1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <math/curfit.h>
include "icfit.h"
include "names.h"
# IC_FVSHOW -- Show fit parameters in verbose mode.
procedure ic_fvshowd (ic, cv, x, y, wts, npts, fd)
pointer ic # ICFIT pointer
pointer cv # Curfit pointer
double x[ARB] # Ordinates
double y[ARB] # Abscissas
double wts[ARB] # Weights
int npts # Number of data points
int fd # Output descriptor
int i, n, deleted, ncoeffs
double chisqr, rms
pointer sp, fit, wts1, coeffs, errors
int dcvstati()
double ic_rmsd()
begin
# Do the standard ic_show option, then add on the verbose part.
call ic_fshow (ic, fd)
if (npts == 0) {
call eprintf ("# Incomplete output - no data points for fit\n")
return
}
# Determine the number of coefficients and allocate memory.
ncoeffs = dcvstati (cv, CVNCOEFF)
call smark (sp)
call salloc (coeffs, ncoeffs, TY_DOUBLE)
call salloc (errors, ncoeffs, TY_DOUBLE)
if (npts == IC_NFIT(ic)) {
# Allocate memory for the fit.
n = npts
call salloc (fit, n, TY_DOUBLE)
call salloc (wts1, n, TY_DOUBLE)
# Eliminate rejected points and count deleted points.
call amovd (wts, Memd[wts1], n)
if (IC_NREJECT(ic) > 0) {
do i = 1, npts {
if (Memi[IC_REJPTS(ic)+i-1] == YES)
Memd[wts1+i-1] = 0.
}
}
deleted = 0
do i = 1, n {
if (wts[i] == 0.)
deleted = deleted + 1
}
# Get the coefficients and compute the errors.
call dcvvector (cv, x, Memd[fit], n)
call dcvcoeff (cv, Memd[coeffs], ncoeffs)
call dcverrors (cv, y, Memd[wts1], Memd[fit], n, chisqr,
Memd[errors])
rms = ic_rmsd (x, y, Memd[fit], Memd[wts1], n)
} else {
# Allocate memory for the fit.
n = IC_NFIT(ic)
call salloc (fit, n, TY_DOUBLE)
call salloc (wts1, n, TY_DOUBLE)
# Eliminate rejected points and count deleted points.
call amovd (Memd[IC_WTSFIT(ic)], Memd[wts1], n)
if (IC_NREJECT(ic) > 0) {
do i = 1, npts {
if (Memi[IC_REJPTS(ic)+i-1] == YES)
Memd[wts1+i-1] = 0.
}
}
deleted = 0
do i = 1, n {
if (wts[i] == 0.)
deleted = deleted + 1
}
# Get the coefficients and compute the errors.
call dcvvector (cv, Memd[IC_XFIT(ic)], Memd[fit], n)
rms = ic_rmsd (Memd[IC_XFIT(ic)], Memd[IC_YFIT(ic)],
Memd[fit], Memd[wts1], n)
call dcvcoeff (cv, Memd[coeffs], ncoeffs)
call dcverrors (cv, Memd[IC_YFIT(ic)], Memd[wts1], Memd[fit],
n, chisqr, Memd[errors])
}
# Print the error analysis.
call fprintf (fd, "# total points = %d\n# sample points = %d\n")
call pargi (npts)
call pargi (n)
call fprintf (fd, "# nrejected = %d\n# deleted = %d\n")
call pargi (IC_NREJECT(ic))
call pargi (deleted)
call fprintf (fd, "# RMS = %10.7g\n")
call pargd (rms)
call fprintf (fd, "# square root of reduced chi square = %10.7g\n")
call pargd (sqrt (chisqr))
call fprintf (fd, "# \t coefficent\t error\n")
do i = 1, ncoeffs {
call fprintf (fd, "# \t%14.7e\t%14.7e\n")
call pargd (Memd[coeffs+i-1])
call pargd (Memd[errors+i-1])
}
# Free allocated memory.
call sfree (sp)
end
# IC_FXYSHOW -- List data as x, y, fit, weight lines on output.
procedure ic_fxyshowd (ic, cv, x, y, w, npts, fd)
pointer ic # ICFIT pointer
pointer cv # Pointer to curfit structure
double x[npts] # Array of x data values
double y[npts] # Array of y data values
double w[npts] # Array of weight data values
int npts # Number of data values
int fd # Output file descriptor
int i
double dcveval()
begin
# List the data being fit (not necessarily the input data).
call fprintf (fd, "# X Y Y FIT WEIGHT\n")
if (npts == IC_NFIT(ic)) {
do i = 1, npts {
call fprintf (fd, "%8g %8g %8g %8g\n")
call pargd (x[i])
call pargd (y[i])
call pargd (dcveval (cv, x[i]))
call pargd (w[i])
}
} else {
do i = 1, IC_NFIT(ic) {
call fprintf (fd, "%8g %8g %8g %8g\n")
call pargd (Memd[IC_XFIT(ic)+i-1])
call pargd (Memd[IC_YFIT(ic)+i-1])
call pargd (dcveval (cv, Memd[IC_XFIT(ic)+i-1]))
call pargd (Memd[IC_WTSFIT(ic)+i-1])
}
}
end
|