1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
|
include <mach.h>
include <ctype.h>
include <error.h>
include <imhdr.h>
include <imset.h>
include <pmset.h>
include <mwset.h>
include <syserr.h>
include <math/iminterp.h>
# Pixel mask matching options.
define PM_MATCH "|logical|physical|world|offset|"
define PM_LOGICAL 1 # Match in logical coordinates
define PM_PHYSICAL 2 # Match in physical coordinates
define PM_WORLD 3 # Match in world coordinates
define PM_OFFSET 4 # Match in physical with WCS offset
# XT_PMMAP/XT_MAPPM -- Open a pixel mask READ_ONLY.
#
# This routine maps multiple types of mask files and designations.
# It may match the mask coordinates to the reference image based on the
# physical coordinate system so the mask may be of a different size.
# The mask name is returned so that the task has the name pointed to by "BPM".
# A null filename is allowed and returns NULL.
#
# Modified to use xt_maskname with the reference image extension name.
# Minor bug fixes in xt_match.
pointer procedure yt_pmmap (pmname, refim, mname, sz_mname)
char pmname[ARB] #I Pixel mask name
pointer refim #I Reference image pointer
char mname[ARB] #O Expanded mask name
int sz_mname #O Size of expanded mask name
pointer yt_mappm()
errchk yt_mappm
begin
return (yt_mappm (pmname, refim, "physical", mname, sz_mname))
end
pointer procedure yt_mappm (pmname, refim, match, mname, sz_mname)
char pmname[ARB] #I Pixel mask name
pointer refim #I Reference image pointer
char match[ARB] #I Match by physical coordinates?
char mname[ARB] #O Expanded mask name
int sz_mname #O Size of expanded mask name
int i, j, flag, nowhite()
pointer sp, fname, extname, im, ref, yt_pmmap1()
bool streq()
errchk yt_pmmap1
begin
call smark (sp)
call salloc (fname, SZ_FNAME, TY_CHAR)
call salloc (extname, SZ_FNAME, TY_CHAR)
im = NULL
i = nowhite (pmname, Memc[fname], SZ_FNAME)
# Process invert flags. These occur more than once.
j = 0; flag = 0
for (i=0; Memc[fname+i]!=EOS; i=i+1) {
if (Memc[fname+i] == '^')
flag = flag + 1
else {
Memc[fname+j] = Memc[fname+i]
j = j + 1
}
}
Memc[fname+j] = EOS
if (mod (flag, 2) == 0)
flag = 0
else
flag = INVERT_MASK
# Resolve keyword references.
if (Memc[fname] == '!') {
iferr (call imgstr (refim, Memc[fname+1], Memc[fname], SZ_FNAME))
Memc[fname] = EOS
} else if (streq (Memc[fname], "BPM")) {
iferr (call imgstr (refim, "BPM", Memc[fname], SZ_FNAME))
Memc[fname] = EOS
}
# Resolve other special names.
if (streq (Memc[fname], "EMPTY"))
ref = refim
else
ref = NULL
# Create the mask.
if (Memc[fname] != EOS) {
iferr (im = yt_pmmap1 (Memc[fname], ref, refim, flag, match)) {
ifnoerr (call imgstr (refim, "extname", Memc[extname],
SZ_FNAME)) {
call xt_maskname (Memc[fname], Memc[extname], READ_ONLY,
Memc[fname], SZ_FNAME)
im = yt_pmmap1 (Memc[fname], ref, refim, flag, match)
} else
im = yt_pmmap1 (Memc[fname], ref, refim, flag, match)
}
}
call strcpy (Memc[fname], mname, sz_mname)
call sfree (sp)
return (im)
end
# XT_PMUNMAP -- Unmap a mask image.
# Note that the imio pointer may be purely an internal pointer opened
# with im_pmmapo so we need to free the pl pointer explicitly.
procedure yt_pmunmap (im)
pointer im #I IMIO pointer for mask
pointer pm
int imstati()
begin
pm = imstati (im, IM_PMDES)
call pm_close (pm)
call imseti (im, IM_PMDES, NULL)
call imunmap (im)
end
# XT_PMMAP1 -- Open a pixel mask READ_ONLY. The input mask may be
# a pixel list image, a non-pixel list image, or a text file.
# Return error if the pixel mask cannot be opened. For pixel masks
# or image masks possibly match the WCS.
pointer procedure yt_pmmap1 (pmname, ref, refim, flag, match)
char pmname[ARB] #I Pixel mask name
pointer ref #I Reference image for pixel mask
pointer refim #I Reference image for image or text
int flag #I Mask flag
char match[ARB] #I Match by physical coordinates?
