm_gsize (pm, i, v, j)
nc = v[1]
nl = v[2]
# Allocate memory and data structure.
call smark (sp)
call salloc (buf, 3*max(nc, nl), TY_SHORT)
call salloc (cols, nc, TY_SHORT)
call calloc (fp, FP_LEN, TY_STRUCT)
# Set the mask codes. Go through the mask and change any mask codes
# that match the input mask code to the output mask code (if they are
# different). This is done to move the mask codes to a range that
# won't conflict with the length values. For any other code replace
# the value by the length of the bad region along the line. This
# value will be used in comparison to the length along the column for
# setting the interpolation for the narrower dimension.
if ((IS_INDEFI(lvalin)||lvalin<1) && (IS_INDEFI(cvalin)||cvalin<1)) {
lval = FP_LDEF
cval = FP_CDEF
} else if (IS_INDEFI(lvalin) || lvalin < 1) {
lval = FP_LDEF
cval = mod (cvalin - 1, nc) + 1
if (lval == cval)
lval = FP_CDEF
} else if (IS_INDEFI(cvalin) || cvalin < 1) {
lval = mod (lvalin - 1, nc) + 1
cval = FP_CDEF
if (cval == lval)
cval = FP_LDEF
} else if (lvalin != cvalin) {
lval = mod (lvalin - 1, nc) + 1
cval = mod (cvalin - 1, nc) + 1
} else {
call mfree (fp, TY_STRUCT)
call sfree (sp)
call error (1, "Interpolation codes cannot be the same")
}
call yt_fpsinterp (pmin, pm, nc, nl, v, Mems[buf], lvalin, cvalin,
lval, cval)
# Go through and check if there is any need for column interpolation;
# i.e. are there any mask values different from the line interpolation.
call aclrs (Mems[cols], nc)
call amovkl (long(1), v, IM_MAXDIM)
do l = 1, nl {
v[2] = l
call pmglrs (pm, v, Mems[buf], 0, nc, 0)
ptr = buf + 3
do i = 2, Mems[buf] {
val = Mems[ptr+2]
if (val != lval) {
val = 1
n = Mems[ptr+1]
call amovks (val, Mems[cols+Mems[ptr]-1], n)
}
ptr = ptr + 3
}
}
n = 0
do i = 1, nc
if (Mems[cols+i-1] != 0)
n = n + 1
# If there are mask codes for either column interpolation or
# interpolation lengths along lines to compare against column
# interpolation check the interpolation length against the
# column and set the line interpolation endpoints to use.
# compute the minimum and maximum lines that are endpoints
# to restrict the random access pass that will be needed to
# get the endpoint values.
if (n > 0) {
n = n + 10
call malloc (col, n, TY_INT)
call malloc (pl1, n, TY_INT)
call malloc (pl2, n, TY_INT)
ncols = 0
lmin = nl
lmax = 0
ncompress = 0
do i = 1, nc {
if (Mems[cols+i-1] == 0)
next
v[1] = i
do l = 1, nl {
v[2] = l
call pmglps (pm, v, Mems[buf+l-1], 0, 1, 0)
}
for (l1=1; l1<=nl && Mems[buf+l1-1]==0; l1=l1+1)
;
while (l1 <= nl) {
l1 = l1 - 1
for (l2=l1+1; l2<=nl && Mems[buf+l2-1]!=0; l2=l2+1)
;
j = 0
k = nc + l2 - l1 - 1
do l = l1+1, l2-1 {
val = Mems[buf+l-1]
if (val == cval)
j = j + 1
else if (val > nc) {
if (val > k) {
j = j + 1
val = cval
} else
val = lval
v[2] = l
call pmplps (pm, v, val, 0, 1, PIX_SRC)
ncompress = ncompress + 1
}
}
if (ncompress > 100) {
call pm_compress (pm)
ncompress = 0
}
if (j > 0) {
if (ncols == n) {
n = n + 10
call realloc (col, n, TY_INT)
call realloc (pl1, n, TY_INT)
call realloc (pl2, n, TY_INT)
}
j = 1 + l1 - 1
k = 1 + l2 - 1
lmin = min (lmin, j, k)
lmax = max (lmax, j, k)
Memi[col+ncols] = i
Memi[pl1+ncols] = j
Memi[pl2+ncols] = k
ncols = ncols + 1
}
for (l1=l2+1; l1<=nl && Mems[buf+l1-1]==0; l1=l1+1)
;
}
}
FP_LMIN(fp) = lmin
FP_LMAX(fp) = lmax
FP_NCOLS(fp) = ncols
FP_PCOL(fp) = col
FP_PL1(fp) = pl1
FP_PL2(fp) = pl2
}
FP_PM(fp) = pm
FP_LVAL(fp) = lval
FP_CVAL(fp) = cval
call sfree (sp)
return (fp)
end
# XT_SINTERP -- Set length of line interpolation regions.
# The mask values are set to the length of any column interpolation
# plus an offset leaving any line and column interpolation codes
# unchanged. These values will be used in a second pass to compare
# to the lengths of line interpolation and then the mask values will
# be reset to one of the line or column interpolation codes based on
# the minimum distance.
procedure yt_fpsinterp (pmin, pm, nc, nl, v, data, lvalin, cvalin,
lvalout, cvalout)
pointer pmin #I Input pixel mask
pointer pm #I Modified pixel mask
int nc, nl #I Mask size
long v[ARB] #I Coordinate vector
short data[ARB] #I Data buffer
int lvalin #I Input line interpolation code
int cvalin #I Input column interpolation code
int lvalout #I Output line interpolation code
int cvalout #I Output column interpolation code
int c, l, c1, c2, val
bool pm_linenotempty()
begin
call amovkl (long(1), v, IM_MAXDIM)
do l = 1, nl {
v[2] = l
if (!pm_linenotempty (pmin, v))
next
call pmglps (pmin, v, data, 0, nc, 0)
for (c1=1; c1<=nc && data[c1]==0; c1=c1+1)
;
while (c1 <= nc) {
for (c2=c1+1; c2<=nc && data[c2]!=0; c2=c2+1)
;
c2 = c2 - 1
do c = c1, c2 {
val = data[c]
if (val == lvalin) {
if (lvalin != lvalout)
data[c] = lvalout
} else if (val == cvalin) {
if (cvalin != cvalout)
data[c] = cvalout
} else {
data[c] = nc + c2 - c1 + 1
}
}
for (c1=c2+2; c1<=nc && data[c1]==0; c1=c1+1)
;
}
call pmplps (pm, v, data, 0, nc, PIX_SRC)
}
end
# XT_FPFREE -- Free FIXPIX data structures.
procedure yt_fpfree (fp)
pointer fp #U FIXPIX data structure
begin
if (fp == NULL)
return
call mfree (FP_PCOL(fp), TY_INT)
call mfree (FP_PL1(fp), TY_INT)
call mfree (FP_PL2(fp), TY_INT)
if (FP_PV1(fp) != NULL)
call mfree (FP_PV1(fp), FP_PIXTYPE(fp))
if (FP_PV2(fp) != NULL)
call mfree (FP_PV2(fp), FP_PIXTYPE(fp))
if (FP_DATA(fp) != NULL)
call mfree (FP_DATA(fp), FP_PIXTYPE(fp))
call pm_close (FP_PM(fp))
call mfree (fp, TY_STRUCT)
end
|