1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
include <time.h>
include <pkg/mef.h>
# MEFENCODE -- Routines to encode keyword, value and comment into a FITS card
define LEN_OBJECT 63
define CENTURY 1900
# MEF_ENCODEB -- Procedure to encode a boolean parameter into a FITS card.
procedure mef_encodeb (keyword, param, card, comment)
char keyword[ARB] #I FITS keyword
int param #I integer parameter equal to YES/NO
char card[ARB] #O FITS card image
char comment[ARB] #I FITS comment string
char truth
begin
if (param == YES)
truth = 'T'
else
truth = 'F'
call sprintf (card, LEN_CARD, "%-8.8s= %20c / %-47.47s")
call pargstr (keyword)
call pargc (truth)
call pargstr (comment)
end
# MEF_ENCODEI -- Procedure to encode an integer parameter into a FITS card.
procedure mef_encodei (keyword, param, card, comment)
char keyword[ARB] #I FITS keyword
int param #I integer parameter
char card[ARB] #O FITS card image
char comment[ARB] #I FITS comment string
begin
call sprintf (card, LEN_CARD, "%-8.8s= %20d / %-47.47s")
call pargstr (keyword)
call pargi (param)
call pargstr (comment)
end
# MEF_ENCODEL -- Procedure to encode a long parameter into a FITS card.
procedure mef_encodel (keyword, param, card, comment)
char keyword[ARB] #I FITS keyword
long param #I long integer parameter
char card[ARB] #O FITS card image
char comment[ARB] #I FITS comment string
begin
call sprintf (card, LEN_CARD, "%-8.8s= %20d / %-47.47s")
call pargstr (keyword)
call pargl (param)
call pargstr (comment)
end
# MEF_ENCODER -- Procedure to encode a real parameter into a FITS card.
procedure mef_encoder (keyword, param, card, comment, precision)
char keyword[ARB] #I FITS keyword
real param #I real parameter
char card[ARB] #O FITS card image
char comment[ARB] #I FITS comment card
int precision #I precision of real
begin
call sprintf (card, LEN_CARD, "%-8.8s= %20.*e / %-47.47s")
call pargstr (keyword)
call pargi (precision)
call pargr (param)
call pargstr (comment)
end
# MEF_ENCODED -- Procedure to encode a double parameter into a FITS card.
procedure mef_encoded (keyword, param, card, comment, precision)
char keyword[ARB] #I FITS keyword
double param #I double parameter
char card[ARB] #O FITS card image
char comment[ARB] #I FITS comment string
int precision #I FITS precision
begin
call sprintf (card, LEN_CARD, "%-8.8s= %20.*e / %-47.47s")
call pargstr (keyword)
call pargi (precision)
call pargd (param)
call pargstr (comment)
end
# MEF_ENCODE_AXIS -- Procedure to add the axis number to axis dependent
# keywords.
procedure mef_encode_axis (root, keyword, axisno)
char root[ARB] #I FITS root keyword
char keyword[ARB] #O FITS keyword
int axisno #I FITS axis number
begin
call strcpy (root, keyword, SZ_KEYWORD)
call sprintf (keyword, SZ_KEYWORD, "%-5.5s%-3.3s")
call pargstr (root)
call pargi (axisno)
end
# MEF_ENCODEC -- Procedure to encode an IRAF string parameter into a FITS card.
procedure mef_encodec (keyword, param, maxch, card, comment)
char keyword[LEN_CARD] #I FITS keyword
char param[LEN_CARD] #I FITS string parameter
int maxch #I maximum number of characters in param
char card[LEN_CARD+1] #O FITS card image
char comment[LEN_CARD] #I comment string
int nblanks, maxchar, slashp
begin
maxchar = max(8, min (maxch, LEN_OBJECT))
slashp = 32
nblanks = LEN_CARD - (slashp + 1)
if (maxchar >= 19) {
slashp = 1
nblanks = max (LEN_OBJECT - maxchar - slashp+3, 1)
}
call sprintf (card, LEN_CARD, "%-8.8s= '%*.*s' %*t/ %*.*s")
call pargstr (keyword)
call pargi (-maxchar)
call pargi (maxchar)
call pargstr (param)
call pargi (slashp)
call pargi (-nblanks)
call pargi (nblanks)
call pargstr (comment)
end
# MEF_ENCODE_DATE -- Procedure to encode the date in the form dd/mm/yy.
procedure mef_encode_date (datestr, szdate)
char datestr[ARB] # string containing the date
int szdate # number of chars in the date string
long ctime
int time[LEN_TMSTRUCT]
long clktime()
begin
ctime = clktime (long (0))
call brktime (ctime, time)
call sprintf (datestr, szdate, "%02s/%02s/%02s")
call pargi (TM_MDAY(time))
call pargi (TM_MONTH(time))
call pargi (mod (TM_YEAR(time), CENTURY))