int imstati(), errcode()
pointer im, pm
pointer im_pmmap(), yt_pmimmap(), yt_pmtext(), yt_pmsection()
bool streq()
errchk yt_match
begin
im = NULL
if (streq (pmname, "STDIN"))
im = yt_pmtext (pmname, refim, flag)
else if (pmname[1] == '[')
im = yt_pmsection (pmname, refim, flag)
else {
ifnoerr (im = im_pmmap (pmname, READ_ONLY, ref)) {
call yt_match (im, refim, match)
if (flag == INVERT_MASK) {
pm = imstati (im, IM_PMDES)
call yt_pminvert (pm)
call imseti (im, IM_PMDES, pm)
}
} else {
switch (errcode()) {
case SYS_IKIOPEN, SYS_FOPNNEXFIL, SYS_PLBADSAVEF, SYS_FOPEN:
ifnoerr (im = yt_pmimmap (pmname, refim, flag))
call yt_match (im, refim, match)
else {
switch (errcode()) {
case SYS_IKIOPEN:
im = yt_pmtext (pmname, refim, flag)
default:
call erract (EA_ERROR)
}
}
default:
call erract (EA_ERROR)
}
}
}
return (im)
end
# XT_PMIMMAP -- Open a pixel mask from a non-pixel list image.
# Return error if the image cannot be opened.
pointer procedure yt_pmimmap (pmname, refim, flag)
char pmname[ARB] #I Image name
pointer refim #I Reference image pointer
int flag #I Mask flag
int i, ndim, npix, rop, val
pointer sp, v1, v2, im_in, im_out, pm, mw, data
int imstati(), imgnli()
pointer immap(), pm_newmask(), im_pmmapo(), imgl1i(), mw_openim()
errchk immap, mw_openim, im_pmmapo
begin
call smark (sp)
call salloc (v1, IM_MAXDIM, TY_LONG)
call salloc (v2, IM_MAXDIM, TY_LONG)
call amovkl (long(1), Meml[v1], IM_MAXDIM)
call amovkl (long(1), Meml[v2], IM_MAXDIM)
im_in = immap (pmname, READ_ONLY, 0)
pm = imstati (im_in, IM_PMDES)
if (pm != NULL)
return (im_in)
pm = pm_newmask (im_in, 16)
ndim = IM_NDIM(im_in)
npix = IM_LEN(im_in,1)
if (flag == INVERT_MASK)
rop = PIX_NOT(PIX_SRC)
else
rop = PIX_SRC
while (imgnli (im_in, data, Meml[v1]) != EOF) {
if (flag == INVERT_MASK) {
do i = 0, npix-1 {
val = Memi[data+i]
if (val <= 0)
Memi[data+i] = 1
else
Memi[data+i] = 0
}
} else {
do i = 0, npix-1 {
val = Memi[data+i]
if (val < 0)
Memi[data+i] = 0
}
}
call pmplpi (pm, Meml[v2], Memi[data], 0, npix, rop)
call amovl (Meml[v1], Meml[v2], ndim)
}
im_out = im_pmmapo (pm, im_in)
data = imgl1i (im_out) # Force I/O to set header
mw = mw_openim (im_in) # Set WCS
call mw_saveim (mw, im_out)
call mw_close (mw)
#call imunmap (im_in)
call yt_pmunmap (im_in)
call sfree (sp)
return (im_out)
