aboutsummaryrefslogtreecommitdiff
path: root/pkg/xtools/rmmed.x
blob: 940fda9f355a9c0a948b5365e9074e2262dd6b82 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
include	<mach.h>
include	<pkg/rmsorted.h>

# RM_MED -- Running median/maximum/minimum library.
#
# This is a layer over the sorted running routines.
# This layer provides:
#
#    1. Support for multiple datasets (e.g. pixels in running image)
#    2. Support for an interior average
#    3. Support for masks
#    4. Support for excluded index (e.g. image)


# Method object structure.
define	RM_LEN		26		# Structure size
define	RM_RMS		Memi[$1]	# Pointer to RMEDSRT method
define	RM_BOX		Memi[$1+1]	# Box size
define	RM_TYPE		Memi[$1+2]	# Type of output
define	RM_NDATA	Memi[$1+3]	# Number of datasets
define	RM_PIXTYPE	Memi[$1+4]	# Internal storage type
define	RM_GOOD		Memi[$1+5]	# Ptr to good array (box)
define	RM_MASK		Memi[$1+6]	# Ptr to mask array
define	RM_PWIN		Memi[$1+7]	# Ptr to packed window data (n*box)
define	RM_POUT		Memi[$1+8]	# Ptr to packed outlist data (n*box)
define	RM_PMASK	Memi[$1+9]	# Ptr to mask data (n*(box+15)/16)
define	RM_SETMASK	P2S($1+10)	# Ptr to set mask array (16)
define	RM_UNSETMASK	P2S($1+18)	# Ptr to unset mask array (16)

define	GOOD		Memr[RM_GOOD($1)+$2]
define	MASK		Mems[RM_MASK($1)+$2/16]
define	SETMASK		Mems[RM_SETMASK($1)+mod($2,16)]
define	UNSETMASK	Mems[RM_UNSETMASK($1)+mod($2,16)]

define	PWINR		Memr[RM_PWIN($1)+RM_BOX($1)*($2-1)]
define	PWINS		Mems[RM_PWIN($1)+RM_BOX($1)*($2-1)]
define	POUT		Mems[RM_POUT($1)+(RM_BOX($1)+1)/2*($2-1)]

define	RM_TYPES	"|median|maximum|minimum|"
define	RM_TYMED	1		# Medain
define	RM_TYMAX	2		# Maximum
define	RM_TYMIN	3		# Maximum


# RM_MED -- Compute next running value.

real procedure rm_med (rm, nclip, navg, blank, exclude, index, in, mask, nused)

pointer	rm			#I RM pointer
real	nclip			#I Clipping factor
int	navg			#I Number of central values to average
real	blank			#I Blank value
int	exclude			#I Index of excluded data (one indexed)
int	index			#I Index of new data (one indexed)
real	in			#I Input data value
short	mask			#I Input mask value	
short	nused			#O Number of values in calculated result
real	val			#R Return value

int	i, j, iexclude
short	s1, s2, ors(), ands()
pointer	rms
real	clip, rmsorted()

begin
	# Call sorted running routine.
	rms = RM_RMS(rm)
	val = rmsorted (rms, nclip, index, in)

	# Set mask if needed.
	s2 = mod (index-1, RM_BOX(rm))
	s1 = MASK(rm,s2)
	if (mask != 0 || s1 != 0) {
	    if (mask != 0)
		MASK(rm,s2) = ors (s1, SETMASK(rm,s2))
	    else
		MASK(rm,s2) = ands (s1, UNSETMASK(rm,s2))
	    s1 = MASK(rm,s2)
	}

	# Recompute value if there are masks or an excluded value.
	iexclude = mod (exclude-1, RM_BOX(rm))
	if (s1 == 0 && iexclude < 0) {
	    do s2 = 0, RM_BOX(rm)-1, 16 {
		s1 = MASK(rm,s2)
		if (s1 != 0)
		    break
	    }
	}
	if (s1 != 0 || iexclude >= 0) {
	    nused = 0
	    do i = 0, RM_BOX(rm)-1 {
	        s2 = IN(rms,i)
		if (s2 != iexclude) {
		    s1 = MASK(rm,s2)
		    if (s1 == 0) {
			GOOD(rm,nused) = DATA(rms,i)
			nused = nused + 1
		    } else if (ands (s1, SETMASK(rm,s2)) == 0) {
			GOOD(rm,nused) = DATA(rms,i)
			nused = nused + 1
		    }
		}
	    }