end
# MEF_AKWC -- Encode keyword, value and comment into a FITS card and
# append it to a buffer pointed by pn.
procedure mef_akwc (keyword, value, len, comment, pn)
char keyword[SZ_KEYWORD] # keyword name
char value[ARB] # Keyword value
int len # Lenght of value
char comment[ARB] # Comment
pointer pn # Pointer to a char area
char card[LEN_CARD]
begin
call mef_encodec (keyword, value, len, card, comment)
call amovc (card, Memc[pn], LEN_CARD)
pn = pn + LEN_CARD
end
# MEF_AKWB -- Encode keyword, value and comment into a FITS card and
# append it to a buffer pointed by pn.
procedure mef_akwb (keyword, value, comment, pn)
char keyword[SZ_KEYWORD] # I keyword name
int value # I Keyword value (YES, NO)
char comment[ARB] # I Comment
pointer pn # I/O Pointer to a char area
pointer sp, pc
begin
call smark(sp)
call salloc (pc, LEN_CARD, TY_CHAR)
call mef_encodeb (keyword, value, Memc[pc], comment)
call amovc (Memc[pc], Memc[pn], LEN_CARD)
pn = pn + LEN_CARD
call sfree(sp)
end
# MEF_AKWI -- Encode keyword, value and comment into a FITS card and
# append it to a buffer pointed by pn.
procedure mef_akwi (keyword, value, comment, pn)
char keyword[SZ_KEYWORD] # I keyword name
int value # I Keyword value
char comment[ARB] # I Comment
pointer pn # I/O Pointer to a char area
pointer sp, pc
begin
call smark(sp)
call salloc (pc, LEN_CARD, TY_CHAR)
call mef_encodei (keyword, value, Memc[pc], comment)
call amovc (Memc[pc], Memc[pn], LEN_CARD)
pn = pn + LEN_CARD
call sfree(sp)
end
# MEF_AKWR -- Encode keyword, value and comment into a FITS card and
# append it to a buffer pointed by pn.
procedure mef_akwr (keyword, value, comment, precision, pn)
char keyword[SZ_KEYWORD] # I keyword name
real value # I Keyword value
char comment[ARB] # I Comment
int precision
pointer pn # I/O Pointer to a char area
pointer sp, pc
begin
call smark(sp)
call salloc (pc, LEN_CARD, TY_CHAR)
call mef_encoder (keyword, value, Memc[pc], comment, precision)
call amovc (Memc[pc], Memc[pn], LEN_CARD)
pn = pn + LEN_CARD
call sfree(sp)
end
# MEF_AKWD -- Encode keyword, value and comment into a FITS card and
# append it to a buffer pointed by pn.
procedure mef_akwd (keyword, value, comment, precision, pn)
char keyword[SZ_KEYWORD] # I keyword name
double value # I Keyword value
char comment[ARB] # I Comment
int precision
pointer pn # I/O Pointer to a char area
pointer sp, pc
begin
call smark(sp)
call salloc (pc, LEN_CARD, TY_CHAR)
call mef_encoded (keyword, value, Memc[pc], comment, precision)
call amovc (Memc[pc], Memc[pn], LEN_CARD)
pn = pn + LEN_CARD
call sfree(sp)
end
# NOTE: This local version of the xtools routine call handle starting
# index of zero (0). Taken from dataio/lib and modified. NZ March, 98
#
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <mach.h>
include <ctype.h>
define FIRST 1 # Default starting range
define LAST MAX_INT # Default ending range
define STEP 1 # Default step
define NULL -1 # Ranges delimiter
# DECODE_RANGES -- Parse a string containing a list of integer numbers or
# ranges, delimited by either spaces or commas. Return as output a list
# of ranges defining a list of numbers, and the count of list numbers.
# Range limits must be positive nonnegative integers. ERR is returned as
# the function value if a conversion error occurs. The list of ranges is
# delimited by a single NULL.
int procedure ldecode_ranges (range_string, ranges, max_ranges, nvalues)
char range_string[ARB] # Range string to be decoded
int ranges[3, max_ranges] # Range array
int max_ranges # Maximum number of ranges
int nvalues # The number of values in the ranges
int ip, nrange, first, last, step, ctoi()
begin
ip = 1
nvalues = 0
do nrange = 1, max_ranges - 1 {
# Defaults to all positive integers
first = FIRST
last = LAST
step = STEP
# Skip delimiters
while (IS_WHITE(range_string[ip]) || range_string[ip] == ',')
ip = ip + 1
# Get first limit.
# Must be a number, '-', 'x', or EOS. If not return ERR.
if (range_string[ip] == EOS) { # end of list
if (nrange == 1) {
# Null string defaults
ranges[1, 1] = first
ranges[2, 1] = last
ranges[3, 1] = step
ranges[1, 2] = NULL
nvalues = nvalues + abs (last-first) / step + 1
return (OK)
} else {
ranges[1, nrange] = NULL
return (OK)
}
} else if (range_string[ip] == '-')
;
else if (range_string[ip] == 'x')
;
else if (IS_DIGIT(range_string[ip])) { # ,n..