end
# XT_PMTEXT -- Create a pixel mask from a text file of rectangles.
# Return error if the file cannot be opened.
# This routine only applies to the first 2D plane.
pointer procedure yt_pmtext (pmname, refim, flag)
char pmname[ARB] #I Image name
pointer refim #I Reference image pointer
int flag #I Mask flag
int fd, nc, nl, c1, c2, l1, l2, nc1, nl1, rop
pointer pm, im, mw, dummy
int open(), fscan(), nscan()
pointer pm_newmask(), im_pmmapo(), imgl1i(), mw_openim()
errchk open,im_pmmapo
begin
fd = open (pmname, READ_ONLY, TEXT_FILE)
pm = pm_newmask (refim, 16)
nc = IM_LEN(refim,1)
nl = IM_LEN(refim,2)
if (flag == INVERT_MASK)
call pl_box (pm, 1, 1, nc, nl, PIX_SET+PIX_VALUE(1))
while (fscan (fd) != EOF) {
call gargi (c1)
call gargi (c2)
call gargi (l1)
call gargi (l2)
if (nscan() != 4) {
if (nscan() == 2) {
l1 = c2
c2 = c1
l2 = l1
} else
next
}
c1 = max (1, c1)
c2 = min (nc, c2)
l1 = max (1, l1)
l2 = min (nl, l2)
nc1 = c2 - c1 + 1
nl1 = l2 - l1 + 1
if (nc1 < 1 || nl1 < 1)
next
# Select mask value based on shape of rectangle.
if (flag == INVERT_MASK)
rop = PIX_CLR
else if (nc1 <= nl1)
rop = PIX_SET+PIX_VALUE(2)
else
rop = PIX_SET+PIX_VALUE(3)
# Set mask rectangle.
call pm_box (pm, c1, l1, c2, l2, rop)
}
call close (fd)
im = im_pmmapo (pm, refim)
dummy = imgl1i (im) # Force I/O to set header
mw = mw_openim (refim) # Set WCS
call mw_saveim (mw, im)
call mw_close (mw)
return (im)
end
# XT_PMSECTION -- Create a pixel mask from an image section.
# This only applies the mask to the first plane of the image.
pointer procedure yt_pmsection (section, refim, flag)
char section[ARB] #I Image section
pointer refim #I Reference image pointer
int flag #I Mask flag
int i, j, ip, temp, a[2], b[2], c[2], rop, ctoi()
pointer pm, im, mw, dummy, pm_newmask(), im_pmmapo(), imgl1i(), mw_openim()
errchk im_pmmapo
define error_ 99
begin
# This is currently only for 1D and 2D images.
if (IM_NDIM(refim) > 2)
call error (1, "Image sections only allowed for 1D and 2D images")
# Decode the section string.
call amovki (1, a, 2)
call amovki (1, b, 2)
call amovki (1, c, 2)
do i = 1, IM_NDIM(refim)
b[i] = IM_LEN(refim,i)
ip = 1
while (IS_WHITE(section[ip]))
ip = ip + 1
if (section[ip] == '[') {
ip = ip + 1
do i = 1, IM_NDIM(refim) {
while (IS_WHITE(section[ip]))
ip = ip + 1
# Get a:b:c. Allow notation such as "-*:c"
# (or even "-:c") where the step is obviously negative.
if (ctoi (section, ip, temp) > 0) { # a
a[i] = temp
if (section[ip] == ':') {
ip = ip + 1
if (ctoi (section, ip, b[i]) == 0) # a:b
goto error_
} else
b[i] = a[i]
} else if (section[ip] == '-') { # -*
temp = a[i]
a[i] = b[i]
b[i] = temp
ip = ip + 1
if (section[ip] == '*')
ip = ip + 1
} else if (section[ip] == '*') # *
ip = ip + 1
if (section[ip] == ':') { # ..:step
ip = ip + 1
if (ctoi (section, ip, c[i]) == 0)
goto error_
else if (c[i] == 0)
goto error_
}
if (a[i] > b[i] && c[i] > 0)
c[i] = -c[i]
while (IS_WHITE(section[ip]))
ip = ip + 1
if (i < IM_NDIM(refim)) {
if (section[ip] != ',')
goto error_
} else {
if (section[ip] != ']')
goto error_
}
ip = ip + 1
}
}
# In this case make the values be increasing only.
do i = 1, IM_NDIM(refim)
if (c[i] < 0) {
temp = a[i]
a[i] = b[i]
b[i] = temp
c[i] = -c[i]