	    if (nused > 2 && nclip > 0.) {
	        i = nused / 2
		if (mod (nused, 2) == 0)
		    val = (GOOD(rm,i) + GOOD(rm,i-1)) / 2
		else
		    val = GOOD(rm,i)
		clip = val + nclip * (val - GOOD(rm,0))
		do i = nused, 1, -1 {
		    if (GOOD(rm,i-1) < clip)
		        break
		}
		nused = i
	    }

	    switch (RM_TYPE(rm)) {
	    case RM_TYMED:
		switch (nused) {
		case 0:
		    val = blank
		case 1:
		    val = GOOD(rm,0)
		case 2:
		    val = (GOOD(rm,0) + GOOD(rm,1)) / 2.
		default:
		    for (i = 0; nused-2*i>max(2,navg); i=i+1)
			;
		    val = GOOD(rm,i)
		    do j = i+1, nused-i-1 {
			val = val + GOOD(rm,j)
		    }
		    nused = nused - 2 * i
		    val = val / nused
		}
	    case RM_TYMAX:
		switch (nused) {
		case 0:
		    val = blank
		default:
		    val = GOOD(rm,nused-1)
		}
	    case RM_TYMIN:
		switch (nused) {
		case 0:
		    val = blank
		default:
		    val = GOOD(rm,0)
		}
	    }
	} else
	    nused = min (navg, RM_BOX(rm))

	return (val)
end


# RM_GMED -- Running sorted value.

real procedure rm_gmed (rm, nclip, navg, blank, exclude, nused)

pointer	rm			#I RM pointer
real	nclip			#I Clipping factor
int	navg			#I Number of central values to average
real	blank			#I Blank value
int	exclude			#I Index of excluded data (one indexed)
short	nused			#O Number of values in calculated result
real	val			#R Return value

int	i, j, iexclude
short	mask, ands()
real	clip
pointer	rms

begin
	rms = RM_RMS(rm)
	iexclude = mod (exclude-1, RM_BOX(rm))

	# Extract good values to use.
	nused = 0
	do i = 0, RM_BOX(rm)-1 {
	    j = IN(rms,i)
	    mask = MASK(rm,j)
	    if (j != iexclude) {
		if (mask == 0) {
		    GOOD(rm,nused) = DATA(rms,i)
		    nused = nused + 1
		} else if (ands (mask, SETMASK(rm,j)) == 0) {
		    GOOD(rm,nused) = DATA(rms,i)
		    nused = nused + 1
		}
	    }
	}

	if (nused > 2 && nclip > 0.) {
	    i = nused / 2
	    if (mod (nused, 2) == 0)
		val = (GOOD(rm,i) + GOOD(rm,i-1)) / 2
	    else
		val = GOOD(rm,i)
	    clip = val + nclip * (val - GOOD(rm,0))
	    do i = nused, 1, -1 {
		if (GOOD(rm,i-1) < clip)
		    break
	    }
	    nused = i
	}

	switch (RM_TYPE(rm)) {
	case RM_TYMED:
	    switch (nused) {
	    case 0:
		val = blank
	    case 1:
		val = GOOD(rm,0)
	    case 2:
		val = (GOOD(rm,0) + GOOD(rm,1)) / 2.
	    default:
		for (i = 0; nused-2*i>max(2,navg); i=i+1)
		    ;
		val = GOOD(rm,i)
		do j = i+1, nused-i-1 {
		    val = val + GOOD(rm,j)
		}
		nused = nused - 2 * i
		val = val / nused
	    }
	case RM_TYMAX:
	    switch (nused) {
	    case 0:
		val = blank
	    default:
		val = GOOD(rm,nused-1)
	    }
	case RM_TYMIN:
	    switch (nused) {
	    case 0:
		val = blank
	    default:
		val = GOOD(rm,0)
	    }
	}

	return (val)
end


# RM_GDATA -- Get data value for specified index

real procedure rm_gdata (rm, index)

pointer	rm			#I RM pointer
int	index			#I Index of new data (one indexed)

int	i, j
pointer	rms

begin
	rms = RM_RMS(rm)
	i = mod (index-1, RM_BOX(rm))
	do j = 0, RM_BOX(rm)-1 {
	    if (IN(rms,j) == i)
	        return (DATA(rms,j))
	}
end



# RM_OPEN -- Open running sorted package.
#
# This is called once to allocate memory and initialize the algorithms.

pointer procedure rm_open (box, type, ndatasets, pixtype)

int	box			#I Median box size (<= 128)
char	type[ARB]		#I Output type
int	ndatasets		#I Number of datasets
int	pixtype			#I Internal storage type
pointer	rm			#O RM pointer

char	str[8]
int	i, j, strdic()
short	s, nots(), shifts()
real	val
pointer	rms, rms_open()

begin
	# Set internal storage type.
	if (pixtype == TY_SHORT)
	    i = TY_SHORT
	else
	    i = TY_REAL