if (ctoi (range_string, ip, first) == 0)
return (ERR)
} else
return (ERR)
# Skip delimiters
while (IS_WHITE(range_string[ip]) || range_string[ip] == ',')
ip = ip + 1
# Get last limit
# Must be '-', or 'x' otherwise last = first.
if (range_string[ip] == 'x')
;
else if (range_string[ip] == '-') {
ip = ip + 1
while (IS_WHITE(range_string[ip]) || range_string[ip] == ',')
ip = ip + 1
if (range_string[ip] == EOS)
;
else if (IS_DIGIT(range_string[ip])) {
if (ctoi (range_string, ip, last) == 0)
return (ERR)
} else if (range_string[ip] == 'x')
;
else
return (ERR)
} else
last = first
# Skip delimiters
while (IS_WHITE(range_string[ip]) || range_string[ip] == ',')
ip = ip + 1
# Get step.
# Must be 'x' or assume default step.
if (range_string[ip] == 'x') {
ip = ip + 1
while (IS_WHITE(range_string[ip]) || range_string[ip] == ',')
ip = ip + 1
if (range_string[ip] == EOS)
;
else if (IS_DIGIT(range_string[ip])) {
if (ctoi (range_string, ip, step) == 0)
;
} else if (range_string[ip] == '-')
;
else
return (ERR)
}
# Output the range triple.
ranges[1, nrange] = first
ranges[2, nrange] = last
ranges[3, nrange] = step
nvalues = nvalues + abs (last-first) / step + 1
}
return (ERR) # ran out of space
end
# GET_NEXT_NUMBER -- Given a list of ranges and the current file number,
# find and return the next file number. Selection is done in such a way
# that list numbers are always returned in monotonically increasing order,
# regardless of the order in which the ranges are given. Duplicate entries
# are ignored. EOF is returned at the end of the list.
int procedure lget_next_number (ranges, number)
int ranges[ARB] # Range array
int number # Both input and output parameter
int ip, first, last, step, next_number, remainder
begin
# If number+1 is anywhere in the list, that is the next number,
# otherwise the next number is the smallest number in the list which
# is greater than number+1.
number = number + 1
next_number = MAX_INT
for (ip=1; ranges[ip] != NULL; ip=ip+3) {
first = min (ranges[ip], ranges[ip+1])
last = max (ranges[ip], ranges[ip+1])
step = ranges[ip+2]
if (number >= first && number <= last) {
remainder = mod (number - first, step)
if (remainder == 0)
return (number)
if (number - remainder + step <= last)
next_number = number - remainder + step
} else if (first > number)
next_number = min (next_number, first)
}
if (next_number == MAX_INT)
return (EOF)
else {
number = next_number
return (number)
}
end
# GET_PREVIOUS_NUMBER -- Given a list of ranges and the current file number,
# find and return the previous file number. Selection is done in such a way
# that list numbers are always returned in monotonically decreasing order,
# regardless of the order in which the ranges are given. Duplicate entries
# are ignored. EOF is returned at the end of the list.
int procedure lget_previous_number (ranges, number)
int ranges[ARB] # Range array
int number # Both input and output parameter
int ip, first, last, step, next_number, remainder
begin
# If number-1 is anywhere in the list, that is the previous number,
# otherwise the previous number is the largest number in the list which
# is less than number-1.
number = number - 1
next_number = 0
for (ip=1; ranges[ip] != NULL; ip=ip+3) {
first = min (ranges[ip], ranges[ip+1])
last = max (ranges[ip], ranges[ip+1])
step = ranges[ip+2]
if (number >= first && number <= last) {
remainder = mod (number - first, step)
if (remainder == 0)
return (number)
if (number - remainder >= first)
next_number = number - remainder
} else if (last < number) {
remainder = mod (last - first, step)
if (remainder == 0)
next_number = max (next_number, last)
else if (last - remainder >= first)
next_number = max (next_number, last - remainder)
}
}
if (next_number == 0)
return (EOF)
else {
number = next_number
return (number)
}
end
# IS_IN_RANGE -- Test number to see if it is in range.
bool procedure lis_in_range (ranges, number)
int ranges[ARB] # Range array
int number # Number to be tested against ranges
int ip, first, last, step
begin
for (ip=1; ranges[ip] != NULL; ip=ip+3) {
first = min (ranges[ip], ranges[ip+1])
last = max (ranges[ip], ranges[ip+1])
step = ranges[ip+2]
if (number >= first && number <= last)
if (mod (number - first, step) == 0)
return (true)
}
return (false)
end
|