}
# Make the mask.
pm = pm_newmask (refim, 16)
if (flag == INVERT_MASK) {
rop = PIX_SET+PIX_VALUE(1)
call pm_box (pm, 1, 1, IM_LEN(refim,1), IM_LEN(refim,2), rop)
rop = PIX_CLR
} else
rop = PIX_SET+PIX_VALUE(1)
if (c[1] == 1 && c[2] == 1)
call pm_box (pm, a[1], a[2], b[1], b[2], rop)
else if (c[1] == 1)
for (i=a[2]; i<=b[2]; i=i+c[2])
call pm_box (pm, a[1], i, b[1], i, rop)
else
for (i=a[2]; i<=b[2]; i=i+c[2])
for (j=a[1]; j<=b[1]; j=j+c[1])
call pm_point (pm, j, i, rop)
im = im_pmmapo (pm, refim)
dummy = imgl1i (im) # Force I/O to set header
mw = mw_openim (refim) # Set WCS
call mw_saveim (mw, im)
call mw_close (mw)
return (im)
error_
call error (1, "Error in image section specification")
end
# XT_PMINVERT -- Invert a pixel mask by changing 0 to 1 and non-zero to zero.
procedure yt_pminvert (pm)
pointer pm #I Pixel mask to be inverted
int i, naxes, axlen[IM_MAXDIM], depth, npix, val
pointer sp, v, buf, one
bool pm_linenotempty()
begin
call pm_gsize (pm, naxes, axlen, depth)
call smark (sp)
call salloc (v, IM_MAXDIM, TY_LONG)
call salloc (buf, axlen[1], TY_INT)
call salloc (one, 6, TY_INT)
npix = axlen[1]
RLI_LEN(one) = 2
RLI_AXLEN(one) = npix
Memi[one+3] = 1
Memi[one+4] = npix
Memi[one+5] = 1
call amovkl (long(1), Meml[v], IM_MAXDIM)
repeat {
if (pm_linenotempty (pm, Meml[v])) {
call pmglpi (pm, Meml[v], Memi[buf], 0, npix, 0)
do i = 0, npix-1 {
val = Memi[buf+i]
if (val == 0)
Memi[buf+i] = 1
else
Memi[buf+i] = 0
}
call pmplpi (pm, Meml[v], Memi[buf], 0, npix, PIX_SRC)
} else
call pmplri (pm, Meml[v], Memi[one], 0, npix, PIX_SRC)
do i = 2, naxes {
Meml[v+i-1] = Meml[v+i-1] + 1
if (Meml[v+i-1] <= axlen[i])
break
else if (i < naxes)
Meml[v+i-1] = 1
}
} until (Meml[v+naxes-1] > axlen[naxes])
call sfree (sp)
end
# XT_MATCH -- Set the pixel mask to match the reference image.
# This matches sizes and possibly the physical coordinates and allows the
# original mask to be smaller or larger than the reference image.
# Subsequent use of the pixel mask can then work in the logical
# coordinates of the reference image. The mask values are the maximum
# of the mask values which overlap each reference image pixel.
# A null input returns a null output.
procedure yt_match (im, refim, match)
pointer im #U Pixel mask image pointer
pointer refim #I Reference image pointer
char match[ARB] #I Match by physical coordinates?
int i, j, k, l, i1, i2, j1, j2, nc, nl, ncpm, nlpm, nx, val
int pmmatch, maxmaskval
double x1, x2, y1, y2, lt[6], lt1[6], lt2[6]
long vold[IM_MAXDIM], vnew[IM_MAXDIM]
pointer str, pm, pmnew, imnew, mw, ctx, cty, bufref, bufpm
int imstati(), strdic(), envfind(), nscan()
pointer pm_open(), mw_openim(), im_pmmapo(), imgl1i(), mw_sctran()
bool pm_empty(), pm_linenotempty()
errchk yt_match_world, pm_open, mw_openim, im_pmmapo
begin
if (im == NULL)
return
# Set sizes.
nc = IM_LEN(refim,1)
nl = IM_LEN(refim,2)
ncpm = IM_LEN(im,1)
nlpm = IM_LEN(im,2)
# If the mask is empty and the sizes are the same then it does not
# matter if the two are actually matched in physical coordinates.
pm = imstati (im, IM_PMDES)
if (pm_empty(pm) && nc == ncpm && nl == nlpm)