	# Set the output type.
	j = strdic (type, str, 8, RM_TYPES)
	switch (j) {
	case RM_TYMED:
	    val = 0.
	    rms = rms_open (box, RMS_TYMED, val)
	case RM_TYMAX:
	    switch (i) {
	    case TY_SHORT:
		val = -MAX_SHORT
		rms = rms_open (box, RMS_TYMAX, val)
	    case TY_REAL:
		val = -MAX_REAL
		rms = rms_open (box, RMS_TYMAX, val)
	    }
	case RM_TYMIN:
	    switch (i) {
	    case TY_SHORT:
		val = MAX_SHORT
		rms = rms_open (box, RMS_TYMIN, val)
	    case TY_REAL:
		val = MAX_REAL
		rms = rms_open (box, RMS_TYMIN, val)
	    }
	default:
	    call error (1, "Unknown running type")
	}

	call calloc (rm, RM_LEN, TY_STRUCT)
	call calloc (RM_GOOD(rm), box, TY_REAL)
	call calloc (RM_PWIN(rm), box*ndatasets, i)
	call calloc (RM_POUT(rm), ndatasets*(box+1)/2, TY_SHORT)
	call calloc (RM_PMASK(rm), ndatasets*(box+15)/16, TY_SHORT)
	
	RM_RMS(rm) = rms
	RM_BOX(rm) = box
	RM_TYPE(rm) = j
	RM_NDATA(rm) = ndatasets
	RM_PIXTYPE(rm) = i
	RM_MASK(rm) = RM_PMASK(rm)

	# Set mask flags.
	s = 1
	do i = 0, 15 {
	    SETMASK(rm,i) = s
	    UNSETMASK(rm,i) = nots (s)
	    s = shifts (s, short(1))
	}

	do i = 1, ndatasets
	    call rm_pack (rm, i)

	return (rm)
end


# RM_CLOSE -- Close running sorted package.

procedure rm_close (rm)

pointer	rm			#I RM pointer

begin
	call rms_close (RM_RMS(rm))

	call mfree (RM_GOOD(rm), TY_REAL)
	call mfree (RM_PWIN(rm), RM_PIXTYPE(rm))
	call mfree (RM_POUT(rm), TY_SHORT)
	call mfree (RM_PMASK(rm), TY_SHORT)
	call mfree (rm, TY_STRUCT)
end


# RM_PACK -- Pack data.

procedure rm_pack (rm, dataset)

pointer	rm			#I RM pointer
int	dataset			#I Data set

pointer	rms

begin
	rms = RM_RMS(rm)
	if (RM_PIXTYPE(rm) == TY_SHORT)
	    call anirs (DATA(rms,0), PWINS(rm,dataset), RM_BOX(rm))
#	else
#	    call amovr (DATA(rms,0), PWINR(rm,dataset), RM_BOX(rm))
	call achtsb (OUT(rms,0), POUT(rm,dataset), RM_BOX(rm))
end


# RM_UNPACK -- Unpack data.

procedure rm_unpack (rm, dataset)

pointer	rm			#I RM pointer
int	dataset			#I Data set

int	i, j, box
pointer	rms

begin
	rms = RM_RMS(rm)
	box = RM_BOX(rm)

	if (RM_PIXTYPE(rm) == TY_SHORT)
	    call achtsr (PWINS(rm,dataset), DATA(rms,0), box)
	else
	    RMS_DATA(rms) = RM_PWIN(rm) + box * (dataset - 1)
#	    call amovr (PWINR(rm,dataset), DATA(rms,0), box)
	call achtbs (POUT(rm,dataset), OUT(rms,0), box)
	RM_MASK(rm) = RM_PMASK(rm) + (box + 15) / 16 * (dataset - 1)

	do i = 0, box-1 {
	    j = OUT(rms,i)
	    IN(rms,j) = i
	}
end


# ANIRS -- Convert real to short using nearest integer.

procedure anirs (a, b, n)

real	a[n]			#I Input real array
short	b[n]			#O Output short array
int	n			#I Number of array values

int	i

begin
	do i = 1, n
	    b[i] = a[i] + 0.5
end


# RM_DUMP -- Dump data.

procedure rm_dump (rm, unsorted, sorted, in, out)

pointer	rm			#I Method pointer
bool	unsorted		#I Dump data in unsorted order?
bool	sorted			#I Dump data in sorted order?
bool	in			#I Dump in list?
bool	out			#I Dump out list?

begin
	call rms_dump (RM_RMS(rm), unsorted, sorted, in, out)
end