return
# Set match type.
call malloc (str, SZ_FNAME, TY_CHAR)
call sscan (match)
call gargwrd (Memc[str], SZ_FNAME); call gargi (maxmaskval)
if (nscan() == 1)
maxmaskval = 1
pmmatch = strdic (Memc[str], Memc[str], SZ_FNAME, PM_MATCH)
if (pmmatch == 0 && match[1] != EOS) {
if (envfind (match, Memc[str], SZ_FNAME) > 0) {
call sscan (Memc[str])
call gargwrd (Memc[str], SZ_FNAME); call gargi (maxmaskval)
if (nscan() == 1)
maxmaskval = 1
pmmatch = strdic (Memc[str], Memc[str], SZ_FNAME, PM_MATCH)
} else
pmmatch = PM_LOGICAL
} else {
if (envfind ("pmmatch", Memc[str], SZ_FNAME) > 0) {
call sscan (Memc[str])
call gargwrd (Memc[str], SZ_FNAME); call gargi (maxmaskval)
if (nscan() == 1)
maxmaskval = 1
pmmatch = strdic (Memc[str], Memc[str], SZ_FNAME, PM_MATCH)
}
}
call mfree (str, TY_CHAR)
if (pmmatch == 0)
call error (1, "Unknown or invalid pixel mask matching option")
if (pmmatch == PM_WORLD) {
call yt_match_world (im, refim, maxmaskval)
return
}
# Compute transformation between reference (logical) coordinates
# and mask (physical) coordinates. Apply a world coordinate
# offset if desired.
mw = mw_openim (im)
if (pmmatch == PM_OFFSET) {
call mw_gwtermd (mw, lt[5], lt1, lt, 2)
ctx = mw_sctran (mw, "world", "physical", 0)
call mw_ctrand (ctx, lt1, lt1[5], 2)
} else
call aclrd (lt1[5], 2)
call mw_gltermd (mw, lt, lt[5], 2)
call mw_close (mw)
if (pmmatch == PM_LOGICAL)
call amovd (lt, lt2, 6)
else {
mw = mw_openim (refim)
if (pmmatch == PM_OFFSET) {
ctx = mw_sctran (mw, "world", "physical", 0)
call mw_ctrand (ctx, lt1, lt1[3], 2)
lt1[5] = nint (lt1[5] - lt1[3])
lt1[6] = nint (lt1[6] - lt1[4])
}
call mw_gltermd (mw, lt2, lt2[5], 2)
lt2[5] = lt2[5] - lt1[5]
lt2[6] = lt2[6] - lt1[6]
call mw_close (mw)
}
# Combine lterms.
call mw_invertd (lt, lt1, 2)
call mw_mmuld (lt1, lt2, lt, 2)
call mw_vmuld (lt, lt[5], lt[5], 2)
lt[5] = lt2[5] - lt[5]
lt[6] = lt2[6] - lt[6]
do i = 1, 6
lt[i] = nint (1D6 * (lt[i]-int(lt[i]))) / 1D6 + int(lt[i])
# Check for a rotation. For now don't allow any rotation.
if (lt[2] != 0. || lt[3] != 0.)
call error (1, "Image and mask have a relative rotation")
# Check for an exact match.
if (lt[1] == 1D0 && lt[4] == 1D0 && lt[5] == 0D0 && lt[6] == 0D0 &&
nc == ncpm && nl == nlpm)
return
# Set reference to mask coordinates.
mw = mw_openim (im)
call mw_sltermd (mw, lt, lt[5], 2)
ctx = mw_sctran (mw, "logical", "physical", 1)
cty = mw_sctran (mw, "logical", "physical", 2)
# Create a new pixel mask of the required size and offset.
# Do dummy image I/O to set the header.
pmnew = pm_open (NULL)
call pm_ssize (pmnew, 2, IM_LEN(refim,1), 27)
imnew = im_pmmapo (pmnew, NULL)
bufref = imgl1i (imnew)
# Compute region of mask overlapping the reference image.
call mw_ctrand (ctx, 1-0.5D0, x1, 1)
call mw_ctrand (ctx, nc+0.5D0, x2, 1)
i1 = max (1, nint(min(x1,x2)+1D-5))
i2 = min (ncpm, nint(max(x1,x2)-1D-5))
call mw_ctrand (cty, 1-0.5D0, y1, 1)
call mw_ctrand (cty, nl+0.5D0, y2, 1)
j1 = max (1, nint(min(y1,y2)+1D-5))
j2 = min (nlpm, nint(max(y1,y2)-1D-5))
# Set the new mask values to the maximum of all mask values falling
# within each reference pixel in the overlap region.
if (i1 <= i2 && j1 <= j2) {
nx = i2 - i1 + 1
vold[1] = i1
vnew[1] = 1
# If the scales are the same then it is just a problem of
# padding. In this case use range lists for speed.
if (lt[1] == 1D0 && lt[4] == 1D0) {
call malloc (bufpm, 3+3*nc, TY_INT)
k = nint (lt[5])
l = nint (lt[6])
do j = max(1-l,j1), min(nl-l,j2) {
vold[2] = j
call plglri (pm, vold, Memi[bufpm], 0, nc, PIX_SRC)
if (k != 0) {
bufref = bufpm
do i = 2, Memi[bufpm] {
bufref = bufref + 3
Memi[bufref] = Memi[bufref] + k
}
}
vnew[2] = j + l
call pmplri (pmnew, vnew, Memi[bufpm], 0, nc, PIX_SRC)
}
bufref = NULL
# Do all the geometry and pixel size matching. This can
# be slow.
} else {
call malloc (bufpm, nx, TY_INT)
call malloc (bufref, nc, TY_INT)
do j = 1, nl {
call mw_ctrand (cty, j-0.5D0, y1, 1)
call mw_ctrand (cty, j+0.5D0, y2, 1)
j1 = max (1, nint(min(y1,y2)+1D-5))
j2 = min (nlpm, nint(max(y1,y2)-1D-5))
if (j2 < j1)
next
vnew[2] = j
call aclri (Memi[bufref], nc)
do l = j1, j2 {
vold[2] = l
if (!pm_linenotempty (pm, vold))
next
call pmglpi (pm, vold, Memi[bufpm], 0, nx, 0)
do i = 1, nc {
call mw_ctrand (ctx, i-0.5D0, x1, 1)
call mw_ctrand (ctx, i+0.5D0, x2, 1)
i1 = max (1, nint(min(x1,x2)+1D-5))
i2 = min (ncpm, nint(max(x1,x2)-1D-5))
if (i2 < i1)
next
val = Memi[bufref+i-1]
do k = i1-vold[1], i2-vold[1]
val = max (val, Memi[bufpm+k])
Memi[bufref+i-1] = val
}
}
call pmplpi (pmnew, vnew, Memi[bufref], 0, nc, PIX_SRC)
}
}
call mfree (bufref, TY_INT)
call mfree (bufpm, TY_INT)
}
call mw_close (mw)
call yt_pmunmap (im)
im = imnew
call imseti (im, IM_PMDES, pmnew)
end
# XT_MATCH_WORLD -- Set the pixel mask to match the reference image in
# world coordinates. The algorithm can fail in various ways, especially
# when higher order WCS are used. This ideally works with images and masks
# that are not greatly skewed in RA/DEC space.
procedure yt_match_world (im, refim, maxmaskval)
pointer im #U Pixel mask image pointer
pointer refim #I Reference image pointer
int maxmaskval #I Maximum mask value
int i, j, k, l, nc, nl, ncpm, nlpm, cstep, lstep, buf, nxmsi, nymsi
int c_im, l_im, c_ref, l_ref, c1_ref, c2_ref, l1_ref, l2_ref
int xmin, xmax, ymin, ymax
double pix_im[2], pix_ref[2], pix_tmp[2], w1[2], w2[2]
real x, y, icstep, ilstep, d[2], der[2,2]
long v[2]
pointer sp, bits, rl
pointer ba, mw_im, mw_ref, ct1, ct2, pm, xmsi, ymsi, xvec, yvec, ptr
int imstati()
real msieval()
pointer xt_baopen(), pm_open(), im_pmmapo(), imgl1i()
pointer mw_openim(), mw_sctran()
bool pm_empty()
errchk xt_baopen, pm_open, mw_openim, im_pmmapo, msiinit, msifit
begin
if (im == NULL)
return
# Set sizes.
ncpm = IM_LEN(im,1)
nlpm = IM_LEN(im,2)
nc = IM_LEN(refim,1)
nl = IM_LEN(refim,2)
# If the mask is empty and the sizes are the same then it does not
# matter if the two are actually matched in world coordinates.
pm = imstati (im, IM_PMDES)
if (pm_empty(pm) && nc == ncpm && nl == nlpm)
return
# Allocate working lines.
call smark (sp)
call salloc (bits, nc, TY_INT)
call salloc (rl, 3+3*ncpm, TY_INT)
# Use a bit array to hold the output in memory compactly.
ba = xt_baopen (nc, nl, maxmaskval)
# Set logical to logical transformation through the world coordinate
# systems. Use a surface fit to speed up the WCS calculations.
mw_im = mw_openim (im)
mw_ref = mw_openim (refim)
# First bound the reference image in world coordinates.
# The image is sampled and a small amount of buffer is used.
ct1 = mw_sctran (mw_ref, "logical", "world", 3)
cstep = 20; lstep = 20
icstep = (nc - 1.) / (cstep - 1.); ilstep = (nl - 1.) / (lstep - 1.)
w1[1] = MAX_DOUBLE; w1[2] = -MAX_DOUBLE
w2[1] = MAX_DOUBLE; w2[2] = -MAX_DOUBLE
for (pix_im[2]=1-ilstep; pix_im[2]<=nl+1+ilstep;
pix_im[2]=pix_im[2]+ilstep) {
for (pix_im[1]=1-icstep; pix_im[1]<=nc+1+icstep;
pix_im[1]=pix_im[1]+icstep) {
call mw_ctrand (ct1, pix_im, pix_ref, 2)
w1[1] = min (w1[1], pix_ref[1])
w1[2] = max (w1[2], pix_ref[1])
w2[1] = min (w2[1], pix_ref[2])
w2[2] = max (w2[2], pix_ref[2])
}
}
call mw_ctfree (ct1)
# Fit coordinate surfaces for the mapping from the mask to the
# the reference image. This is done because the WCS evaluations
# can be slow. This is done on a subsample and then linear
# interpolation will be done. Provide a buffer to avoid edge
# effects from the subsampling. Bound the mask to what overlaps
# the reference image.
cstep = 10; lstep = 10; buf = 1
ct1 = mw_sctran (mw_im, "logical", "world", 3)
ct2 = mw_sctran (mw_ref, "world", "logical", 3)
call msiinit (xmsi, II_BILINEAR)
call msiinit (ymsi, II_BILINEAR)
nxmsi = nint ((ncpm - 1.) / cstep + 2*buf + 1)
nymsi = nint ((nlpm - 1.) / lstep + 2*buf + 1)
icstep = (nxmsi - (2.*buf + 1)) / (ncpm - 1.)
ilstep = (nymsi - (2.*buf + 1)) / (nlpm - 1.)
call malloc (xvec, nxmsi*nymsi, TY_REAL)
call malloc (yvec, nxmsi*nymsi, TY_REAL)
xmin=ncpm+1; xmax=0; ymin=nlpm+1; ymax=0
k = -1
do j = 1, nymsi {
pix_im[2] = (j - (2*buf)) / ilstep + 1
do i = 1, nxmsi {
k = k + 1
pix_im[1] = (i - (2*buf)) / icstep + 1
call mw_ctrand (ct1, pix_im, pix_tmp, 2)
if (pix_tmp[1] < w1[1] || pix_tmp[1] > w1[2] ||
pix_tmp[2] < w2[1] || pix_tmp[2] > w2[2]) {
Memr[xvec+k] = 0
Memr[yvec+k] = 0
next
}
call mw_ctrand (ct2, pix_tmp, pix_ref, 2)
x = pix_ref[1]
y = pix_ref[2]
if (x > 0.5 && x < nc+0.5 && y > 0.5 && y < nl+0.5) {
l = max (1, min (ncpm, nint (pix_im[1])))
xmin = min (xmin, l)
xmax = max (xmax, l)
l = max (1, min (nlpm, nint (pix_im[2])))
ymin = min (ymin, l)
ymax = max (ymax, l)
}
Memr[xvec+k] = x
Memr[yvec+k] = y
}
}
call msifit (xmsi, Memr[xvec], nxmsi, nymsi, nxmsi)
call msifit (ymsi, Memr[yvec], nxmsi, nymsi, nxmsi)
call mfree (xvec, TY_REAL)
call mfree (yvec, TY_REAL)
call mw_close (mw_im)
call mw_close (mw_ref)
# Expand the mask bound to avoid missing the edge.
i = (xmin - 1) * icstep + (2*buf) - 1
xmin = (i - (2*buf)) / icstep + 1
xmin = max (1, min (ncpm, nint(xmin)))
i = (xmax - 1) * icstep + (2*buf) + 1.99
xmax = (i - (2*buf)) / icstep + 1
xmax = max (1, min (ncpm, nint(xmax)))
j = (ymin - 1) * ilstep + (2*buf) - 1
ymin = (j - (2*buf)) / ilstep + 1
ymin = max (1, min (nlpm, nint(ymin)))
j = (ymax - 1) * ilstep + (2*buf) + 1.99
ymax = (j - (2*buf)) / ilstep + 1
ymax = max (1, min (nlpm, nint(ymax)))
# Determine size of mask pixel in reference system.
# This is approximate because we don't take into account the
# shape of the transformed square mask pixels.
x = (xmax+xmin)/2; y = (ymax+ymin)/2
x = (x - 1) * icstep + (2*buf); y = (y - 1) * ilstep + (2*buf)
call msider (xmsi, x, y, der, 2, 2, 2)
d[1] = max (abs(der[2,1]), abs(der[1,2])) * icstep
call msider (ymsi, x, y, der, 2, 2, 2)
d[2] = max (abs(der[2,1]), abs(der[1,2])) * ilstep
# Go through each mask pixel and add to the new mask.
# This uses range lists to quickly skip good pixels.
v[1] = 1
do l_im = ymin, ymax {
v[2] = l_im
call plglri (pm, v, Memi[rl], 0, ncpm, PIX_SRC)
y = (l_im - 1) * ilstep + (2*buf)
ptr = rl
do k = RL_FIRST, RLI_LEN(rl) {
ptr = ptr + RL_LENELEM
c_im = Memi[ptr+RL_XOFF]
if (c_im > xmax)
next
if (c_im+Memi[ptr+RL_NOFF]-1 < xmin)
next
x = (c_im - 1) * icstep + (2*buf) - icstep
do c_im = 1, Memi[ptr+RL_NOFF] {
x = x + icstep
pix_ref[1] = msieval (xmsi, x, y)
pix_ref[2] = msieval (ymsi, x, y)
pix_tmp[1] = max (1D0, pix_ref[1] - 0.45 * d[1])
pix_tmp[2] = min (double(nc), pix_ref[1] + 0.45 * d[1])
if (pix_tmp[2] < 1 || pix_tmp[1] > nc)
next
c1_ref = nint (pix_tmp[1])
c2_ref = nint (pix_tmp[2])
pix_tmp[1] = max (1D0, pix_ref[2] - 0.45 * d[2])
pix_tmp[2] = min (double(nl), pix_ref[2] + 0.45 * d[2])
if (pix_tmp[2] < 1 || pix_tmp[1] > nl)
next
l1_ref = nint (pix_tmp[1])
l2_ref = nint (pix_tmp[2])
do l_ref = l1_ref, l2_ref {
do c_ref = c1_ref, c2_ref {
call xt_bapi (ba, c_ref, l_ref,
Memi[ptr+RL_VOFF], 1)
}
}
}
}
}
call msifree (xmsi)
call msifree (ymsi)
call yt_pmunmap (im)
# Create a new pixel mask of the required size and populate.
# Do dummy image I/O to set the header.
pm = pm_open (NULL)
call pm_ssize (pm, 2, IM_LEN(refim,1), 27)
im = im_pmmapo (pm, NULL)
ptr = imgl1i (im)
do j = 1, nl {
call xt_bagi (ba, 1, j, Memi[bits], nc)
v[2] = j
call pmplpi (pm, v, Memi[bits], 0, nc, PIX_SRC)
}
call imseti (im, IM_PMDES, pm)
call xt_baclose (ba)
call sfree (sp)
end
|